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Abstract—In most metaheuristic algorithms, the updating
process fails to make use of information available from indi-
viduals in previous iterations. If this useful information could be
exploited fully and used in the later optimization process, the
quality of the succeeding solutions would be improved signifi-
cantly. This paper presents our method for reusing the valuable
information available from previous individuals to guide later
search. In our approach, previous useful information was fed
back to the updating process. We proposed six information
feedback models. In these models, individuals from previous iter-
ations were selected in either a fixed or random manner. Their
useful information was incorporated into the updating process.
Accordingly, an individual at the current iteration was updated
based on the basic algorithm plus some selected previous individ-
uals by using a simple fitness weighting method. By incorporating
six different information feedback models into ten metaheuris-
tic algorithms, this approach provided a number of variants
of the basic algorithms. We demonstrated experimentally that
the variants outperformed the basic algorithms significantly on
14 standard test functions and 10 CEC 2011 real world prob-
lems, thereby, establishing the value of the information feedback
models.

Index Terms—Benchmark, evolutionary algorithms (EAs),
evolutionary computation, information feedback, metaheuristic
algorithms, optimization algorithms, swarm intelligence.

I. INTRODUCTION

IN VARIOUS aspects of daily life, people try their best to
maximize their benefits and minimize their costs. This type

of reasoning is modeled mathematically by optimization prob-
lems. In mathematics, computer science, decision-making, and
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other fields, optimization problems seek the maximum or min-
imum value of a given objective function. These problems are
often approached using optimization algorithms. Optimization
algorithms can be divided loosely into two categories: 1) the
traditional deterministic methods and 2) modern metaheuris-
tic algorithms. The former will generate the same results for
different runs under the same conditions. For the latter, dif-
ferent runs will generate different solutions in most cases,
even under the same conditions. Because metaheuristic algo-
rithms can solve many complicated problems successfully,
they have received increased attention in many fields, ranging
from academic research to engineering practice.

Inspired by nature, a variety of metaheuristic algorithms
have been proposed recently to deal with complicated
optimization problems [1]–[5]. Many of them have solved
complex, challenging problems that are difficult to approach
using traditional mathematical optimization techniques.
These nature-inspired algorithms include ant colony
optimization (ACO) [6], [7], artificial bee colony [8], [9],
differential evolution (DE) [10]–[12], evolutionary strat-
egy (ES) [13], cuckoo search (CS) [14], [15], fireworks
algorithm (FWA) [16], brain storm optimization [17], [18],
earthworm optimization algorithm [19], elephant herd-
ing optimization [20], krill herd (KH) [21]–[28],
biogeography-based optimization (BBO) [29], genetic
algorithm (GA) [30]–[32], harmony search (HS) [33]–[35],
monarch butterfly optimization (MBO) [36], probability-
based incremental learning (PBIL) [37], moth search
algorithm [38], particle swarm optimization (PSO) [39]–[46],
and bat algorithm (BA) [47], [48].

However, these basic metaheuristic algorithms have
failed to make full use of valuable information avail-
able from the individuals in previous iterations to guide
their current and later search. Some of them, such as
ABC [8], ACO [6], [49], BA [47], and BBO [29], [50],
abandon previous instances directly. Others, such as
CS [14], FWA [16], [51], PSO [39]–[42], KH [21], [22], and
MBO [36], use only the best previous individuals. In practice,
any of the previous individuals could contain a variety of use-
ful information. If such information could be fully exploited
and utilized in the later optimization process, the performance
of these metaheuristic algorithms surely would be significantly
improved.

Accordingly, many researchers enhanced these metaheuris-
tic algorithms, and some useful information obtained from
the surrogate, an individual, the whole population/swarm,
dynamical environments, and/or neighbors has been extracted
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and reused to a certain degree. Few of these improve-
ments were based on a fitness function, with the excep-
tion of Bingul [52]. Bingul transformed the multiobjective
problem (MOP) into single-objective problems by using a fit-
ness function. In addition, the square-based fitness function
was used in Bingul [52]. In contrast, most of the previous
studies aimed to improve the performance of a particular
metaheuristic algorithm by reusing the exploited information.
However, they failed to form a general framework for reusing
the obtained information.

In this paper, we present our research, based on a fitness
function, in which we constructed a systematic information
feedback model that reused the information from individuals in
previous iterations. This proposed information feedback model
was demonstrated to provide a general framework that could
be used to improve the performance of most metaheuristic
algorithms.

In this paper, we studied how to make the best use of the
information available from previous individuals by using the
following techniques. First, a certain number of individuals in
previous iterations were selected in either a fixed or random
manner. For this paper, we selected one, two, or three individ-
uals from previous iterations. Second, the previous individuals
selected as feedback information were given to the updating
process. In this way, the information from previous individu-
als could be reused fully. Last, each individual of the current
iteration was updated according to the individual generated
by the basic algorithm and some selected previous individuals
through a weighted sum method. It should be noted that there
were many different ways to determine their weights. This
paper used their fitness to do so. An individual with better
fitness had a greater weight.

Combining information feedback models with metaheuristic
algorithms led to improved methods. They were then bench-
marked through 14 test cases and ten CEC 2011 real world
problems. The experimental results demonstrated that the
information feedback from previous individuals significantly
outperformed all the basic algorithms.

The organization of this paper is as follows. Section II
provides a review of the related literature regarding reusing
information in metaheuristic algorithms. In Section III, we
introduce the optimization process for metaheuristic algo-
rithms. This section then explains how we incorporated the
useful information in previous individuals into the basic meth-
ods, and demonstrates how to improve PSO with information
feedback models. Section IV provides the mathematical anal-
yses. In Section V, we explore various experimental models
and provide the simulation results. Further discussion is given
in Section VI. Section VII concludes this paper.

II. RELATED WORK

Recently, in order to improve the performance of the meta-
heuristic algorithms, many scholars have extracted and reused
the information from various sources, such as the surrogate,
an individual, the whole population/swarm, and/or a neighbor.
They have also used information from dynamical environ-
ments, directional information, mutual information (MI), and

other forms of information. Their work regarding various types
of information reuse is reviewed briefly below.

A. Surrogate Information

Surrogate information is found to be very effective in reduc-
ing user effort. Therefore, many researchers have improved
various metaheuristic algorithms through the use of surrogate
information, as in GA and PSO.

Sun et al. [31] proposed a new surrogate-assisted interactive
genetic algorithm (IGA), where the uncertainty in subjective
fitness evaluations was exploited both in training the surro-
gates and in managing surrogates. Moreover, uncertainty in
the interval-based fitness values was also considered in model
management, so that not only the best individuals but also the
most uncertain individuals would be chosen to be re-evaluated
by the human user. The experimental results indicated that
the new surrogate-assisted IGA could alleviate user fatigue
effectively and was more likely to find acceptable solutions in
solving complex design problems.

Gong et al. [53] proposed a computationally cheap surrogate
model-based multioperator search strategy for evolutionary
optimization. In this strategy, a set of candidate offspring
solutions were generated by using the multiple offspring repro-
duction operators. The best one according to the surrogate
model was chosen as the offspring solution. The proposed
strategy was used to implement a multioperator ensemble in
two popular evolutionary algorithms (EAs), DE, and PSO.

Aiming to solve medium-scale problems (i.e., 20–50 deci-
sion variables), Liu et al. [54] proposed a Gaussian pro-
cess surrogate model-assisted EA for medium-scale compu-
tationally expensive optimization problems (GPEME). A new
framework was developed and used in GPEME that care-
fully coordinated the surrogate modeling and the evolutionary
search. In this way, the search could focus on a small promis-
ing area and was supported by the constructed surrogate
model. Sammon mapping was also introduced to transform the
decision variables from tens of dimensions to a few dimen-
sions, in order to take advantage of Gaussian process surrogate
modeling in a low-dimensional space.

Wang et al. [55] divided data-driven optimization prob-
lems into two categories: 1) offline and 2) online data-driven
optimization. An EA was then presented to optimize the
design of a trauma system, which is a typical offline data-
driven multiobjective optimization problem. As each single
function evaluation involved a large amount of patient data,
Wang et al. [55] developed a multifidelity surrogate man-
agement strategy to reduce the computation time of the
evolutionary optimization.

Mendes et al. [56] proposed the use of genetic programming
to obtain high-quality surrogate functions that were evaluated
quickly. Such functions could be used to compute the values of
the optimization functions in place of the burdensome meth-
ods. The proposal was tested successfully on a version of the
TEAM 22 benchmark problem with uncertainties in decision
parameters.

Kattan and Ong [57] proposed a surrogate genetic pro-
gramming (or sGP for short) to retain the appeal of the
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semantic-based evolutionary search for handling challenging
problems with enhanced efficiency. The proposed sGP divided
the population into two parts, then it evolved the popula-
tion using standard GP search operators and meta-models
that served as a surrogate to the original objective function
evaluation. In contrast to previous works, two forms of meta-
models were introduced in this paper to make the idea of using
a surrogate in GP search feasible and successful.

Rosales-Pérez et al. [58] introduced an approach for
addressing model selection for support vector machines used
in classification tasks. The model selection problem was
transferred mathematically as a multiobjective one, aiming
to minimize simultaneously two components closely related
to the error of a model. A surrogate-assisted evolution-
ary multiobjective optimization approach was adopted to
explore the hyper-parameters space. The surrogate-assisted
optimization was used to reduce the number of solutions eval-
uated by the fitness functions so that the computational cost
would be reduced as well.

Hildebrandt and Branke [59] presented a new way to use
surrogate models with GP. Rather than using the genotype
directly as input to the surrogate model, they used a phenotypic
characterization in their method. This phenotypic characteri-
zation could be computed efficiently, which allowed them to
define approximate measures of equivalence and similarity.
Using a stochastic, dynamic job shop scenario as an example
of simulation-based GP with an expensive fitness evaluation,
they demonstrated that these ideas can be used to construct sur-
rogate models and improve the convergence speed and solution
quality of GP.

PSO is one of the most excellent swarm intelligence-
based metaheuristic algorithms [39], in which particles are
updated according to the best individuals in the population
and the best position for each particle so far. Lin et al. [60]
proposed a binary PSO based on surrogate information
with proportional acceleration coefficients (BPSOSIPAC) for
the 0-1 multidimensional knapsack problem (MKP). The
BPSOSIPAC was based on the surrogate information concept
to repair an infeasible particle and make the infeasible solution
become a feasible one.

B. Individual Information

ABC is a relatively new swarm intelligence-based meta-
heuristic algorithm [8]. In the basic ABC, previous individ-
uals were not reused at all. In addition, Gao et al. [61]
proposed a bare bones ABC called BABC that used param-
eter adaptation and fitness-based neighborhood. In BABC,
the useful information in the best individual and a Gaussian
search equation were used to generate a new candidate
individual at the onlooker phase [61]. On other hand, at
the employed bee phase, the information from the previous
search and from the better individuals was incorporated
into the parameter adaptation strategy and a fitness-based
neighborhood mechanism in order to improve the search
ability [61].

GA has been applied successfully to address all
kinds of engineering problems, especially in discrete

optimization [30], [31]. Bingul [52] first used information
feedback in adaptive GAs for dynamic MOPs. Bingul trans-
formed the multiobjective optimization problem into a single-
objective problem by using a static fitness function and
rule-based weight fitness function. Bingul [52] also used
a square-based fitness function because it generated the best
solutions among various types of fitness functions.

Gong et al. [62] combined the advantages of the GA and
PSO, and proposed a generalized “learning PSO” paradigm,
the *L-PSO. In *L-PSO, genetic operators were used to gen-
erate exemplars according to the historical search information
of particles. By performing crossover, mutation, and selec-
tion on the historical information of particles, the constructed
exemplars were not only well diversified but also highly
qualified.

Ly and Lipson [63] proposed a strategy to select the most
informative individuals in a teacher-learner type coevolution
by using the surprisal of the mean, based on Shannon infor-
mation theory. This selection strategy was verified by an
iterative coevolutionary framework, which consisted of sym-
bolic regression for model inference, and a GA for optimal
experiment design.

In order to exploit fully both global statistical information
and individual location information, Zhou et al. [64] combined
an estimation of distribution algorithm with computationally
cheap and expensive local search (LS) methods.

Xiong et al. [65] combined stochastic elements into
a resource investment project scheduling problem (RIPSP),
and proposed a stochastic extended RIPSPs. A knowledge-
based multiobjective EA (K-MOEA) was proposed to solve the
problem. In K-MOEA, the useful information in the obtained
nondominated solutions (individuals) was extracted and then
used to update the population periodically to guide subsequent
search.

C. Population/Swarm Information

Gao et al. [66] proposed a novel ABC algorithm based on
information learning, called ILABC. In ILABC, at each gen-
eration, the whole population was divided dynamically into
several subpopulations by the clustering partition based on the
previous search experience. Furthermore, the different indi-
viduals in one subpopulation and in different subpopulations
exchanged information after all the individuals were updated.
In this way, all the individuals would find the best solution
cooperatively. In addition to ILABC, Gao et al. [67] proposed
another improved ABC algorithm using more information-
based search equations.

Inspired by the echo location behavior of bats in nature,
BA was proposed for global optimization problems [47]. The
position of the bats was updated by the bats’ frequency, veloc-
ity, and distance to food. Therefore, their position had no rela-
tionship with any kind of information reuse. Wang et al. [68]
proposed a multiswarm BA (MBA) for global optimization
problems. In MBA, the information between different swarms
was exchanged by an immigration operator with different
parameter settings. Thus, this configuration was able to make
a good tradeoff between global and LS.
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With regard to DE, it is well accepted that two control
parameters: 1) scale factor (F) and 2) crossover rate (Cr), have
great influence on the performance of DE. Based on informa-
tion from the population, Ghosh et al. [69] proposed a simple
yet useful adaptation technique for tuning F and Cr.

In order to boost the population diversity when address-
ing large-scale global problems, Ali et al. [70] proposed
a new, improved DE called mDE-bES. This version was
a multipopulation algorithm, and the population was divided
into independent subgroups, each with different mutation and
update strategies. The information of the best individual was
used to generate a novel mutation strategy that produced
quality solutions with a balance between exploration and
exploitation. At each generation, the individuals exchanged
their information between the subgroups.

Cui et al. [71] designed a novel adaptive multiple
subpopulations-based DE named MPDE, in which the par-
ent population was split into three subpopulations based on
their fitness values. In MPDE, the useful information from
the trial vectors and target vectors was exploited fully to
form a replacement strategy that aimed to improve the search
ability.

Inspired by team cooperation in the real world,
Gao et al. [72] proposed a dual-population DE (DPDE) with
coevolution for constrained optimization problems (COPs).
The COP was divided into two objectives that were solved
by two subpopulations at each generation, respectively. In
DPDE, an information-sharing strategy was used to exchange
search information between the different subpopulations.

Wang et al. [73] proposed a cooperative multiobjective
DE (CMODE) with multiple populations for multiobjective
optimization problems (MOPs), which included M single-
objective optimization subpopulations and an archive popula-
tion for an M-objective optimization problem. These (M + 1)
populations cooperated to optimize all objectives of MOPs
by using adaptive DEs. The additional difference term was
added to the proposed method with the aim of sharing infor-
mation from the archive. In this way, an individual could use
the search information not only from its own subpopulation
but also from other populations. The individual was expected
to search along the whole Pareto front (PF) by using the infor-
mation of all the populations instead of being attracted to
the margin or extreme point only by the search information
of its own subpopulation. Hence, CMODE could approxi-
mate the whole PF quickly with the help of the archived
information.

Dhal et al. [74] proposed two variants of FA: 1) FA via Lévy
flights and 2) FA via chaotic sequence. In these two algo-
rithms, the information of population diversity was fully
extracted to generate the individuals at each generation.

Pan et al. [75] proposed a local-best HS algorithm with
dynamic subpopulations (DLHS) for global optimization prob-
lems. In DLHS, the whole harmony memory (HM) was
divided into a certain number of small-sized sub-HMs that
exchanged information with each other by using a periodic
regrouping schedule. Furthermore, the useful information in
the local best harmony vector was used to generate a novel
harmony improvisation scheme [75].

D. Information From Dynamical Environments

Though many versions of multiobjective PSO (MOPSO)
have been designed, few MOPSOs have been designed
to adjust the balance between exploration and exploita-
tion dynamically according to the feedback information
detected from the evolutionary environment. Hu and Yen [76]
proposed a new algorithm, the parallel cell coordinate
system (PCCS), according to the information about the evo-
lutionary environment, including density, rank, and diversity
indicators. PCCS was then incorporated into a self-adaptive
MOPSO, and a new MOPSO was proposed: the pcc-
sAMOPSO.

Foss investigated how a viable system, the honey bee
swarm, gathered meaningful information about potential new
nest sites in its problematic environment [77]. This investiga-
tion used a cybernetic model of a self-organizing information
network to analyze the findings from the last 60 years of pub-
lished research about swarm behavior. Information gathering
by a honey bee swarm was first modeled as a self-organizing
information network.

E. Neighborhood and Direction Information

In the basic DE, the base and difference vectors are always
selected randomly from the whole population for the mutation
operators, but the neighborhood and direction information fails
to be used effectively [10], [11], [78], [79]. In order to address
this problem, several scholars have put forward improved
strategies.

Peng et al. [80] proposed a novel DE framework with
distributed direction information-based mutation operators
(DE-DDI) for dealing with complex problems in big data.
In DE-DDI, the distributed topology was used to generate
a neighborhood for each individual first. Then the direction
information derived from the neighbors was introduced into
the mutation operator of DE. Consequently, the neighborhood
and direction information fully exploited the regions of better
individuals, and guided the search to the promising area.

Liao et al. [81] proposed another DE framework with
a directional mutation based on cellular topology, called cel-
lular direction information-based DE (DE-CDI). For each
individual in DE-CDI, the cellular topology was formed to
define a neighborhood. Next, the direction information based
on the neighborhood was incorporated into the mutation
operator. In this way, DE-CDI not only extracted the neighbor-
hood information to exploit the regions of better individuals
and accelerate convergence but also introduced the direction
information to guide the search to the promising area.

In order to use the neighborhood and direction informa-
tion fully, Cai et al. [82] proposed a new DE framework with
neighborhood and direction information (NDi-DE). Though
NDi-DE had better performance than most of the DEs, its
performance relied mainly on the selection of direction infor-
mation. To overcome this disadvantage, the adaptive operator
selection mechanism was incorporated into the NDi-DE, which
was able to select adaptively the direction information for
the specific DE mutation strategy. Accordingly, an improved
NDi-DE called adaptive direction information-based NDi-DE
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(aNDi-DE) was proposed by Cai et al. [82], which performed
much better than NDi-DE.

Fang et al. [83] proposed a decentralized quantum-inspired
PSO (QPSO) with cellular structured population called
cQPSO. In cQPSO, the particles were located in a 2-D grid
and allowed to get information only from their neighbors.
The overlapping particles exchange the information among the
nearest neighborhoods.

Wang et al. [84] proposed an improved version of
BA namely variable neighborhood bat algorithm (VNBA), is
thus proposed. In VNBA, the bat individual can get useful
information from their neighbors.

F. Mutual Information

He et al. [85] introduced the multiresolution analysis, MI,
and PSO into artificial neural network models. They proposed
a hybrid wavelet neural network model for forecasting monthly
rainfall from antecedent monthly rainfall and climate indices.

G. Other Information

ACO is one of the most representative metaheuristic algo-
rithms for global optimization problems, especially, for dis-
crete optimization [6], [49]. Because the ants are updated
according to the pheromone, the previous information fails
to be used in ACO.

Shang et al. [86] introduced heuristic information into ant-
decision rules, and then proposed a new version of ACO
named AntMiner for epistasis detection. In AntMiner, the
heuristic information was used to guide ants during the search
process with the aim of enhancing the computational efficiency
and solution accuracy.

Wang and Tang [87] proposed an adaptive DE based on
analysis of search data for the MOPs. In this algorithm, first the
useful information was derived from the search data during the
evolution process by using clustering and statistical methods.
Then the derived information was used to guide the generation
of new population and the LS.

Park and Lee [88] proposed a novel opposition-based
learning method by using a beta distribution with partial
dimensional change and selection switching. They combined
this approach with DE to enhance the convergence speed and
search ability. In the proposed method, the partial dimensional
changing scheme was used to preserve useful information.

Simulated annealing (SA) is one of the oldest classi-
cal metaheuristic algorithms [89] that is a trajectory-based
optimization algorithm. Yang and Kumar [90] proposed an
information guided framework for SA. Information gathered
from the exploration stage was used as feedback to drive the
optimization procedure, leading to the rise of the annealing
temperature during the optimization process. The resulting
algorithm had two phases: phase I performed nearly unre-
stricted exploration, and phase II “re-heated” the annealing
procedure and exploited information gathered during phase I.

Muñoz et al. [91] proposed a robust information content-
based method for continuous fitness landscapes that generated
four measures related to the landscape features. In addition,

it could overcome the disadvantage of sampling the fitness
landscape using random walks with variable step size.

From the descriptions above, we can see that for most
metaheuristic algorithms, some useful information obtained
from a surrogate, an individual, the whole population/swarm,
dynamical environments, neighbor and direction, and/or
mutual relationship is extracted and reused to a certain
degree. However, few of them are based on a fitness func-
tion (except [52]). Bingul [52] transferred the MOP into
some single-objective problems by using a fitness function as
explained previously. Furthermore, while most of the studies
above aimed to improve the performance of a certain meta-
heuristic algorithm by reusing the exploited information, they
failed to form a general framework for reusing the obtained
information.

In this paper, we present our research, based on a fitness
function, in which we constructed a systematic information
feedback model that reused the information from individuals in
previous iterations. This proposed information feedback model
was demonstrated to provide a general framework that could
be used to improve the performance of most metaheuristic
algorithms.

III. IMPROVING METAHEURISTIC ALGORITHMS

WITH INFORMATION FEEDBACK MODELS

In this section, we explain how metaheuristic algorithms
have been improved based on information feedback models.
First, we provide a brief outline of the basic optimization
process, and then we give a description of the information
feedback models. Finally, using PSO as an example, we
demonstrate how to improve the algorithm using information
feedback models.

A. Optimization Process

Despite the fact that different metaheuristic algorithms have
different updating strategies, their optimization processes can
be summarized briefly by the following general steps.

1) Initialization: Initialization can be divided into popu-
lation initialization and parameter initialization. The running
environments for later search are set during this process.

2) Search: In general, metaheuristic algorithms first imple-
ment global search and then LS, i.e., exploration and then
exploitation. These two searches perform in parallel, being
adjusted by certain parameters. The search process is repeated
until some termination condition is satisfied.

3) Output: Output the final best solutions.

B. Information Feedback Models

In theory, for our model k(k ≥ 1) previous individuals
can be selected, but using a substantial number of individ-
uals might complicate the method. Therefore, in this paper,
k ∈ {1, 2, 3}. As mentioned above, we will take PSO as an
example to illustrate the framework of our proposed method.
Some symbols are given before the information feedback
models are described.

Suppose that xt
i is the ith individual at iteration t, and xi

and f t
i are its position and fitness value, respectively. Here,
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t is the current iteration, 1 ≤ i ≤ NP is an integer number,
and NP is the population size. yt+1

i is the individual generated
by the basic PSO, and f t+1

i is its fitness. The framework of
the proposed method is given through the individuals at the
(t − 2)th, (t − 1)th, tth, and (t + 1)th iterations.

1) Model F1 and Model R1: This is the simplest case. The
ith individual xt+1

i can be generated as follows:

xt+1
i = αyt+1

i + βxt
j (1)

where xt
j is the position for individual j(j ∈ {1, 2, . . . , NP}) at

iteration t, and f t
j is its fitness.

α and β are weighting factors satisfying α + β = 1. They
can be given as

α = f t
j

f t+1
i + f t

j

, β = f t+1
i

f t+1
i + f t

j

. (2)

Here, individual j can be determined in the following ways.
Definition 1: The model in (1) is called model F1 when

j = i.
The individuals in previous and current generations are used

to generate the individual for the next generation.
Definition 2: The model in (1) is called model R1 when

j = r1, where r1 is an integer randomly selected between 1
and NP.

The individual generated by Definition 2 has a higher pop-
ulation diversity than the one generated by Definition 1. We
can see that if r1 = i, the model R1 will be F1 with the prob-
ability of 1/NP. Their incorporation into the basic PSO results
in PSOF1 and PSOR1, respectively.

2) Model F2 and Model R2: Two individuals at two
previous iterations are collected and used to generate individ-
ual i. For this case, the ith individual xt+1

i can be generated
as follows:

xt+1
i = αyt+1

i + β1xt
j1 + β2xt−1

j2
(3)

where xt
j1

and xt−1
j2

are the position for individuals j1 and
j2(j1, j2 ∈ {1, 2, . . . , NP}) at iteration t and t − 1, and f t

j1
and

f t−1
j2

are their fitness values, respectively.
α, β1, and β2 are weighting factors satisfying α+β1 +β2 =

1. They can be provided as follows:

α = 1

2
• f t−1

j2
+ f t

j1

f t+1
i + ft−1 + f t

j1

β1 = 1

2
• f t−1

j2
+ f t+1

i

f t+1
i + f t−1

j2
+ f t

j1

β2 = 1

2
• f t+1

i + f t
j1

f t+1
i + f t−1

j2
+ f t

j1

. (4)

Individuals j1 and j2 in (3) can be determined in sev-
eral different ways. For this model, this paper focused on
Definitions 3 and 4.

Definition 3: The model in (3) is called model F2 when
j1 = j2 = i.

The individuals at two previous and current generations are
used to generate the individual for the next generation.

Definition 4: The model in (3) is called model R2 when
j1 = r1, and j2 = r2, where r1 and r2 are integers that are
randomly selected between 1 and NP.

Similarly, the individual generated by Definition 4 has
more diversity of population than the individual generated by
Definition 3. Here, we can see, if r1 = r2 = i, the model
R2 will be F2 with the probability of 1/NP. Their incorporation
into the basic PSO results in PSOF2 and PSOR2, respectively.

3) Model F3 and Model R3: Three individuals at three
previous iterations are collected and used to generate individ-
ual i. For this case, the ith individual xt+1

i can be generated
as follows:

xt+1
i = αyt+1

i + β1xt
j1 + β2xt−1

j2
+ β3xt−2

j3
(5)

where xt
j1

, xt−1
j2

, and xt−2
j3

are the position of individuals j1, j2,
and j3(j1, j2, j3 ∈ {1, 2, . . . , NP}) at iteration t, t−1, and t−2,
and f t

j1
, f t−1

j2
, and f t−2

j3
are their fitness values, respectively.

Their weighting factors are α, β1, β2, and β3 with α +β1 +
β2 + β3 = 1, which can be given as

α = 1

3
• f t

j1
+ f t−1

j2
+ f t−2

j3

f t+1
i + f t

j1
+ f t−1

j2
+ f t−2

j3

β1 = 1

3
• f t+1

i + f t−1
j2

+ f t−2
j3

f t+1
i + f t

j1
+ f t−1

j2
+ f t−2

j3

β2 = 1

3
• f t+1

i + f t
j1

+ f t−2
j3

f t+1
i + f t

j1
+ f t−1

j2
+ f t−2

j3

β3 = 1

3
• f t+1

i + f t
j1

+ f t−1
j2

f t+1
i + f t

j1
+ f t−1

j2
+ f t−2

j3

. (6)

Though j1 − j3 can be determined in many different ways,
we adopted Definitions 5 and 6 for this model.

Definition 5: The model in (5) is called model F3 when
j1 = j2 = j3 = i.

The individuals at two previous and current generations are
used to generate the individual for the next generation.

Definition 6: The model in (5) is called model R3 when
j1 = r1, j2 = r2, and j3 = r3, where r1 − r3 are integer
numbers that are selected randomly between 1 and NP.

Similarly, the individual generated by Definition 6 has more
population diversity. Here, we can see that if r1 = r2 = r3 =
i, model R3 will be F3 with the probability of 1/NP. Their
incorporation into the basic PSO results in PSOF3and PSOR3,
respectively.

By incorporating the information feedback model into
the basic optimization process, we have a new updating
optimization process as shown in Fig. 1.

C. PSO Using Model F1

We now take PSO and model F1 as an example to explain
how to introduce information feedback into a metaheuristic
algorithm.

PSO [39] is one of the most representative swarm intelli-
gence paradigms. The solutions (called particles) are located
initially in the whole search region at random. Subsequently,
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Fig. 1. Schematic flowchart of updating optimization process.

the velocity and position of the particles are updated as (7)
and (8), respectively.

vt+1
i = ωvt

i + c1r1
(
pi,best − xi

) + c2r2
(
gi,best − xi

)
(7)

xt+1
i = xt

i + vt+1
i (8)

where xi and vi are the position and velocity of particle i,
respectively; pi,best and gi,best are the position with the optimal
objective value searched until now by particle i and the whole
population, respectively; w is an inertia parameter controlling
the dynamics of flying; r1 and r2 are random real numbers
in [0, 1]; and c1 and c2 are factors controlling the related
weighting of corresponding terms. After updating velocity and
position for particle i, pi,best and gi,best will be updated. This
process will be repeated until a certain stop condition is met.

Next, looking at the general outline of the optimization pro-
cess, we can see the main steps for improving PSO by using
the information feedback model (k = 1).

1) Initialization: The parameters used in PSO are set,
and the particle population is initialized randomly with the
predefined regions. This process is the same as performed in
the basic PSO.

2) Search: This is the critical part for improving PSO. First,
the velocity and position of particle i are updated according to
(7) and (8). The updated particle can be called yi. If the gener-
ation count t is bigger than 1, particle i will be further updated
by (1), and the newly generated particle will be considered as

Fig. 2. Improving PSO with information feedback models (k = 1).

the final particle for the next generation. The search process
is repeated until some termination condition is satisfied.

3) Output: PSO returns the values of gbest and f (gbest) as
its final solution.

The detailed steps of the combination of PSO and the infor-
mation feedback model (k = 1) can be seen in Fig. 2. In Fig. 2,
Gmax is the maximum of the generation.

Similarly, the other five models (R1–3, F2–3) can be incor-
porated into the basic PSO. Given the limits on the length of
this paper, we will not describe them in detail.

IV. MATHEMATICAL ANALYSES

In this section, we provide a mathematical analysis to prove
the convergence of the proposed method. We first prove the
algorithm under model F3 and R3. Here, the following lemmas
are provided, and they are true for any algorithm discussed in
this paper.

Lemma 1: An algorithm A can reach its final solution xbest
all of the time.

Here, algorithm A can be any of the algorithms dis-
cussed in this paper, such as ACO [6], BA [47], BBO [29],
CS [14], DE [10], ES [13], KH [21], MBO [36], PBIL [37],
and PSO [39].

xbest is the best solution for algorithm A, and its lower
bound and upper bound are xmin and xmax, respectively.
Lemma 1 indicates that algorithm A is able to find the final
solution all of the time, if it can search for the given domain
with enough time.
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TABLE I
BENCHMARK FUNCTIONS

Lemma 2: The solution xt+1
i is one of the feasible solutions

for algorithm A.
Proof: Here, we only prove that the lower bound and upper

bound of xt+1
i for algorithm A are xmin and xmax, respectively.

For ease of description, (5) can be described in the following
form:

xt+1
i = αyi + β1x1 + β2x2 + β3x3. (9)

It is clear that for algorithm A, the lower bound and upper
bound of the solutions x1, x2, and x3 are xmin and xmax, respec-
tively. In other words, xmin ≤ yi ≤ xmax, xmin ≤ x1 ≤
xmax, xmin ≤ x2 ≤ xmax, and xmin ≤ x3 ≤ xmax.

Next, we can get α ×xmin ≤ α ×yi ≤ α ×xmax, β1 ×xmin ≤
β1 × x1 ≤ β1 × xmax, β2 × xmin ≤ β2 × x2 ≤ β2 × xmax, and
β3 × xmin ≤ β3 × x3 ≤ β3 × xmax. Therefore, we get

(α + β1 + β2 + β3) × xmin

≤ xt+1
i = αyi + β1x1 + β2x2 + β3x3

≤ (α + β1 + β2 + β3) × xmax. (10)

According to the definition of α, β1, β2, and β3 in (5), we
know α+β1 +β2 +β3 = 1. Therefore, (10) can be updated as

xmin ≤ xt+1
i = αyi + β1x1 + β2x2 + β3x3 ≤ xmax. (11)

We observe clearly that xmin ≤xt+1
i ≤ xmax. In other words,

the newly generated solution xt+1
i via our proposed method is

a feasible solution for algorithm A.
Theorem 3: A proposed algorithm A′ can reach its final

solution x′
best all the time.

Proof: Here, A′ represents the proposed algorithm dis-
cussed in the previous section. Therefore, according to
Lemmas 1 and 2, the proposed algorithm A′ is able to find the
final solution x′

best if it can search for the given domain with
enough time.

For Models F1–2 and R1–2, it is obvious that these mod-
els are special cases of Models F3 and R3. Therefore, any
proposed algorithm A′ is similarly proven. We do not give
them in detail in this paper.

In sum, for each information feedback model, where the
model is Model F1–F3 or R1–R3, an algorithm A under these
models can reach its final solution x′

best every time.

V. SIMULATION RESULTS

Section III gives six information feedback models, i.e., F1–
F3 and R1–R3, each of which can be incorporated into a basic
metaheuristic algorithm, thereby, yielding six variants of each
basic method. For example, given PSO, we have PSOF1-3 and
PSOR1-3. The basic PSO can be named as PSOF0. Simply,
we can call them F0–F3, and R1–R3 for short.

We must point out that in order to investigate fully the supe-
riority of different information feedback models, six variants
were compared with each other only and with the correspond-
ing basic algorithm. Through this comparison, we were able
to look at the performance of six information feedback mod-
els and determine whether these models could improve the
performance of the basic algorithm.

Six information feedback models were combined with
the basic metaheuristic algorithms, and these newly com-
bined methods were further benchmarked by 14 standard test
functions as shown in Table I [29]. Each function had 20 inde-
pendent variables, that is, the dimension of each problem was
20. Some of functions were multimodal, which means that they
had multiple local minima. Some were nonseparable, which
means that they could not be written as a sum of functions of
individual variables.

The benchmarks were compared by implementing the
integer versions of all the metaheuristic algorithms in
MATLAB [29]. The granularity or precision of each bench-
mark function was 0.1, except for the Quartic function.
Since the domain of each dimension of the Quartic function
was only ±1.28, it was implemented with a granularity of
0.01 [29]. More information about these functions can be seen
by referring to [29].

First, we investigated the performance of PSO under Models
F1–F3 and R1–R3, and then these six models were extended
to be incorporated into more metaheuristic algorithms.

A. Performance of PSO With Models F1–F3 and R1–R3

In this section, we will look at the performance of PSO
under Models F1–F3 and R1–R3 on 14 benchmarks in Table I.

In order to get their representative statistical results, 50 inde-
pendent runs were done for PSO. In addition, PSO had
a population size of 50, an elitism parameter of 2, and was
run for 50 generations. The results were recorded in Table II.

In more detail, the best, average, and worst performances
of each method were collected, as shown in Table II. The
results were highlighted in bold if PSO performed the best
on a benchmark. The total numbers of the bold results were
collected, as shown in the last row in Table II. In order to
investigate the influence of F1–3 and R1–3, the number of
functions on which PSO performed the best was calculated,
as shown in the last two columns of Table II.

From Table II, we see that R1 was the best information
feedback model, having the greatest impact on PSO. F3 was
inferior only to R1. In addition, for six information feedback
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TABLE II
FUNCTION FITNESS OBTAINED BY PSO WITH SIX MODELS

models and F0, their average ranking from good to bad was
as follows: R1 > F3 > R3 > F2 > F0 > R1 > F1 = R2.
Models R1–3 have slightly greater impact than F1–3 for the
PSO algorithm on 14 benchmarks (21 versus 18).

From Table II, we can see that our six proposed mod-
els, especially R1 and F3, were able to improve signifi-
cantly the performance of PSO by balancing the exploration

and exploitation. Let us give the detailed analyses as
follows.

In PSO, particle i learned mainly from the information of the
global search and its own best position. On one hand, this situ-
ation meant that most particles would fly toward the promising
area, and the PSO would have a fast convergence. That is to
say, PSO would have a good exploration ability. On other hand,
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TABLE III
PARAMETER SETTINGS

if the optimal were local, it would be hard to escape from it.
R1 introduced diversity into the optimization process of PSO,
which would enable the trapped particles to escape from the
local positions. If the particles were not trapped into local
positions, the addition of population diversity did no harm to
PSO, because the global best particle was always memorized
during the whole optimization process. This is why F3 per-
formed better than other models except R1. In sum, the PSO
combined with six proposed models (especially Models R1
and F3) performed better than or equally to the basic PSO.

B. Performance of Six Information Feedback Models

In this section, we explain how six information feedback
models were combined with other nine metaheuristic algo-
rithms, i.e., ACO [6], BA [47], BBO [29], CS [14], DE [10],
ES [13], KH [21], MBO [36], and PBIL [37]. These newly
combined methods were further benchmarked by 14 standard
test functions, as shown in Table I [29].

For an algorithm, different parameter settings have a great
impact on its performance. In order to compare fairly, their
parameters were set as shown in Table III. For ACO, BBO,
DE, ES, PBIL, and PSO, their parameters were the same as
in [29].

For most algorithms, different runs may generate different
results. In order to get their representative statistical results,
50 independent runs were done for each method. In addition,
each method had a population size of 50, an elitism parameter
of 2, and were run for 50 generations. The best, average, and
worst performances of each method were collected and sum-
marized in Table IV. The results were highlighted in bold if
the algorithms performed the best for a benchmark. In order
to investigate the influence of F1–3 and R1–3, the number
of functions on which the metaheuristic algorithms performed
the best was calculated, as shown in the last two columns
of Table IV. Table V shows the average CPU time for each

TABLE IV
FUNCTION FITNESS OBTAINED BY TEN METAHEURISTIC ALGORITHMS

WITH SIX INFORMATION FEEDBACK MODELS

TABLE V
CPU TIME USED BY TEN METAHEURISTIC ALGORITHMS WITH SIX

INFORMATION FEEDBACK MODELS

method on each benchmark. We must point out that PSO was
also included in Tables IV and V in order to get more accurate
statistical results.

From Table IV, we see that F2 was the best information
feedback model, and had the greatest impact on the three algo-
rithms: 1) BA; 2) CS; and 3) MBO. R1 is inferior only to
F2 and had the greatest impact on three algorithms: 1) ES;
2) KH; and 3) PSO. F1 ranked third and had the greatest
impact on two algorithms: 1) BBO and 2) DE. For R2 and
R3, except ACO, they had the best impact on MBO and PBIL,
respectively. Looking carefully at Table IV, for ACO, R2, and
R3 had the same impact; for MBO, F2, and R2 had the same
impact. In addition, for six information feedback models and
F0, their average ranking from good to bad was as follows:
F2 > R1 > F1 > F3 = R3 > F0 > R2. Models F1–3 had
a greater impact than R1–3 for ten metaheuristic algorithms
on 14 benchmarks (230 versus 163).

From Table V, we observed that, except BA, all the variants
consumed more time than their respective basic algorithms.
This result falls fully under the adage, “there is no free
lunch” [92]. The additional time was used mainly to evaluate
the fitness values, and that action can be time consuming.

C. Comparisons Using t-Test

Based on the final results of 50 independent runs on 14 func-
tions, Table VI presents the t values on every function of
the two-tailed test, with the 5% level of significance between
the basic method and improved methods with six information
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TABLE VI
COMPARISONS BETWEEN THE BASIC METHOD AND SIX IMPROVED

METHODS WITH INFORMATION FEEDBACK MODELS

AT α=0.05 ON TWO-TAILED t-TESTS

feedback models. In the table, the value of t with 98 degrees
of freedom was significant at α = 0.05 by a two-tailed test.
Boldface indicates that the corresponding method performed
significantly better than the basic method. The best, equal, and
worst in Table VI indicate that the corresponding method per-
formed better than, equal to, or worse than its basic one. In
more detail, the best, equal, and worst performance of each
method was collected and summarized, as shown in Table VI.

For instance, comparing ACO and six variants of ACO,
ACOF1–3, and ACOR1–3 outperformed ACO significantly on
ten, twelve, eleven, twelve, ten, and eleven functions, respec-
tively, and performed as well as ACO on two, one, one, zero,
two, and one functions, respectively. These results indicate that
six variants of ACO generally performed better than ACO in
terms of the solution accuracy. Though the performance of
ACOF1–3 and ACOR1–3 was slightly weaker on some func-
tions, Table VI also reveals that they outperformed ACO on
most functions.

Similarly, Table VI shows that most methods (ACO, BA, CS,
DE, ES, MBO, PBIL, and PSO) had absolute advantage over
their basic algorithms. The performance of BBO and KH was
better than or equal to their basic ones on most benchmarks. In
addition, as seen from the last three rows of Table VI, R1 was
the best information model; F1, R1, and F2 were the three best
models among the six different information feedback models.
This conclusion coincides with results in Table IV.

TABLE VII
TEN REAL WORLD PROBLEMS SELECTED FROM CEC 2011

TABLE VIII
OPTIMIZATION RESULTS OBTAINED BY TEN METAHEURISTIC

ALGORITHMS WITH SIX INFORMATION FEEDBACK

MODELS FOR CEC 2011 RWPS

D. Real World Problems

In addition to the standard functions discussed in the section
above, ten more real world problems (RWPs) (see Table VII)
were also used to validate the six information feedback mod-
els. More detailed information about ten RWPs can be found
in [93].

Here, the parameters used in the ten approaches were the
same as the above. The population size and generations were
set to 50 and 50, respectively. The results obtained by 50 inde-
pendent runs on ten RWPs were recorded in Table VIII. The
results were highlighted in bold if an algorithm performed the
best on a benchmark. For each model, the total numbers of
the bold results were collected, as shown in the last row.

From Table VIII, we see that F1 was the best information
feedback model, and had the greatest impact on the three meta-
heuristic algorithms: 1) BBO; 2) MBO; and 3) PSO. R1 was
only slightly inferior to F1 and had the greatest impact on five
metaheuristic algorithms: 1) ACO; 2) BA; 3) ES; 4) KH; and
5) PBIL. F2 ranked the third and had the greatest impact on
three metaheuristic algorithms: 1) BA; 2) CS; and 3) KH. For
the other three information feedback models (R2, F3, and R3),
F3 had a greater influence on ten metaheuristic algorithms than
R2 and R3. For KH, we can see, R1 and F2 had equal influ-
ence. Moreover, for BBO, F1 had the same performance as F0
(the basic BBO). For PBIL, R1 had the same performance as
F0 (the basic PBIL). In addition, for six information feedback
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models and F0, their average ranking from good to bad was
as follows: F1 > R1 > F0 > F2 > F3 > R2 > R3.
Models F1–3 had a greater impact than R1–3 for ten meta-
heuristic algorithms on ten RWPs (155 versus 89). From the
results on 14 standard functions and ten RWPs, F1, R1, and
F2 performed the best among six information models.

Except RWPs studied here, there are many difficult
issues deserving to be extensively studied, like cloud
data [94], encrypted outsourced data [95], [96], and image
copy detection [97]. Shen et al. [94] designed a new effi-
cient and effective public auditing protocol with novel dynamic
structure for cloud data with the aim of decreasing the compu-
tational and communication overheads. Devising a searchable
and desirable encryption scheme cannot only support person-
alized search but also improve user search experience. For this
purpose, Fu et al. [96] handled the issue of personalized mul-
tikeyword ranked search over encrypted data while preserving
privacy in cloud computing. Fu et al. [95] presented a content-
aware search scheme, which can make semantic search more
smart. In addition, they verified the privacy and efficiency of
their schemes in the experiments. Zhou et al. [97] designed
a global context verification scheme to filter false matches
for copy detection. Concretely, the overlapping region-based
global context descriptor was designed to verify these matches
to filter false matches. Gu and Sheng [98] proposed an equiv-
alent dual formulation for v-SVC and a robust v-SvcPath based
on lower upper decomposition with partial pivoting. Also, their
robust regularization path algorithm can avoid the exceptions
completely, and handling the singularities in the key matrix.

VI. DISCUSSION

From the experiments conducted in the previous section,
each of the ten algorithms was improved by a particular infor-
mation feedback model. Here, KH is taken as an example to
analyze why the information feedback model can improve the
performance of all of the algorithms on 14 functions.

KH is a relatively new and promising algorithm proposed by
Gandomi and Alavi in 2012 [21]. R1 had the greatest impact
on KH among six information feedback models, i.e., k = 1,
and j = r1 in (1). For krill i, the first and second move-
ments are based mainly on the best krill [21]. This will surely
make most krill move toward the promising area. However,
at the later search stage, the KH algorithm might be trapped
into the local optimum. R1 added more diversity to the pop-
ulation for the optimization process at the later search stage.
Meanwhile, the generated krill had a smaller possibility of
surpassing the given range. So, the performance of KH was
improved significantly.

In addition, different models were able to create a good bal-
ance between exploration and exploitation. When k was small,
few of the previous individuals were used. In this way, the
ability of exploration could be improved. Conversely, when
k was big, as many of the previous individuals were used
as possible. In this way, the ability of exploitation could
be greatly improved. On other hand, the algorithms under
models R1–3 had more population diversity and explorative
ability than models F1–3. This could improve significantly the
performance of the metaheuristic algorithms at the late stage.

After fully investigating the performance of the proposed
methods, the following points should be highlighted in future.

First, the variants of a basic method (except BA) consume
more CPU time than the basic one because of increased fitness
evaluation. Methods to reduce CPU time are worthy of further
study. Second, KH and PSO were taken as examples to explain
the principle of our models. Further analysis using theories
should be performed to ascertain the reasons why the models
can improve the performance of their basic algorithms.

VII. CONCLUSION

In the study of optimization, few metaheuristic algorithms
reuse the previous information to guide the later updating
process. In this paper, we extracted and used the previous
information in the population to give feedback to the main
optimization process. One, two, and three individuals in
previous iterations were selected by either fixed or random
method. Accordingly, six information feedback models were
proposed, and they were then incorporated into ten algorithms.
The final individual at the current iteration was updated based
on the basic algorithm plus some selected previous individuals
by using a simple fitness weighting method.

By incorporating six information feedback models into ten
algorithms, we constructed six variants of each basic method.
They were compared with each other as well as with their
basic algorithms via 14 functions and ten CEC 2011 RWPs.
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