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Abstract. In this paper, an indexed K-D tree is proposed to solve the
problem of neighborhoods generation in swarm robotic simulation. The
problem of neighborhoods generation for both robots and obstacles can
be converted as a set of range searches to locate the robots within the
sensing areas. The indexed K-D tree provides an indexed structure for
a quick search for the robots’ neighbors in the tree generated by robots’
positions, which is the most time consuming operation in the process
of neighborhood generation. The structure takes full advantage of the
fact that the matrix generated by robots neighborhoods is symmetric
and avoids duplicated search operations to a large extent. Simulation
results demonstrate that the indexed K-D tree is significantly quicker
than normal K-D tree and other methods for neighborhood generation
when the population is larger than 10.
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1 Introduction

The researches of swarm robotic systems require plenty of physical robots, which
makes it hard to afford for many research institutions [1]. Simulations on com-
puters are developed to visually test the structures and algorithms on com-
puter. Although the final aim is real robots, it is often very useful to perform
simulations prior to investigations with real robots. Simulations are easier to
setup, less expensive, normally faster and more convenient to use than physical
swarms [2]. There exists several commonly-used simulation platforms, such as
Player/Stage [3], Swarmanoid Simulator [4] and etc.

In the real-life swarm robotics applications, robots in the swarm can detect
other robots within certain sensing ranges (they are inferred as neighbors in
this paper) to exchange positions, current running states and other environment
information. All these detections can be done with the help of on-board sen-
sors. However, the problem becomes complicated in simulation, as we judge if
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two robots are neighbors through calculating their distance. Thus, research on
generating neighbors for simulations is necessary.

1.1 Neighborhood Generation in Simulation

In the simulation of swarm robotics, sensing range of robots is fixed and the
area it covers shapes as a square or circle (cube or sphere in 3-D situations).
We denote all the robots inside the sensing area of a robot as the neighborhood
of this robot, which needs to be calculated every iteration to determine all the
neighbors of that robot.

We also need to detect if robots are near any obstacles in the environment,
i.e. generate the obstacles’ neighborhoods. Obstacles can vary in many aspects.
They can be static or dynamic, appear or disappear during the simulation. Their
sizes and shapes can be different, from small points to large polygons and they
can have different sensing areas and only robots within the areas can detect
them.

The problem of neighborhood generation can be defined as a set of range
search problems. There exists a constant D and two collections, collection of
dynamic points R (stands for robots) and collection of search ranges Q (sensing
areas of obstacles). For any points P in R, we need to find all the points in R
that are within the distance D to P. We also need to find all the ranges in Q that
contain P. Positions of points in R and searching ranges in Q may be changing
over time, and the results are calculated every iteration.

For a naive implementation, we calculate the distances of every two robots to
see if they are within the sensing range. The computation complexity is O(n2),
where n is population size. The time is quite short when n is small, but it becomes
intolerantly large when n grows which is just the case in swarm robotics, as the
population size should be at least tens or hundreds. So a smarter method should
be introduced.

1.2 K-D Tree

K-d tree (shorted for k-dimensional tree), proposed by Bentley at 1975 [5], is a
space-partitioning data structure for organizing points in a k-dimensional space.
K-d tree is a binary tree of k-dimensional points. Every non-leaf node can be
thought as a splitting hyper plane that divides the space into two half-spaces at
a specified dimension. For example, if x axis is chosen for a node, points with a
smaller x values than the node appear in the left sub tree and points with larger
x values are in the right sub tree.

K-d tree is a useful data structure for several applications, such as searches in-
volving a multidimensional search key (e.g. range searches and nearest neighbor
searches) [6], calculating multi-scale entropy [7] or triangle culling for ray-triangle
intersection tests in ray tracing [8]. So far, researches using k-d trees has con-
centrated on traversing them quickly, as well as on building them to be efficient
for general applications [9], but usages for special applications are not focused.
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2 The Indexed K-D Tree

Range searches in the neighborhood generation problem can be clustered into
two types: search for ranges centered at robots or obstacles. Since the search
ranges of obstacles may change or obstacles may be added into or removed from
the environment, it’s hard to build an optimized space indexing data structure
for obstacle range searches. Thus, we focus on optimizing range searches for
generating robots’ neighborhoods while the detection of obstacles remains the
same as the normal k-d tree in the proposed indexed k-d tree.

2.1 Motivation

We denote the results of all neighborhoods of the swarm as a matrix N , where
N(i, j) indicates robot j is a neighbor of robot i. Since the sensing ranges of
each robot are the same, the matrix is symmetric. After searching a node for
its neighbors, we can also determine whether it’s the neighbor of other robots
in the same time. Thus, this node can be removed from tree to shorten the
searching time for the remaining nodes. However, in a normal k-d tree, removal
of a node will take O(logn) time, where n is size of the tree. In the next iteration,
the very node will be added back to the tree when re-building the entire tree,
which will take another O(logn) time. We have to apply these remove and insert
operations for n − 1 points each iteration. With such strategy, we spend more
time for searching although we originally purpose is to save time.

We propose an indexed k-d tree to take full advantage of this strategy and guar-
antee the strategy really saves time in the searching process. Each node in the tree
is assigned a zero-based index, ranges from 0 to n− 1 and distinct to each other. It
should be noted that a index is assigned to a node in the tree structure rather than
the specific robot whose position is the value of the node. The tree is re-arranged
every iteration since the robots are moving. The index of the tree node stays the
same while it may refer to different robots in different iterations. The easiest way
of implementing such method in the computer program is to store all the nodes in
a array and index in the array indicates the index of the node.

To simplify the removal operation, we do not really remove the node from the
tree, but we ignore all the nodes that have been removed. The nodes should be
removed (or ignored) carefully in a certain order that can benefit searching for
the rest nodes. The ignored nodes should be distinguished easily by its index
during the search, i.e. no longer than O(1) time. All the children nodes of a tree
branch must be searched before we can ignore the root node of entire tree branch
safely. In our indexed k-d tree, indexes of nodes are assigned following a simple
principle:

Tree Indexing Principle. ∀i ∈ [0, n− 1), nodes indexed 0, . . . , i are connected
and the sub tree formed by these nodes is a valid k-d tree with the height of not
more than log(i) + 1.

With this simple principle, we can search and remove the indexed nodes in
the descending order. We can ignore all the nodes with larger indexes than that
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of the center of current search range, when we apply range searches on the rest
of the nodes, which still form a valid k-d tree according to the principle. The
restriction of the height of the sub tree is to optimize the indexing so that the
sub tree is more balanced and saves searching time.

2.2 The Indexed Structure

The structure of the proposed indexed k-d tree is shown in Figure 1. We can
easily see from the figure that, unlike normal k-d tree, the tree is unbalanced as
nodes in the last layer are left-aligned. Since the searching time is more related
with the height of the tree rather than size, we should always try to keep the
remaining sub trees lower. As we remove the nodes with larger indexes first
when searching, the height of sub trees of the unbalanced tree will descend more
quickly than a normal tree.

(a) Normal k-d tree (b) Indexed k-d tree

Fig. 1. Comparison between normal and indexed k-d tree

The tree structure is initialized before the simulation starts according to the
population size of the swarm. The nodes will fill all the layers of the tree from top
to bottom and fill a layer from left to right. After that, tree nodes are indexed
according to the following three rules.

Tree Indexing Rule 1. The indexes of a node and all its sub-nodes are con-
tinuous.

When building and updating the tree, we need to split the positions of the
robots at certain dimension in k-d tree. We store all these values in an array.
Continuous indexes can benefit the split process for easier program readability
and faster execution time since reading continuous memory blocks is quicker
than sparse ones.

Tree Indexing Rule 2. The indexes of nodes in the right sub tree of node i
are always larger than i and nodes in the left sub tree.
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A larger index indicating the node will be removed earlier in the search pro-
cess. Since the tree is unbalanced and the right side is usually smaller than the
left side, nodes in the right sub tree should have larger indexes.

Tree Indexing Rule 3. The indexes of nodes in the left sub tree of node i is
smaller than i if node i is the first node of that layer, and vice versa.

As for indexing the left sub tree, there exist two situations. First nodes of the
layer (indexed 6, 3, 1 or 0 in Figure 1b) should have larger indexes than nodes
in their left sub trees, since they are currently the root of the current search tree
with an empty right sub tree. In the next step of search process, the root node is
“removed” and the height of the tree will reduce by one. For other nodes, their
left sub trees should be “removed” earlier than themselves, so they have smaller
indexes than nodes in left sub trees.

3 Neighborhood Generation Using the Indexed K-D Tree

When using the indexed k-d tree in simulations, we first initialize the tree struc-
ture before simulation starts using the rules proposed in the previous section.
Every iteration in the simulation, we first update the values in the tree nodes for
splitting the space and then apply range searches for neighborhood generation.

The update operation works similar with the construction of the tree. In a
normal construction of k-d tree, a split operation is applied for each node. Nodes
in the left and right sub trees of one node are split by the node itself at specified
dimension. The complete operation has a computational complexity of O(nlogn)
where n is size of the tree. However, the robots have a limited maximum moving
speed, which is normally small compared to the sensing range. So we assume that
the places of the nodes in the tree remain almost the same in two consequent
iterations. Therefore, we always try to split the updated sub trees using the same
old node that split the values in previous iteration. The complete construction
will take O(n) time in the best condition. The average construction time is
O(nlogn) and is guaranteed to be not more than that of a normal tree.

After updating the tree, we generate the neighborhoods for all robots. With
each tree node indexed, searching becomes simple. We traverse the node index i
from n−1 downwards to 0. For each index i, we search for neighbors of node i in
the tree formed only by the nodes indexed from 0 to i−1 which is a valid indexed
k-d tree according to the principle. Since the result matrix N is symmetric, we
assign all N(j, i) = N(i, j) where j < i. We also assign N(i, i) to be true or false
according to the requirements of the application. After assigning all the values
related with robot i in matrix N , we step to next index i − 1 until i reaches 0.
From Figure 1b, we can see that the root of the tree changes during the search
and the tree gradually shrinks to the left corner.

If obstacles are involved in the simulation, we search the neighbors of these
obstacles in the complete tree just like normal range searching in a normal k-d
tree.

The pseudo code of neighborhood generation using the indexed k-d tree is
shown in Algorithm 1.
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Algorithm 1 . Code for Neighborhood Generation at Every Iteration using
Indexed K-D Tree

Update tree, trying to use the old split nodes
for i = n− 1 to 0 do //Robots’ neighborhoods

Set up search range R centered at node i
Search the tree formed by nodes [0,i-1) using range R

end for
for all obstacle o do //Obstacles’ neighborhoods

Set up search range R centered at obstacle o
Search the entire tree using range R

end for
Return neighborhoods

4 Results and Discussions

In this section, experimental results and discussions are presented. We first
compare the efficiency of the improved k-d tree with other implementations
in different population sizes, and then compare the performance under obstacle
environments.

To test the efficiency of neighborhood generation for different methods, we
run tests on our self-built simulation platform. The robots wander in the envi-
ronment with randomly generated directions. They bounce at the borders and
have a rate of 5% to change their direction with randomly generated ones. All
our experiments are repeated 10 times, each has 10,000 iterations. The time in
our results are the total time used for generating neighborhoods for all these it-
erations. The time that spends on initializing and calculating robots’ movements
is not included.

4.1 Time Comparison among Different Population Sizes

We compare the efficiency of our indexed k-d tree with normal k-d tree and the
naive implementation under different population sizes in this section. The results
are shown in Table 1. In the table, naive stands for the simple implementation
that calculates all the distances of every two robots, normal stands for the normal
k-d tree and indexed stands for our proposed k-d tree in this paper. The normal
k-d tree use the same updating strategy as our indexed k-d tree and searches
the entire tree for every robot, which is faster than removing a node and adding
it back using the normal way. The running times in milliseconds stands for the
time for all 100,000 iterations (10,000 iterations each for 10 times).

From the table, we can see that as population grows, time for indexed k-d tree
grows slower than naive, as the computational complexity tells. Our indexed k-d
tree speeds less time than naive when population becomes more than 13. As
population increases, we can see that indexed k-d tree becomes 20 to 30 percent
quicker than naive when population is fewer than 30. When population grows
to 100 and 1000, this percentage becomes even larger to 60 and even 75. We
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Table 1. Time Comparison among Different Populations (Lower is better)

Running Time (ms) Time Ratio
K-D Tree Indexed / Indexed /

Population Naive
Normal Indexed Naive Normal

2 17.91 52.38 41.56 232.05% 79.34%
3 34.32 98.05 68.28 198.97% 69.64%
4 57.48 166.79 115.92 201.66% 69.50%
5 87.08 239.69 153.04 175.74% 63.85%
6 125.34 360.77 264.63 211.14% 73.35%
7 169.88 384.96 270.77 159.39% 70.34%
8 217.81 480.22 328.61 150.87% 68.43%
9 283.61 633.33 375.43 132.38% 59.28%
10 337.62 632.06 425.74 126.10% 67.36%
11 416.04 838.45 502.89 120.88% 59.98%
12 490.28 905.74 610.45 124.51% 67.40%
13 575.31 1040.42 624.12 108.48% 59.99%

14 668.96 1046.03 645.76 96.53% 61.73%
15 768.43 1254.40 715.47 93.11% 57.04%
16 859.12 1456.15 781.45 90.96% 53.67%
17 969.94 1666.82 928.95 95.77% 55.73%
18 1091.89 1692.73 977.72 89.54% 57.76%
19 1221.11 1880.05 985.22 80.68% 52.40%
20 1360.52 2001.45 1145.62 84.20% 57.24%
21 1474.70 1971.13 1246.12 84.50% 63.22%
22 1632.14 2172.43 1343.55 82.32% 61.85%
23 1789.37 2197.13 1347.18 75.29% 61.32%
24 1924.72 2444.18 1532.71 79.63% 62.71%
25 2132.77 2860.92 1605.33 75.27% 56.11%
26 2295.74 2755.71 1614.63 70.33% 58.59%
27 2467.44 3045.49 1925.85 78.05% 63.24%
28 2632.62 3031.58 1962.45 74.54% 64.73%
29 2870.51 3334.43 2036.15 70.93% 61.06%
30 3036.72 3472.01 2104.65 69.31% 60.62%
100 32,774 19,775 12,946 39.50% 65.47%
1000 3,520,591 1,148,533 862,571 24.50% 75.10%

can say, according to the results, the indexed k-d tree over-performs the naive
implementation even when population is small, not to mention the advances
when population size blows.

We can also see that our indexed k-d tree is 40% quicker than normal k-d
tree when population is larger than 9. We can see the advantage of indexed k-d
tree drops a little when population is very large. The reason for such situation
is that updating time of the tree increases quickly than the searching time. As
for normal k-d tree, we can see that even when population is 30, it’s still slower
than the naive implementation. Actually, in our experiment, it won’t be faster
than naive until population reaches 35.
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In summary, our indexed k-d tree is 40% quicker than normal k-d tree and at
least 20-30%quicker than the naive implementation when population is more than
10. The advantage becomes more notable when population grows. We can defer
that our indexedk-d tree is applicable in real-time simulations, especially for swarm
robotics applications which normally have a population size of at least 10.

4.2 Time Comparison under Obstacle Situation

In obstructive environments, calculation of the neighborhoods of obstacles is
also involved as we mentioned in previous sections. In a swarm robotic sim-
ulation, if obstacles are introduced, the number of obstacles can vary from a
few to hundreds. In this section, we compare the performance of algorithms un-
der environments with 10-50 obstacles since the trends are displayed completely

Table 2. Running Time Ratio in Obstacle Range Searches (Lower is better)

Number of Obstacles
10 20 30 40 50

P
o
p
u
la
ti
o
n

2 226.41% 217.73% 188.16% 213.31% 219.46%
3 171.87% 152.51% 162.49% 164.14% 164.37%
4 167.75% 142.51% 145.66% 143.43% 136.36%
5 138.93% 123.78% 123.29% 121.46% 122.81%
6 125.93% 117.00% 111.10% 108.74% 105.85%
7 106.89% 107.05% 103.89% 97.81% 97.81%
8 107.50% 100.14% 92.45% 93.75% 97.75%
9 97.78% 92.98% 95.99% 90.68% 86.43%
10 97.42% 86.80% 88.04% 86.08% 79.39%
11 94.91% 85.88% 81.64% 78.10% 76.23%
12 86.09% 81.33% 77.98% 78.10% 75.26%
13 81.66% 77.44% 73.96% 71.87% 72.49%
14 83.94% 71.90% 71.43% 69.54% 69.55%
15 80.64% 71.42% 69.46% 67.02% 68.03%
16 78.30% 70.90% 65.33% 65.03% 64.35%
17 85.30% 70.23% 65.09% 64.17% 63.53%
18 75.45% 66.59% 67.01% 63.02% 61.64%
19 68.46% 68.44% 63.01% 61.26% 57.20%
20 68.17% 63.48% 63.88% 59.92% 58.05%
21 66.97% 65.14% 58.36% 58.33% 58.07%
22 67.02% 61.49% 57.44% 55.48% 54.69%
23 67.16% 63.74% 59.85% 56.51% 54.20%
24 64.98% 64.17% 57.00% 56.66% 53.84%
25 63.88% 61.49% 56.44% 55.14% 52.76%
26 63.69% 57.10% 55.23% 54.14% 50.73%
27 64.77% 58.33% 53.90% 51.37% 50.49%
28 60.12% 56.90% 53.81% 52.45% 48.89%
29 62.14% 56.54% 50.08% 50.14% 52.67%
30 65.10% 58.79% 52.99% 48.59% 46.05%
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with these results. From the previous section, we can see our indexed k-d tree
is always quicker than normal k-d tree. Since these two k-d trees use the same
strategy for searching obstacles, we only compare the result between indexed k-d
tree and naive implementation. The time ratios (indexed / naive) under different
populations and numbers of obstacles are shown in Table 2.

From the table, we can see that the two algorithms have the same trend as the
situation without obstacles when population increases. As number of obstacles
increases, time ratio is decreasing rapidly and our indexed k-d tree has a larger
time advantage. The populations, at which indexed k-d tree becomes quicker
than naive implementation, decrease to 7-9 due to different number of obstacles,
compared with 13 when no obstacles are involved. As population increases, the
time ratio decreases to 50-60 which means indexed k-d tree spends almost only
half the time than the naive implementation. The results demonstrate that our
indexed k-d tree has a greater advantage than in no obstacle environments and
it’s more applicable in simulations since numbers of obstacles can be tens or
hundreds in most swarm robotic simulations.

5 Conclusion

In this paper, we consider the problem of neighborhood generation in swarm
robotic simulations. The problem can be converted into a series of range search
problems. Based on the characteristics of this problem, we proposed an indexed
k-d tree, which provides a structure for quickly searching a set of ranges centered
at the points which formed the k-d tree. The simulation results show that our
indexed k-d tree is almost 40% quicker for calculating robots’ neighborhoods than
normal k-d tree. It is also significantly quicker than the naive implementation in
most population sizes and numbers of obstacles for neighborhood generation.

Due to the tree structure and node indexes, the indexed k-d tree is 30-40%
faster than traditional methods for calculating neighborhoods of all the robots
in the swarm, which is the most time consuming operation of neighborhood
generation problem in swarm robotics simulations. This result demonstrates that
the indexed k-d tree can accelerate the process of generating neighborhoods
significantly and is very applicable for swarm robotics simulations.
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