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A lot of real-world robotic tasks involve multiple agents with partial observability
and limited communication [2]. Agents have capability to extract useful features
from neighboring agents to make optimal decisions and cooperation emerges
in the group. Typical examples include the swarm robotics [22], traffic signal
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Abstract. In the multi-agent task, due to the constant changes in the
location and state of each agent, the information considered by each
agent when making decisions is also constantly changing. This makes it
difficult to model cooperatively among agents. Previous methods mainly
used average embedding to model feature aggregation. However, this
aggregation has the problem of losing permutation invariance or exces-
sive information loss. The feature aggregation method based on attentive
relational state representation establishes an insensitive state representa-
tion to permutation and problem scale. In our experiments on Intelligent
Joint Operation Simulation, experimental results show that attentive
relational state representation improves the baseline performance.
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control [21], collaborative filter [3], and social network analysis [24].
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For the learning paradigms in multi-agent systems, a centralized controller
[5] is theoretically feasible but counters many problems, such as the curse of
dimensionality and nonexistence of a possible centralized controller in some real
tasks like intelligent transportation systems [10]. Therefore, we focus on a decen-
tralized protocol in multi-agent reinforcement learning (MARL), where agents
are connected by a time-varying topology structure, and they aggregate informa-
tion from all their neighbors. This also promotes the scalability and robustness
of multi-agent systems.

However, when decentralized artificial intelligence (AI) agents are trained in
an interactive environment, it is tricky to handle the state representation issue
because the neighborhoods are highly flexible and scalable. One of the previous
approaches to represent the aggregated state is fixing the number of local team
members and simply concatenating the information received from neighboring
agents, as the input dimension must be invariant in neural-network policies and
other machine-learning models. We argue that these formulations lack flexibility.
Another popular protocol is pooling embedding, such as max-pooling and mean-
pooling. Even though pooling method secures invariant input dimension, it loses
much information among neighboring agents.

In this article, we utilize an attention based aggregation method called Atten-
tive Relational State Representation (ARE) to efficiently aggregate information
from neighboring agents. By modeling the attention between different neighbors,
ARE can actively select relevant information discriminately. By pooling, it con-
structs a unified state representation for learning policies. With this embedding,
we condition the policy and train them simultaneously by deep reinforcement
learning (DRL). The compact representation makes the learned policy robust
to the changes in the multi-agent system and also reduces the search space for
the policy learning method. Enabling learning in this framework opens up the
possibility of applying learning-based methods to multi-agent interacting envi-
ronments where neighbors need to be modeled explicitly and both the quantity
and identity are changeable over time.

In our experiments, we apply ARE to Intelligent Joint Operation Simulation,
which is a confrontation simulation game. In game setting, the blue side is the
defensive side and red side is the offensive side. The blue side relies on the ground,
sea and air three-dimensional air defense fire to defend the key targets of the
two command posts on your island. While the red side comprehensively uses
sea and air assault and supports supporting forces to break through the blue
air defense system and destroys the key targets of two command posts of the
blue side. Experimental results show that ARE helps decision making progress
and outperforms baseline algorithm which indicates that ARE is a more efficient
information aggregation method than conventional methods (Fig. 1).
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Fig. 1. Joint operation simulation

2 Related Work

2.1 Multi-agent Reinforcement Learning

Learning in the multi-agent system is essentially more difficult than in the
single-agent cases, as multiple agents not only interact with the environment
but also with each other [1,4,17]. Directly applying the single-agent RL algo-
rithms to the multi-agent system as a whole is a natural approach, which is called
the centralized MARL (also called joint action learner [5]). Centralized MARL
models the interaction between agents by tightly coupling everything inside the
model. Although feasible in execution, it suffers from the curse of dimensionality
[4] due to the large-scale joint input space and action space. Thus, decentral-
ized structure has more advantages toward scalability, robustness, and speedup
[7,14,18,26].

In the decentralized MARL, a lot of attention has been given to the problem
of modeling other agents [1]. In this article, we focus on how to aggregate the
information collected from multiple agents, and we make a short survey on the
information aggregation approaches in MARL.

2.2 Feature Aggregation in MARL

Concatenation. Concatenation is the simplest and most popular approach in
multi-agent RL. By concatenating other features, the augmented state contains
all necessary information for decision making. MADDPG [11] constructs the
critic for each agent by concatenating other agents’ observations and actions,
from which the agents can effectively train their actors. A centralized critic
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is also used in COMA [6], to implement difference reward by comparing with
a counterfactual baseline. These methods are under the paradigm of central-
ized learning with decentralized execution [6,11,12,14,20] which is inspired from
DEC-POMDPs [13]. However, concatenation will make the dimension increase
linearly, which scales poorly to the large size system. Also, the agent number
and identities must be fixed, which is impractical in changeable environments.

Mean Embedding (ME). ME is a workable approach when dealing with a
variable dimension problem. By calculating a mean representation, the output
has an invariant dimension no matter how many agents are involved. CommNet
[19] learns the communication model by rescaling the communication vector by
the number of agents to aggregate information. [25] introduced the mean-field
theory to MARL. The interactions within the group are approximated by those
between a single agent and the average effect from the overall population or
neighboring agents. [9] also used the ME method to tackle the representation
learning problem in the swarm system. The ME has the advantage of scalability,
including dimension and permutation invariance. However, the mean compu-
tation is isotropic. The agent has no knowledge of each of its neighbors when
pooling averagely around its local view, which may cause ambiguous estima-
tion in many multi-agent tasks where pairwise interactions are important for
cooperative decision making.

3 Method

In this section, we first introduce background and give the definition of notations,
then introduce ARE structure.

3.1 Background and Notations

We consider multiple agents operating in a partially observable stochastic envi-
ronment, modeled as a partially observable Markov decision process (POMDP).
A stochastic game G is defined by a tuple < S,U, P,r,Z,O, N, A,~ >, where N
agents, A = {aj,as,...,ay}, are in an interactive environment. s € S is the true
state of the environment. At each time step, all agents simultaneously execute
actions yielding a joint action u € U then receive observation {o;} determined
by observation function O(s,u) : S x U — Z, and rewards r(s,u) : S x U — R
for profits.P (s’ | s,u) : S x U x S — [0,1] is the state transition probability
function, and ~ is the discount factor. We denote joint quantities over agents
in bold, joint quantities other than a specific agent a with the subscript a, i.e.,
u = [ug,u_g]. All agents take the goal of maximizing the discounted reward
of Tt.

We consider the parameter-sharing decentralized control [8]. For simplicity
and focusing on the representation problem, we assume that each agent can
perceive the features of its neighbors in a local sensing range, and there is no
other communication protocols.
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3.2 Attentive Relational Encoder

An overview of the inference flow is illustrated in Fig. 2. All agents may behave in
a possibly time-varying relation network G; = (A, Ey), where E; stands for the set
of neighborhood links connecting agents at the time ¢. In an agent-centric view,
we denote the neighboring feature set for the agent ¢ as N; = {o; }j cgi Where Gt
is the sub-graph of G induced by all agents adjacent to agent i (we leave out ¢
for brevity). Therefore, our task is to design a function f with trainable weights
0 to map the neighborhood feature set to a fixed size of aggregated high-level
features, y : y; = f (N;,0), where i € 1,2,..., N.
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Fig. 2. Overview of the ARE in policy inference.
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We utilize a compact neural-network-based architecture, ARE, to aggregate
the information from neighboring agents group, whose size is changeable either
due to the join or quit of agents. The basic idea of our ARE module is to
learn an attention score for each neighbor’s feature in the entire neighborhood
set. The learnt score can be regarded as a credit that automatically selects
useful latent features. For example, within a team of robots moving toward their
separate goals, one robot may not care about some neighbors which are behind
its moving direction although they are very close. The selected features are then
pooled across all elements of the set to aggregate the information and finally
served as the state representation for the subject agent.

Figure 3 illustrates the main components of our approach and its execution
flow. ARE consists of three encoders, Ef, E¢, and E®, where {f,c,a} stand
for feature embedding, communication embedding, and attention embedding. In
particular, as shown in Fig. 3, we first feed all the original features (self-feature
as well as neighboring features) into two shared encoders Ef and E°. Ef can
be regarded as an intrinsic encoder, which keeps valuable latent features for
constructing representation, while E¢ is an extrinsic encoder, which reserves
the crucial information for interactive relation modeling. Thus, we obtain two
streams of latent vectors, e/ and e®:

el = ET (0;) (1)

¢ = E° (o)) (2)

Second, ARE computes attention scores using the latent vectors e¢ for each
corresponding neighboring agent through E“, taking the self feature e, the cor-
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Fig. 3. ARE module on aggregating neighboring features.

responding neighbor’s feature ef, as well as an Mean Embedding for other neigh-
boring agents in G; other than the agents i and j

eij = B (], €], ) 3)
g, = LveGi~(ig) % (4)
A (T O]

It is worth emphasizing that the self feature is also included in the neighboring
feature set in ARE to evaluate the attention score for each agent itself.

We add another channel of ME e°_;; besides pairwise features, in order to
model the other neighbors’ effect on the pairwise interaction. The output of the
function E* is a set of learnt attention activations {e?j}je o This procedure is
similar to the query-key system [23].

eij < ¢ (e Wil Wye;) (5)

where each sender broadcasts a key transformed by W}, while the receiver broad-
casts a query transformed by W,. The multiplication of these two parts interprets
the relevance or utility of the message. However, we implement this by a neural
layer E*, where the high-level hidden state in neural net can model more abun-
dant interactions between two agents than the query-key system, and generate
the attention scores for aggregation.

Third, the learnt attention activations are normalized across the neighbor-

hood set computing a set of attention weights a; = {a;; }j cg,- We choose softmax
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as the normalization operation, so the attention weight for the j-th neighboring
feature is
B exp (egj)
ZkEQi exXp (e'?k’)
Subsequently, the computed attention weights are multiplied by their corre-
sponding intrinsic latent features in e/, generating a new set of deep weighted
features. Finally, these weighted features are pooled by summing up across the
neighborhood set, producing a fixed size of aggregated features which are then
fed into a shared decoder to the downstream control policy, as illustrated in
Fig. 2.

(6)

Qi

vi= > aiel (7)
J

m; = decoder (y;) (8)

In essence, as the weighted features can be parallelly computed and pooled,
the output of the ARE module y; is permutation invariant with regard to the
input order.

We here highlight the specific form of the attention weight. In 3, the attention
embedding is generated in the scalar value form. To model complex interaction,
we can design ef; as vector. Therefore, the attention score a;; in 6 is also vector

and 7 is revised
yi=y (ai;-Wa) @ ef (9)
J
where we first unify the dimension by multiplying a matrix W,, then do the
Hadamard product with e; . For simplicity, we set the dimension of the attention

vector a;; to be the same with ef , thus W, becomes an identity matrix, and can
be ignored.

Design Discussion. In terms of the flexibility in multi-agent state represen-
tation learning, the ARE architecture is designed with the following desirable
properties and advantages over existing approaches.

— Computational Efficiency: ARE is computationally high efficient since all
operations are parallelizable across the neighboring pairs and all modules
are shared.

— Quantity Invariance: Although the size of the neighboring feature set can
be arbitrary, the output representation is still irrelevant as sum pooling is
utilized. This property makes ARFE scalable to the changeable and dynamic
interactive environments

— Differentiation Ability: Our method is capable of differentiating the utility
of multiple neighbors. By feeding each neighbor’s feature together with self
feature to the attention module and applying the attention mechanism on
these features, ARE is able to attach importance to more relevant neighbors’
features.
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3.3 Training: Proximal Policy Optimization

The ARE module is trained end-to-end by reinforcement learning. The utilized
training backend algorithm is Proximal Policy Optimization (PPO) [16].

Proximal Policy Optimization, or PPO, is a policy gradient method for rein-
forcement learning. The motivation was to have an algorithm with the data
efficiency and reliable performance of TRPO [15], while using only first-order
optimization.

Let r:(0) denote the probability ratio r(6) = %, 50 7 (0oa ) = 1.
TRPO maximizes a “surrogate” objective:

LOPL(9) = B, [W) At} =1 [r(0)A)] (10)

044 (at | St

where CPI refers to a conservative policy iteration. Without a constraint, max-
imization of LT would lead to an excessively large policy update; hence, PPO
modifies the objective, to penalize changes to the policy that move r(0) away
from 1:

JCLIP () = &, [min (rt(ﬁ)/lt, clip (r¢(0),1 — €, 1 + ¢) At)} (11)

where € is a hyperparameter, say, ¢ = 0.2.

4 Experiment

We test our method on Joint Operation Simulation, which is a military operation
scenario with red and blue sides which need players to make decisions to achieve
intended goals respectively. We will first introduce the task and then give the
comparison of our method and baseline algorithm on Joint Operation Simulation.

4.1 Joint Operation Simulation

Scenario Background. The Blue side has long occupied the Red side’s islands
and recently harassed the Red side’s ships for daily operations at sea. In order to
swear sovereignty and protect their own interests, joint air and sea combat forces
are deployed to strike the Blue side’s key targets on the islands to establish a
basis for subsequent retaking of the islands. Blue side target (defensive side):
rely on ground, sea and air three-dimensional anti-aircraft firepower, guard their
own island 2 command post key targets. Red side objective (offensive side): to
use a combination of air and sea assault and support forces to break through the
blue side’s air defense system and destroy the blue side’s 2 key command post
targets.
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Fig. 4. Comparison of ARE and mean embedding baseline on joint operation simula-
tion.

Scenario Settings. For the characteristics of the two sides, a reasonable set
of force composition to confront the idea of rehearsal. Each side has only one
airfield, and each airfield has only one runway for the takeoff and landing of
combat aircraft. When an aircraft takes off and occupies the runway, no other
aircraft can land, and when an aircraft lands, no other aircraft can take off.
Through the airport takeoff and landing density to control the speed of force
release, to achieve the control of Al available force, consider the tournament
against compact, set the minimum interval of aircraft takeoff and landing (by
the simulation platform internal control).

Table 1. Comparison of force composition of both sides

Bomber | AWACS | Jammer | Fighter | Frigate | Radar | Airport | Camp | CC
Red |18 1 1 24 2 1 1 - -
Blue | 10 1 - 20 2 - 1 3 2

Table 1 shows the force composition of both sides. Red side as the offensive
side consists of 18 Bombers, 1 AWACS, 1 Jammer, 24 Fighters, 2 Frigates, 1
Radar and 1 Airport. Blue side has a different setting, which consists of 10
Bombers, 1 AWACS, 2 Radars, 20 Fighters, 2 Frigates, 3 Camps, 1 Airport and
2 Command Centers.

For reward settings, all enemy units share 10 points, blue side has a bonus for
keeping Command Centers alive, 1 point for each Command Center. Considering
the requirement of retaining own units, we also punish unit loss on each side.

Figure 7 gives the composition of entity features, including positions, side,
type, speed, direction, damage, alive, weapon, locked. last mission type. ARE
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aggregates information from each entity, and yields an aggregated and embedded
feature containing neighbors’ information, which helps a better decision making.

4.2 Results

blue bomber loss red bomber loss
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Fig. 5. Comparison of bomber loss of both sides
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Fig. 6. Comparison of fighter loss of both sides

Both ARE and baseline use PPO as a training backend in our experiments. The
red side is set to use RL training algorithms while the blue side is set to use
a fixed rule-based method. Figure4 shows that ARE helps PPO to achieve a
higher episode reward throughout the whole training progress. Then more detail
comparisons will be given.
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Fig. 7. Composition of entity features.

As is shown in Fig. 5a, ARE based algorithm achieves more average blue side
bomber loss during the training progress. The red side bomber loss in Fig.5b
reflects the radical level how a strategy to use bombers, where both ARE and
ME baseline vary a lot in different training phases.

Figure 6 shows that ARE outperforms ME baseline by a large margin for a
higher damage to blue side and lower red side loss in fighters. It indicates that
ARE helps fighters to coordinate with ally units to formulate a more efficient
strategy than ME does.
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Fig. 8. Comparison of action count per episode.

More actions usually mean more cost in real battles. We also count the action
numbers per episode of both methods in Fig. 8. ARE uses significant less actions
per episode than ME baseline method, which means ARE helps algorithm learn
a much more efficient strategy.
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Conclusion

In this paper, we analyze the information aggregation problems in multi-agent
systems and utilize a computational efficient, quantity invariant and differen-
tiable aggregation method, ARE in a highly simulated joint operation game.
Experimental results show that ARE helps decision making progress and out-
performs baseline algorithm which indicates that ARE is a more efficient infor-
mation aggregation method than conventional methods.
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