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Abstract—Real-world optimization problems are usually multi-
modal which require optimization algorithms to keep a balance
between exploration and exploitation. Therefore, multi-modal
optimization is one of the main opportunities as well as one
of the main challenges for evolutionary algorithms. In this
paper, a loser-out tournament based fireworks algorithm is
proposed for solving multi-modal optimization problems. The
search manner of the conventional fireworks algorithm is based
on the cooperation of several fireworks. While in the loser-out
tournament based fireworks algorithm, we propose competition
as a new manner of interaction, in which the fireworks are
compared with each other not only according to their current
status but also according to their progress rate. If the fitness of
a certain firework cannot catch up with the best one with its
current progress rate, it is considered a loser in the competition.
The losers will be eliminated and reinitialized because it is
vain to continue their search processes. Reinitializing these
fireworks would greatly reduce the probability of being trapped
in local minima for the algorithm. Experimental results show that
the proposed algorithm is very powerful in optimizing multi-
modal functions. It not only outperforms previous versions of
the fireworks algorithm, but also outperforms several famous
evolutionary algorithms.

Index Terms—Fireworks Algorithm, Multi-modal Optimiza-
tion, Swarm Intelligence, Evolutionary Algorithm, Loser-out
Tournament

I. INTRODUCTION

CONVEX optimization problems can be solved easily by
mathematical methods, while multi-modal global opti-

mization is more challenging because it requires algorithms
to keep a balance between exploration and exploitation, which
is quite complicated. Inspired from natural phenomena, many
different swarm and evolutionary algorithms have been pro-
posed to solve multi-modal optimization problems.

The fireworks algorithm (FWA) [1] is a newly proposed
optimization algorithm inspired by the phenomenon of fire-
works explosion. The FWA has proven serviceable in many
real-world applications and shown strong capability for global
optimization. The FWA conducts heuristic search mainly by
iterating the explosion operation and the selection operation. In
the explosion operation, numerous sparks are generated around
the fireworks within certain explosion amplitudes. After that,
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the fireworks of a new generation are selected from these
sparks.

The core idea of the FWA is that the fireworks interchange
information to dynamically control the resource allocation and
the search manner. In previous works [2]–[4], cooperation is
considered as the main manner of information interaction, like
other swarm intelligence algorithms. While in this paper, we
propose a competitive framework as an alternative manner of
information interaction.

Competition is a common phenomenon in the nature and
the human society. It represents a state of conflict between
individuals or populations. In the nature, biological individuals
or populations fight with each other for territory or resource.
The losers are often exiled or even eliminated. Although
competition is often a disaster for the losers, it does have
positive effects on the nature. This mechanism guarantees
resource will not be wasted on unfit populations or species.
Land and food resources are spared for other creatures to
develop. Such a paradigm has also proven efficient in multi-
modal optimization problems because resource allocation is
crucial to exploration.

In the proposed loser-out tournament based fireworks al-
gorithm, fireworks compete with each other and the losers
will be forced to restart from a new location. The competitive
mechanism is based on the anticipation of fireworks’ fitness.
If the fitness of a firework cannot catch up with the best one
with its current progress rate, then this firework is considered
a loser and will be reinitialized to avoid wasting resources on
searching unpromising areas. As an algorithmic improvement,
the proposed algorithm has by far the best performance on
several multi-modal objective functions among all the variants
of the fireworks algorithm. It can also outperform several other
typical swarm and evolutionary algorithms.

The remainder of this paper is organized as follows. Section
II introduces some related works in the field of multi-modal
optimization and fireworks algorithms. Section III introduces
the framework of the fireworks algorithm and its operators.
Our proposed loser-out tournament mechanism is presented
and discussed in Section IV. Experimental results are shown
in Section V to illustrate the performance of the proposed
algorithm. Section VI concludes this paper.

II. RELATED WORKS

A. Multi-modal Optimization
Continuous optimization is very important in many real-

world applications. Convex optimization problems [5] with
known gradient can be solved by direct mathematical meth-
ods such as the gradient descent. However, many of the
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landscapes of the objective functions are more complex and
sometimes the gradient cannot be easily derived. Therefore,
many nature-inspired evolutionary and swarm algorithms have
been proposed for multi-modal global optimization, such as
evolution strategy (ES) [6], particle swarm optimization (PSO)
[7], simulated annealing (SA) [8], the genetic algorithm (GA)
[9], differential evolution (DE) [10], ant colony optimization
(ACO) [11], the culture algorithm (CA) [12], the memetic
algorithm (MA) [13], etc. Although global optima are not
guaranteed to be found, these algorithms are usually capable
of finding high-quality solutions at reasonable costs.

Most evolutionary and swarm algorithms utilize a popu-
lation which iteratively evolves (by mutation, selection or
movement) to achieve better and better fitness. However, a
single population often suffers from the problem of premature
convergence, which is disadvantageous in multi-modal opti-
mization [14], [15]. There are three main manners to solve
this problem.

a) The most popular way is to adapt the parameters in these
algorithms to control the progress [16]. These techniques
include deterministic control, adaptive control and self-
adaptive control.

b) Restarting the population is a very intuitive and effective
way to reduce the probability of being trapped in local
optima if the exploitation capability of the algorithm is very
powerful [17], [18]. However, restarting a single population
is sometimes not the most efficient way, because it is
possible that the population searches the same local area
for multiple times [19].

c) Inspired by ecological phenomena, niching techniques are
proposed to find multiple local optima of the objective
function [19]. The main issue of niching methods is to
divide a single population into multiple sub-populations
and maintain the divergence of these sub-populations.

Besides, a few researchers proposed multi-population algo-
rithms to solve multi-modal optimization problems [20]–[23].
Parallel multi-population frameworks are equivalent to restart-
ing a single population if there is no interaction among these
populations [24]. Therefore, designing interactive mechanisms
is necessary in such algorithms.

B. Fireworks Algorithm

The fireworks algorithm has attracted much research interest
since it was proposed in 2010 [1].

Practitioners have found it useful in many real-world appli-
cations including clustering [25], regional seismic waveform
inversion [26], constrained portfolio optimization [27], web
information retrieval [28], privacy preserving [29], etc.

A theoretical analysis has proven that the FWA has some
global convergence properties [30].

Several algorithmic research works have pointed out some
drawbacks of the FWA and proposed more advanced versions,
such as the enhanced FWA [31], the improved FWA [32],
the adaptive FWA and the dynamic search FWA [33], [34].
Thanks to these works, the operators in the FWA have been
significantly improved.

Still, there is much room for this young algorithm [35].
For example, the interaction among the fireworks might be
improving including interactive mechanisms [2].

III. THE FRAMEWORK OF THE FIREWORKS ALGORITHM

In this section, we introduce the framework of the fireworks
algorithm. This framework basically follows the independent
framework proposed in [2], but there are also several important
adaptations to make it clearer and more efficient.

The FWA searches for better solutions by iterating the
explosion and selection operation. In the explosion operation,
sparks are generated around the locations of the fireworks.
In the selection operation, fireworks of the new generation are
selected from the generated sparks. In the previous versions of
the FWA [1], [31], [34], there is a common candidate pool (in-
cluding all the generated sparks) from which all the fireworks
in the next generation are selected together. A recent work [2]
has defined an independent framework for the FWA. In the
independent framework, each firework in the next generation
is selected from its own candidate pool, which includes only its
own sparks. Therefore, each firework and its explosion sparks
form an independent population. Each population updates
itself by generating new sparks and updating the location of the
firework. These populations are independent except when the
interactive mechanism is triggered. The only other relationship
among these populations is that they have to share the total
resource, i.e., in each generation, the total number of explosion
sparks to be generated is fixed, which is allocated to the
fireworks according to their fitness. Except for the interactive
mechanism (which will be introduced in the next section), the
roles of the fireworks are identical. The ways the populations
develop are also identical. So this framework is quite suitable
for parallelization.

Fig. 1: Conventional Framework vs. Independent Framework

Throughout this paper, without loss of generality, we con-
sider the following continuous minimization problem:

minx∈Rdf(x), (1)

where x is a vector in the d dimensional Euclidean space. The
object is to find the optimal x with the minimal evaluation
(fitness) value f(x).

A. Explosion Operation

The explosion operation is the key operation in the FWA.
In each generation, certain numbers of explosion sparks are
generated around the fireworks within certain explosion am-
plitudes.
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1) Number of Explosion Sparks: In most of the previous
FWA versions [1], [31], [33], the number of explosion sparks
for each firework i is calculated by the following formula:

λi = λ̂ · maxj{f(Xj)} − f(Xi)∑
k (maxj{f(Xj)} − f(Xk))

, (2)

where Xi is the position of the ith firework, λ̂ is a constant
parameter which controls the total number of explosion sparks
in one generation. The idea behind this formula was to make
fireworks with better fitness have more explosion sparks to
search the local areas more thoroughly.

However, there are some problems of this formula:
a) A previous study [32] has shown by experiments that the

numbers of explosion sparks are not stable in different it-
erations. The fitness values fluctuate fiercely with different
objective functions and different positions in the search
space. As a result, there is no regularity in the number of
explosion sparks according to Eq. (2).

b) Relevantly, the number of explosion sparks generated by
the best firework cannot be controlled. The best firework is
the most important firework in the search process because it
generates the most explosion sparks and conducts exploita-
tion to make sure the solution found by the algorithm is
acceptable. However, such a design is not stable.
Proposition 1. If µ is the number of fireworks, λi are
calculated according to Eq. (2), then

λ̂

µ− 1
≤ max

i
{λi} ≤ λ̂. (3)

The above lower and upper bounds are both tight. Suppose
the worst fitness among these fireworks maxj{f(Xj)} is
large, then the resource of the best firework is in the worst
case only 1

µ−1 of the total resource. While if minj{f(Xj)}
is small, then the best firework may occupy nearly all the
resource.

c) The number of sparks of the firework with the worst fitness
is zero. This was fixed in the original paper by setting
thresholds [1], but it is not elegant to do so. Such a
phenomenon reveals the irrationality of this formula.

Thus, in our opinion, the number of explosion sparks for
each firework should depend on the ranking of its fitness value
rather than the fitness value itself.

In this paper, we adopt the power law distribution [36],
which is simple and very common in the nature and the
human society, to determine the number of sparks for each
firework. The famous 80-20 rule [37] implies that the power
law distribution is a natural and efficient way to allocate the
resource. That is,

λr = λ̂ · r−α∑µ
r=1 r

−α , (4)

where r is the fitness ranking of this firework, µ is the total
number of the fireworks, and α is a parameter to control the
shape of the distribution. The larger α is, the more explosion
sparks good fireworks generate.

Fig. 2 shows the distributions of the numbers of explosion
sparks with different values of α.

Fig. 2: The Influence of Different Values of α on the
Distribution of Explosion Sparks

The parameter α has a significant influence on the per-
formance. Generally speaking, for uni-modal functions α
should be larger (elitism) while for multi-modal functions α
should be smaller (equalitarianism). See Section V-A for more
information.

2) Explosion Amplitude: In previous works [2], [34], only
the best firework’s explosion amplitude is dynamically con-
trolled. Here, all the explosion amplitudes of the fireworks are
controlled in a dynamic manner, reads

Agi =


A1
i g = 1

CrA
g−1
i f(Xg

i ) ≥ f(X
g−1
i )

CaA
g−1
i f(Xg

i ) < f(Xg−1
i )

, (5)

where Agi is the explosion amplitude of the ith firework in
generation g. In the first generation, the amplitude is preset to
a constant number which is usually the diameter of the search
space. After that, if in generation g−1 a firework found a better
solution than the best in generation g−2, the amplitude will be
multiplied by an amplification coefficient Ca > 1, otherwise it
will be multiplied by a reduction coefficient Cr < 1. The best
solution in generation g−1 is always selected into generation
g as the new firework, so the right hand conditions in Eq. (5)
indicate whether the best solution found has been improved.

The core idea of this dynamic explosion amplitude is
described as follows: if in one generation no better solution
is found, that means the explosion amplitude is too long
(aggressive) and thus needs to be reduced to increase the
probability of finding a better solution. Otherwise it may be
too short (conservative) and cannot make the largest progress
and thus need to be amplified. With the dynamic control, the
algorithm is able to keep the amplitudes proper for the search.
That is, the dynamic explosion amplitude is long in the earlier
phases to perform exploration, and is short in the later phases
to perform exploitation.

3) Generating Explosion Sparks: Algorithm 1 shows how
the explosion sparks are generated for each firework (where the
superscript g representing the generation number is omitted),
which is simplified compared to previous versions [1], [31]. 1

The explosion sparks are generated uniformly within a
hypercube. The radius of the hypercube is the explosion

1There was a dimension selection mechanism in the explosion operation,
but it is eliminated here because it is not effective and it costs some extra
time to generate random numbers [38], [39].



1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2787042, IEEE
Transactions on Evolutionary Computation

4

amplitude and the center of the hypercube is the position of
the firework.

Algorithm 1 Generating the Explosion Sparks for the ith.
Firework
Require: Xi, Ai and λi

1: for j = 1 to λi do
2: for each dimension k = 1, 2, ..., d do
3: sample η from U(−1, 1)
4: s

(k)
ij ← Xi

(k) + η ·Ai
5: end for
6: end for
7: return all the sij

B. Mutation Operation

The mutation operation is optional in the FWA, in which
the positions of the fireworks are mutated to generate mutation
sparks. Several different types of mutation operators [4], [31],
[40], [41] have been proposed to enhance the diversity of the
population. Here, we adopt a recently proposed guiding spark
[38] which is simple but efficient. It helps both to exploration
and to exploitation.

Algorithm 2 shows how the guiding sparks are generated
for each firework.

Algorithm 2 Generating the Guiding Spark for the ith firework

Require: Xi, sij , λi and σ
1: Sort the sparks by their fitness values f(sij) in the

ascending order.

2: ∆i ← 1
σλi

(
σλi∑
j=1

sij −
λi∑

j=λi−σλi+1

sij)

3: Mi ← Xi + ∆i

4: return Mi

Generating guiding sparks requires the information acquired
by explosion sparks. σ is a parameter to control the proportion
of adopted explosion sparks. Note that only one guiding spark
is generated for each firework.

C. Mapping Rule

For constrained optimization problems, the sparks which are
out of boundaries need to be mapped into the feasible space.
In this paper, we follow the uniform random mapping operator
introduced in the EFWA [31], that is, if a spark is located out
of the boundaries, it will be replaced by a new one which is
uniformly randomly chosen from the feasible space. We point
out that if the optimal point is located near the boundaries,
such kind of mapping operator may reduce the convergence
speed. However, it is good for exploration.

D. Selection Mechanism

In the independent framework, each firework in the next
generation is selected from its own candidate pool, which in-
cludes only its own offspring. Hence, each firework along with
its sparks forms a separate population. Different populations

can be located remotely. Each population in the algorithm
searches independently in the same manner, except when the
interactive mechanism is triggered. There are many different
ways to select the fireworks of the next generation [1], [4],
[31]. In this paper, we follow the elitism selection mechanism
[2] and greedily select the best individual in each population to
be the firework of the next generation (survival of the fittest).
That is,

Xg+1
i = argmin{f(Xg

i ), f(sij), f(Mi)}. (6)

Although initially designed as a swarm intelligence algo-
rithm, the FWA also follows the same framework of evolu-
tionary algorithms. Compared with typical swarm intelligence
algorithms like PSO or ACO, the selection operation in the
FWA makes the population inherit and utilize information in
a totally different manner. The main difference between the
FWA and estimation of distribution algorithms [42] is the
implicit sampling distribution in the FWA, which is more
flexible but less theoretically clear. Compared with typical
evolutionary algorithms like ES or GA, the framework of the
FWA allows interactive behaviors among fireworks as we will
see in the rest of this paper.

IV. LOSER-OUT TOURNAMENT BASED FIREWORKS
ALGORITHM

A. Motivation

The key to multi-modal optimization is to balance between
exploitation and exploration [43]. However, the word “bal-
ance” may be misleading in the following sense: exploitation
and exploration are not just opposites. Sometimes they can be
achieved simultaneously and sometimes they even help each
other. Promoting the exploitation does not necessarily harm
the exploration, and vice versa.

Utilizing multiple populations instead of a single population
can be advantageous for exploration if efficient interactive
mechanisms are adopted. The mechanisms of interaction can
be roughly divided into cooperation and competition [44].
As far as artificial algorithms are concerned, the difference
between cooperation and competition is not substantial but
only conceptional.

Cooperation and competition at the individual level are
both commonly used in nature-inspired heuristics. Most swarm
algorithms prefer cooperation [7], [11], in which centralized
control is not necessary. While evolutionary algorithms use
competition more frequently [6], [45], because selection is the
most natural way of competition. Some algorithms propose
combining these two manners [10], [46], [47].

Cooperation and competition at the population level are
more complex and more rarely used in nature-inspired heuris-
tics. In the nature, the relationship among different species is
usually called coevolution [48]. Among different populations
of the same species, competition is typically more common
than cooperation because otherwise these populations may be
united as a larger one. The phenomenon of cooperation among
multiple populations has been applied in PSO [49], GA [50],
CA [51], etc. The phenomenon of competition among multiple
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populations has been applied in ABC [52], GA [50], MA [53],
etc.

As the most fierce way of competition, war is known for its
cruelty. The losers in a war are usually exiled or eliminated.
However, the positive influence of the wars is that 1) the
defeated populations may restart in a new environment and 2)
resources (land, food, etc.) can be spared for new populations
to develop and evolve. These influences are important in
the natural evolution process. Therefore, we believe such
a mechanism can also help the exploration in multi-modal
optimization.

Different from other swarm intelligence algorithms, there
are naturally multiple populations in the fireworks algorithm,
because each firework and its own sparks are geographically
close and therefore share similar properties. Based on such
a framework, a competitive interaction mechanism can be
implemented. The following questions arise: 1) how to design
the competitive mechanism among the populations; 2) how to
improve exploration based on the competition results.

1) Competition: One of the most simple ways of compe-
tition in the nature is called single combat [54], which is a
duel between two warriors from the two armies. These two
warriors are usually champions of the two sides. A single
combat can sometimes reduce the casualty of the war and
save time. Especially for designing an optimization algorithm,
it is computationally expensive and not necessary to compare
the qualities of all the individuals in these populations because
at the end of the optimization process, we usually only care
about the best solution found.

In the fireworks algorithm, the fireworks represent the best
individuals of the populations (see Eq.(6)). Therefore, the
competitive mechanism in our proposed algorithm is based
on the fitness comparison among the fireworks. However, a
currently inferior firework is not necessarily inferior in the
future. The information we need to obtain from the comparison
is not the fitness of the current position of a firework, but the
quality of the local area. Hence, we make an anticipation for
each firework by predicting the fitness of this firework at the
end of the optimization process. These anticipations reflect
whether these fireworks are promising. If the anticipation of
a certain firework is worse than the current fitness of the best
firework, this firework is considered as a loser.

2) Loser-out: In the nature, the losers in a competition are
usually exiled or eliminated. In order to keep the exploration
capability of the algorithm, eliminating all the losers is not
an option because the number of populations would quickly
reduce to one. In the loser-out mechanism, the losers are
forced to remove from their current positions. This is actually
a hopeful mechanism for the losers because they may develop
and evolve in a different place without the direct danger from
the winners. It is quite frequent both in the nature and in the
human society that a certain population retakes its territory
or achieves great success after it is exiled. Loser-out can be
considered as a mechanism for “avoiding local optima” and
“maintaining diversity” in the nature.

As for multi-modal optimization, the loser-out mechanism
is conducted by reinitialization. That is, randomly re-choose a
position for the firework to begin its search process and reset

all its parameters. In this way, the probability of finding the
global optimum is improved. For example, if this probability
of a single trial is 0.1, then the probability of ten independent
trials is 1− (1− 0.1)10 ≈ 0.65.

Of course, how to set a competitive mechanism and what
to do with the results should be considered together. For
example, if the competition happens too frequently, the loser-
out mechanism may not help the exploration but harm the
exploitation severely, because the local search of a loser
firework may be wrongly interrupted.

B. Loser-out Tournament (LoT)

To predict the final fitness of a firework can be considered as
a problem of time series forecasting [55]. There are numerous
approaches for this task. But to make predictions for each
firework in each generation can be time consuming using these
methods. In this regard, we cannot make strong assumptions
on the series and we do not need extreme accuracy in the
prediction. In addition, in this certain task, the risk of under-
estimation is much higher than overestimation. In other words,
we would rather give a firework more time to search around
its current local area than arbitrarily exile it because some
resource has already been used in searching this area. Taking
these factors into consideration, we think a linear prediction
is appropriate for this task.

Define the improvement of the ith firework Xg
i in generation

g as
δgi = f(Xg−1

i )− f(Xg
i ) ≥ 0. (7)

δgi indicates the extent of improvement of this population.
It is the difference between the best individual generated in
this generation and the best individual generated in the last
generation. If it is large, it means the population is improving
quickly and this local area is still of much potential. It becomes
smaller when the population gradually approaches the local
optimum.

Then we make the prediction of its fitness in the final
generation gmax as

̂f(Xgmax

i ) = f(Xg
i )− (gmax − g)δgi . (8)

The ith firework is considered as a loser and will be
reinitialized if the prediction is worse than the current best
one, i.e., ̂f(Xgmax

i ) > minj{f(Xg
j )}. By reinitialization, we

mean its position will be randomly chosen in the search space
and its explosion amplitude will be set to the initial value.

Algorithm 3 shows how the loser-out tournament mechanis-
m works in every generation.

1) Caution: Note that if f(Xg
i ) = f(Xg−1

i ), i.e., no
improvement is made, this mechanism will not be triggered.
If we delete line 2 and line 4 in Algorithm 3, then the
fireworks will be reinitialized too frequently due to a property
of the dynamic explosion amplitude and the elitism selection:
f(Xg

i ) = f(Xg−1
i ) is a regular event in the search process.

With the dynamic explosion amplitude, the frequency of
improvement is nearly a constant, which is almost irrelevant
of the property of the objective function. To see this, consider
a time period of t generations: g + 1 to g + t. Suppose the
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Algorithm 3 Loser-out Tournament

Require: maximal generation number gmax, fireworks num-
ber µ

1: for i = 1 to µ do
2: if f(Xg

i ) < f(Xg−1
i ) then

3: δgi ← f(Xg−1
i )− f(Xg

i )
4: end if
5: if δgi · (gmax − g) < f(Xg

i )−minj{f(Xg
j )} then

6: reinitialize the ith firework.
7: end if
8: end for

average frequency of improvements in this period is p, then
according to Eq.(5),

Ag+t = Ctpa C
t(1−p)
r Ag+1. (9)

If t is large,

CpaC
(1−p)
r =

t

√
Ag+t

Ag+1
≈ 1. (10)

Thus,

p ≈ logCr
logCr − logCa

. (11)

It means, the dynamic explosion amplitude usually adapts
itself to keep the frequency of improvements stable. The
fixed point of p depends only on the two parameters Cr and
Ca. Hence, a single failure does not mean this local area is
unpromising because it happens regularly.

When the loser-out tournament is adopted by other heuris-
tics, line 2 and line 4 in Algorithm 3 are also necessary if the
heuristic does not guarantee improvement in every iteration,
just like the FWA.

2) Safety and Efficiency: In the following, we explain why
our condition of reinitialization is safe. If a firework could
never surpass the best one, then it is right and effective
to reinitialize it. On the contrary, if this firework could
have surpassed the best one if it is not reinitialized, i.e.,
˜f(Xgmax

i ) < minj{f(Xgmax

j )}, where ˜f(Xgmax

i ) is what the
fitness of this firework would be if it is not reinitialized, then
reinitializing it is not only ineffective but also harmful to the
search process.

But when it satisfies the condition in Algorithm 3, the
conditional probability

Pr( ˜f(Xgmax

i ) < minj{f(Xgmax

j )}| ̂f(Xgmax

i ) > minj{f(Xg
j )})

becomes very low because:
a) The fitness of this firework does not improve in every

generation. As we explained, p is nearly a constant. During
the following gmax− g generations, improvements happen
only in about (gmax−g)p generations. In other generations,
the fitness does not improve. While, we assume it improves
in every generation in Eq. (8).

b) The fitness of the best one will never suffer. On the
contrary, it may also improve.
Proposition 2. minj{f(Xgmax

j )} ≤ minj{f(Xg
j )}.

Proof: Define kg = argminj{f(Xg
j )}. If kg+1 = kg ,

by the elitism selection (Eq. (6)), the fitness of a cer-
tain firework is monotonically nonincreasing, f(Xg+1

kg
) ≤

f(Xg
kg
). If kg+1 6= kg , by the definition of kg+1,

f(Xg+1
kg+1

) ≤ f(Xg+1
kg

) ≤ f(Xg
kg
). By mathematical in-

duction, minj{f(Xgmax

j )} = f(Xgmax

kgmax
) ≤ f(Xg

kg
) =

minj{f(Xg
j )}.

c) The improvement generally reduces with the search pro-
cess. If we admit the positive correlation between the step
size and the extent of improvement, then the improve-
ment generally reduces because the explosion amplitude
reduces. For the ith firework (thus i is omitted), let
C = [Xg

1 − Ag, Xg
1 + Ag] × ... × [Xg

d − Ag, Xg
d + Ag]

and B = {x ∈ Rd|f(x) < f(Xg)} where the subscript
indicates the dimensionality, then

p ≈ Pr{f(Xg+1) < f(Xg)} = |C ∩B|
|C|

. (12)

|B| reduces with the search process because the fitness
of the firework is monotonically nonincreasing. Therefore
|C ∩ B| ≤ |B| also reduces. As we explained, p can be
considered as a constant, so |C| = (2Ag)d reduces with
the search process. Therefore A reduces with the search
process (though slowly). That is, in order to maintain the
frequency of improvements, the extent of improvements
reduces. (See also the discussion in the Appendix A.3 of
[56]).

Although unlikely, it is still possible that a firework which
is actually searching a promising area is wrongly reinitialized
due to its very bad luck, but this is considered as an affordable
risk because the robustness of a swarm algorithm is based on
the contribution of all individuals.

On the other hand, our proposed mechanism is efficient,
because it does not need the actual final fitness of the fire-
works. Once a firework is considered as unpromising, it will
be reinitialized instantly, which gives these fireworks many
times of retrying. For example, if a firework is unfortunately
located in the same area with the best one, we do not need to
let it search this area further, because it is almost certain that
this firework may never catch up with the best one.

At the earlier phases, the improvements of the fireworks are
relatively large, so that they will not be frequently reinitialized
and can exploit deeper in a local area. While at the later phases,
the improvements of the fireworks become relatively small,
and the remaining number of generations becomes lower, so
they will begin to be reinitialized to search new areas if
the current one is considered unpromising or hopeless by
this mechanism. In this way, the algorithm not only avoids
searching the same area with multiple fireworks but also avoids
searching unpromising areas.

3) Comparison with Single Population: The loser-out tour-
nament is designed for the framework of multiple populations.
In the following, we analyze its advantage over iterating a sin-
gle population. Consider an ideal model. Suppose there are m
local optima and among them only one is the global optimum.
By iterating only a single population, the probability of finding
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the global optimum with exact k trials is (m−1m )
k−1 1

m . Then
the expected number of trials is

∞∑
k=1

k(
m− 1

m
)
k−1 1

m
= m. (13)

While the proposed mechanism can avoid visiting the same
local optima for multiple times. Therefore, the probability of
finding the global optimum with exact k trials is

m− 1

m
· m− 2

m− 1
· ... · m− k + 1

m− k + 2
· 1

m− k + 1
=

1

m
. (14)

Then the expected number of trials is
m∑
k=1

k

m
=
m+ 1

2
. (15)

Actual optimization problems are more complex than this
model. It is sometimes impossible to find even one local
optimum within the time limit because a so-called local search
is sometimes not simple at all. In this case, the advantage of
our proposed mechanism may become even more obvious for
multi-modal optimization. If there is only one population, it
will not be reinitialized before it approaches a local optimum.
While, in the loser-out tournament, the other populations do
not need to wait for the best population to exhaust all the
resource in local exploitation. Instead, they can explore other
local areas and meanwhile the best population is still searching
around its position until a better local area is found.

More empirical analyses of this mechanism are given in
Section V-B.

C. Loser-out Tournament Based Fireworks Algorithm

Algorithm 4 shows the complete loser-out tournament based
fireworks algorithm (LoTFWA) proposed in this paper. In the
initialization phase, the location of the fireworks are randomly
set in the whole feasible space and the explosion amplitudes
are set to the diameter of the search space. There are two
parts in the iteration phase. In the first part, sparks are
generated by each firework, and the position of each firework is
updated according to the selection operator. In the second part,
fireworks compete with the best one and the loser fireworks
are reinitialized. The iteration continues until the termination
criterion (running time, precision, number of evaluations, etc.)
is met.

V. EXPERIMENTS

A. Parameter Setting

In this subsection, we give principles for setting the pa-
rameters in the LoTFWA. The main parameters include: the
number of fireworks µ, the total number of explosion sparks λ,
the dynamic amplitude coefficients Ca and Cr, the mutation
parameter σ and the power law distribution parameter α.

Basically, smaller µ makes the algorithm good at exploiting
because each firework can generate more sparks. While larger
µ makes the algorithm able to explore more areas but in that
case each firework generates fewer sparks. In this paper, we
follow the suggestion in [1] and set µ = 5.

Algorithm 4 Loser-out Tournament Based Fireworks Algo-
rithm

1: Randomly initialize µ fireworks in the search space.
2: Evaluate the fireworks’ fitness.
3: repeat
4: for i = 1 to µ do
5: Calculate λi according to Eq.(4).
6: Calculate Ai according to Eq.(5).
7: Generate explosion sparks according to Alg.1.
8: Generate guiding sparks according to Alg.2.
9: Evaluate all the fitness of the sparks.

10: Select the best individual (including the ith. firework,
its explosion sparks and guiding sparks) as the ith.
firework of next generation.

11: end for
12: Perform the loser-out tournament according to Alg.3.
13: until termination criterion is met.
14: return the position and the fitness of the best individual.

Ca and Cr are two important parameters for the dynamic
amplitude control. The larger Ca and Cr are, the stronger
the capability of exploration is. In this paper, we follow the
suggestions in [31] and use Ca = 1.2 and Cr = 0.9.

The influence of the mutation parameter σ is complicated.
Larger σ makes the direction of the mutation vector accurate
but also makes the step size conservative. According to the
experimental results in [38], σ = 0.2 is usually the best choice.

The parameter α is introduced in this paper, we will show
the influence of this parameter by experiments. Besides, the
influence of the parameter λ is also important in the proposed
algorithm. We conduct experiments to compare the 16 sets of
parameters, i.e., {α, λ} ∈ {0, 1, 2, 3} × {100, 200, 300, 400}.
The parameters are evaluated on the CEC 2013 single objective
optimization benchmark suite [57] including 5 uni-modal
functions and 23 multi-modal functions (shown in Table I).
The dimensionality of these functions is d = 30. According
to the instructions of this benchmark suite, all the algorithms
are run 51 times for each function and the maximal number of
function evaluations in each run is 10000d. The mean errors
of the 16 sets of parameters are ranked, and the ranks are
averaged over the 28 test functions, as shown in Fig. 3 (the
lower, the better).

Fig. 3: Average Ranks of the 16 Sets of Parameters

According to the experimental results, we have the follow-
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TABLE I: Test Functions of CEC 2013 Single Objective
Optimization Benchmark Suite

No. Name

Unimodal
Functions

1 Sphere Function
2 Rotated High Conditioned Elliptic Function
3 Rotated Bent Cigar Function
4 Rotated Discus Function
5 Different Powers Function

Basic
Multimodal
Functions

6 Rotated Rosenbrocks Function
7 Rotated Schaffers F7 Function
8 Rotated Ackleys Function
9 Rotated Weierstrass Function

10 Rotated Griewanks Function
11 Rastrigins Function
12 Rotated Rastrigins Function
13 Non-Continuous Rotated Rastrigins Function
14 Schwefel’s Function
15 Rotated Schwefel’s Function
16 Rotated Katsuura Function
17 Lunacek Bi Rastrigin Function
18 Rotated Lunacek Bi Rastrigin Function
19 Expanded Griewanks plus Rosenbrocks Function
20 Expanded Scaffers F6 Function

Composition
Functions

21 Composition Function 1 (Rotated)
22 Composition Function 2 (Unrotated)
23 Composition Function 3 (Rotated)
24 Composition Function 4 (Rotated)
25 Composition Function 5 (Rotated)
26 Composition Function 6 (Rotated)
27 Composition Function 7 (Rotated)
28 Composition Function 8 (Rotated)

ing observations.

a) For uni-modal functions, λ should be small. It implies that
for uni-modal functions, the number of generations is more
important than the population size. Smaller population and
more generations are good for uni-modal functions.

b) For uni-modal functions, α should be large (the perfor-
mances of 1, 2 and 3 are comparable). It implies that for
uni-modal functions, the resource should be concentrated
on elite fireworks. The purpose of other fireworks is explo-
ration, which is not important for uni-modal functions.

c) For multi-modal functions, α should be small. For multi-
modal functions, equalitarianism is the best policy because
it divides the resource equally and enables all the popula-
tions to search effectively.

d) For multi-modal functions, α = 0, λ = 300 performs
the best. For multi-modal functions, the population size
and the number of generations are both important. They
should be balanced according to the maximal number of
function evaluations and the complexity of the problem.
For this benchmark, the maximal number of function
evaluations is comparatively sufficient (10000 times the
dimensionality), so the population size can be large. For
real-world applications, smaller λ is suggested.

B. The Significance of the LoT

The LoT is a reinitialization strategy based on the compet-
itive interaction. In order to illustrate the significance of the
LoT, two questions have to be answered:

a) Does the LoTFWA outperform the FWA without reinitial-
ization strategy?

b) Does the LoTFWA outperform the FWA with a simple
reinitialization strategy?

In the following, the FWA with LoT is denoted as LoTFWA,
the FWA without reinitialization strategy is denoted as NRS,
and the FWA with a simple reinitialization strategy is denoted
as SRS. In the SRS, the same restart criterion is set for all the
fireworks, where if the improvement of a firework is less than
1e-10 for more than 5 times in a row, it will be reinitialized.
The parameters of the three algorithms are all set to µ =
5, λ = 300, Ca = 1.2, Cr = 0.9, σ = 0.2 and α = 0.

The mean errors on the 28 functions are shown in Table
II. The mean errors are ranked on each function and the
averaged rankings (AR.) over all functions for each algorithm
are calculated, shown in the last row in Table II. Note that by
the central limit theorem, AR ∼ N (k+1

2 , k
2−1
12N ), where k is the

number of algorithms, N is the number of test functions. Here
k = 3 and N = 28, therefore AR ∼ N (2, 0.152). Compared
with the prior standard deviation 0.15, 2− 1.5 = 0.5 is a very
large difference between the average rankings of the SRS and
the LoTFWA.

The best mean errors are highlighted. In addition, two-sided
Wilcoxon rank sum tests (with confidence level 95%) are
conducted between the LoTFWA and the NRS, and between
the LoTFWA and the SRS. In the last two columns of Table
II, the ‘1’ indicates that the LoTFWA performs significantly
better, the ‘-1’ indicates its opponent performs significantly
better, while the ‘0’ indicates that their performances are not
significantly different.

TABLE II: Comparison among LoTFWA, NRS and SRS

F. NRS SRS LoTFWA vs. NRS vs. SRS
1 0.00E+00 0.00E+00 0.00E+00 0 0
2 1.08E+06 1.13E+06 1.19E+06 0 0
3 1.43E+07 1.94E+07 2.23E+07 0 -1
4 1.73E+03 1.67E+03 2.13E+03 -1 -1
5 3.23E-03 3.24E-03 3.55E-03 -1 -1
6 1.60E+01 1.33E+01 1.45E+01 0 0
7 6.75E+01 6.51E+01 5.05E+01 1 1
8 2.09E+01 2.09E+01 2.09E+01 1 1
9 1.66E+01 1.68E+01 1.45E+01 1 1
10 2.69E-02 2.59E-02 4.52E-02 -1 -1
11 8.17E+01 7.14E+01 6.39E+01 1 1
12 8.43E+01 7.70E+01 6.82E+01 1 1
13 1.71E+02 1.46E+02 1.36E+02 0 1
14 2.89E+03 2.84E+03 2.38E+03 1 1
15 3.15E+03 3.02E+03 2.58E+03 1 1
16 8.82E-02 7.05E-02 5.74E-02 1 1
17 7.12E+01 7.39E+01 6.20E+01 1 1
18 7.32E+01 7.40E+01 6.12E+01 1 1
19 3.55E+00 3.66E+00 3.05E+00 1 1
20 1.31E+01 1.24E+01 1.33E+01 -1 0
21 2.14E+02 2.04E+02 2.00E+02 0 0
22 3.56E+03 3.46E+03 3.12E+03 1 1
23 3.79E+03 3.74E+03 3.11E+03 1 1
24 2.45E+02 2.48E+02 2.37E+02 1 1
25 2.83E+02 2.83E+02 2.71E+02 1 1
26 2.00E+02 2.00E+02 2.00E+02 0 0
27 7.90E+02 7.85E+02 6.84E+02 1 1
28 2.80E+02 2.84E+02 2.65E+02 0 0

AR. 2.39 2 1.5 16:4 17:4

The performance of the LoTFWA is slightly worse than both
the NRS and the SRS on uni-modal functions (1-5) because
in this case reinitializing the fireworks is not only meaningless
but also wasteful. In the LoT mechanism, basically only one
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firework is conducting the local search, while other fireworks
keep being reinitialized. Although using five fireworks to
search the same local area is not efficient, they can find the
local optimum slightly faster than only one firework.

On the other hand, judging from the performances on
multi-modal and composition functions, the LoT mechanism
greatly enhances the capability of exploration. The SRS is also
effective compared with the NRS, but it is not as effective
as the LoT. In the SRS, each firework only utilizes its own
information. Thus, it can only detect whether it has approached
the local optima, but cannot obtain the knowledge about the
relative quality of this local area. On the contrary, the LoT
enables a firework to acquire information from others and give
up unpromising areas immediately. Therefore, the LoTFWA
is able to more thoroughly explore the whole search space
instead of being trapped in bad local areas.

Fig. 4 shows an example of how the LoT works. At the
beginning, Firework3 found the best local area among all
the fireworks, and other fireworks started to be reinitialized
because they could not catch up with the evaluation value
of Firework3. Fortunately, after the reinitialization, Firework4
found a better local area. Then Firework3 gave up its current
location immediately and began to search other areas in
the search space. From then on, other fireworks kept being
reinitialized because they could not find better areas.

Fig. 4: Curves of Evaluation Values on Function 23

C. Comparison with Other FWA variants

In this subsection we compare the LoTFWA with other
FWA variants, including the enhanced fireworks algorithm
(EFWA) [31], the adaptive fireworks algorithm (AFWA) [33],
the dynamic search firework algorithm (dynFWA) [34], the
cooperative framework fireworks algorithm (CoFFWA) [2] and
the guided fireworks algorithm (GFWA) [38]. The parameters
of these algorithms are set to the suggested values in their
original papers. All these algorithms are tested under the same
conditions as the LoTFWA on the CEC13 benchmark. Their
mean errors and standard deviations are shown in Table III.
Their rankings are averaged separately over uni-modal (1-5)
and multi-modal (6-28) functions, also shown in Table III.
(The prior standard deviation of ARs on uni-modal functions
is 0.76, while on multi-modal functions is 0.36.) The minimal
mean errors on each function are highlighted. According to
the ARs, GFWA is the best FWA version for uni-modal

optimization, while LoTFWA is by far the best FWA version
for multi-modal optimization.

Also, two-sided Wilcoxon rank sum tests (with confidence
level 95%) are conducted between the LoTFWA and each
of the other FWA variants. The numbers of significantly
better results of the LoTFWA (indicated by “win”) and of
its opponents (indicated by “lose”) are shown in Fig. 5. It can
be seen that the advantage of the LoTFWA is overwhelming
on multi-modal functions.

Fig. 5: Rank Sum Test Results between LoTFWA and Other
FWA Variants

The LoTFWA can be considered as an extension of the
GFWA, in which only one firework is adopted. In the GFWA,
the resource is concentrated only on the single firework, and
hence it can achieve a good exploitation capability. While,
by introducing multiple fireworks and an efficient interactive
mechanism among these fireworks, the LoTFWA has a much
greater exploration capability.

The comparisons also indicate that the crowdedness-
avoiding reinitialization strategy in the CoFFWA is not as
efficient as the LoT. In fact, the crowdedness-avoiding strategy
only considers a special case of the LoT, i.e., another firework
is located in the same local area as the best firework. In
addition, in the crowdedness-avoiding reinitialization strategy,
with the explosion amplitude of the best firework reducing,
the odds of triggering the criterion tend to decrease. While
the LoT can be triggered even if they are located remotely.
Moreover, the LoT can be parameter-free, while there is a
preset parameter in the crowdedness-avoiding strategy.

It can be seen from Table II and Fig. 5 that the LoTFWA
sacrifices a part of its exploitation capability for a stronger
exploration capability, which brings a significant elevation of
performance on multi-modal test functions.

D. Comparison with Other Typical Evolutionary Algorithms

In this subsection, the LoTFWA is compared with the artifi-
cial bee colony algorithm (ABC), the standard particle swarm
optimization 2011 (SPSO2011) [58], the restart CMA-ES
with increasing population size (IPOP-CMA-ES) [18], and the
differential evolution (DE) algorithm [10]. All these algorithms
are tested under the same conditions as the LoTFWA. The
parameter setting and the results of ABC, SPSO2011, IPOP-
CMA-ES and DE are reported in [59]–[62]. Some raw data
can be downloaded from [63]. The mean errors and standard
deviations are shown in Table IV where the minimal mean
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TABLE III: Mean Errors, Standard Deviations and Average Ranks of FWA Variants

EFWA AFWA dynFWA COFFWA GFWA LoTFWA
F. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
1 7.82E-02 1.31E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 5.43E+05 2.04E+05 8.92E+05 3.92E+05 7.87E+05 3.56E+05 8.80E+05 4.18E+05 6.96E+05 2.66E+05 1.19E+06 4.27E+05
3 1.26E+08 2.15E+08 1.26E+08 1.54E+08 1.57E+08 2.21E+08 8.04E+07 8.88E+07 3.74E+07 8.65E+07 2.23E+07 1.91E+07
4 1.09E+00 3.53E-01 1.14E+01 6.83E+00 1.28E+01 8.06E+00 2.01E+03 1.37E+03 5.00E-05 6.17E-05 2.13E+03 8.11E+02
5 7.90E-02 1.01E-02 6.04E-04 9.24E-05 5.42E-04 7.98E-05 7.41E-04 9.82E-05 1.55E-03 1.82E-04 3.55E-03 5.01E-04

AR. 4.00 3.00 3.00 3.20 2.00 3.80
6 3.49E+01 2.71E+01 2.99E+01 2.63E+01 3.15E+01 2.62E+01 2.47E+01 2.08E+01 3.49E+01 2.74E+01 1.45E+01 6.84E+00
7 1.33E+02 4.34E+01 9.19E+01 2.63E+01 1.03E+02 2.95E+01 8.99E+01 1.78E+01 7.58E+01 2.98E+01 5.05E+01 9.69E+00
8 2.10E+01 4.82E-02 2.09E+01 7.85E-02 2.09E+01 7.59E-02 2.09E+01 9.79E-02 2.09E+01 9.11E-02 2.09E+01 6.14E-02
9 3.19E+01 3.48E+00 2.48E+01 4.89E+00 2.56E+01 3.95E+00 2.40E+01 4.04E+00 1.83E+01 4.61E+00 1.45E+01 2.07E+00
10 8.29E-01 8.42E-02 4.73E-02 3.44E-02 4.20E-02 2.76E-02 4.10E-02 2.69E-02 6.08E-02 3.36E-02 4.52E-02 2.47E-02
11 4.22E+02 9.26E+01 1.05E+02 3.43E+01 1.07E+02 3.23E+01 9.90E+01 2.36E+01 7.50E+01 2.59E+01 6.39E+01 1.04E+01
12 6.33E+02 1.38E+02 1.52E+02 4.43E+01 1.56E+02 5.57E+01 1.40E+02 4.06E+01 9.41E+01 3.28E+01 6.82E+01 1.45E+01
13 4.51E+02 7.45E+01 2.36E+02 6.06E+01 2.44E+02 5.35E+01 2.50E+02 5.93E+01 1.61E+02 4.74E+01 1.36E+02 2.30E+01
14 4.16E+03 6.16E+02 2.97E+03 5.70E+02 2.95E+03 5.51E+02 2.70E+03 4.95E+02 3.49E+03 8.30E+02 2.38E+03 3.13E+02
15 4.13E+03 5.61E+02 3.81E+03 5.03E+02 3.71E+03 7.57E+02 3.37E+03 5.01E+02 3.67E+03 6.35E+02 2.58E+03 3.83E+02
16 5.92E-01 2.30E-01 4.97E-01 2.56E-01 4.77E-01 3.34E-01 4.56E-01 3.15E-01 1.00E-01 7.13E-02 5.74E-02 2.13E-02
17 3.10E+02 6.52E+01 1.45E+02 2.55E+01 1.48E+02 3.74E+01 1.10E+02 2.16E+01 8.49E+01 2.10E+01 6.20E+01 9.45E+00
18 1.75E+02 3.81E+01 1.75E+02 4.92E+01 1.89E+02 6.04E+01 1.80E+02 4.04E+01 8.60E+01 2.33E+01 6.12E+01 9.56E+00
19 1.23E+01 3.68E+00 6.92E+00 2.37E+00 6.87E+00 1.93E+00 6.51E+00 2.08E+00 5.08E+00 1.88E+00 3.05E+00 6.43E-01
20 1.46E+01 1.73E-01 1.30E+01 9.72E-01 1.30E+01 1.01E+00 1.32E+01 1.01E+00 1.31E+01 1.09E+00 1.33E+01 1.02E+00
21 3.24E+02 9.67E+01 3.16E+02 9.33E+01 2.92E+02 8.39E+01 2.06E+02 6.14E+01 2.59E+02 8.58E+01 2.00E+02 2.80E-03
22 5.75E+03 1.08E+03 3.45E+03 7.44E+02 3.41E+03 5.82E+02 3.32E+03 6.31E+02 4.27E+03 8.90E+02 3.12E+03 3.79E+02
23 5.74E+03 7.59E+02 4.70E+03 8.98E+02 4.55E+03 8.63E+02 4.47E+03 7.90E+02 4.32E+03 7.69E+02 3.11E+03 5.16E+02
24 3.37E+02 7.33E+01 2.70E+02 1.31E+01 2.72E+02 1.29E+01 2.68E+02 2.19E+01 2.56E+02 1.75E+01 2.37E+02 1.20E+01
25 3.56E+02 2.80E+01 2.99E+02 1.24E+01 2.97E+02 1.07E+01 2.94E+02 1.28E+01 2.89E+02 1.34E+01 2.71E+02 1.97E+01
26 3.21E+02 9.04E+01 2.73E+02 8.51E+01 2.62E+02 8.11E+01 2.13E+02 4.16E+01 2.05E+02 2.71E+01 2.00E+02 1.76E-02
27 1.28E+03 1.10E+02 9.72E+02 1.33E+02 9.92E+02 1.22E+02 8.71E+02 2.10E+02 8.15E+02 1.22E+02 6.84E+02 9.77E+01
28 4.34E+03 2.08E+03 4.37E+02 4.67E+02 3.40E+02 2.43E+02 2.84E+02 5.41E+01 3.60E+02 2.60E+02 2.65E+02 7.58E+01

AR. 5.87 4.13 4.04 2.83 2.87 1.26

errors on each function are highlighted. The rankings of the
mean errors of the five algorithms are averaged over uni-modal
and multi-modal functions separately. (The prior standard
deviation of ARs on uni-modal functions is 0.63, while on
multi-modal functions is 0.29.) Their statistical information is
shown in Fig. 6 except that of DE due to the lack of data.

On unimodal functions, IPOP-CMA-ES performs by far the
best, while the other four algorithms perform closely.

On multi-modal and composition functions, judging from
the ARs, the LoTFWA performs the best. The ARs of ABC and
DE are comparable, which are better than that of SPSO2011.
ABC, the LoTFWA and IPOP-CMA-ES achieve 8, 8 and 7
of the minimal mean errors on multi-modal and composition
functions respectively, while SPSO2011 and DE achieve none.
Although ABC performs very well on eight functions, its AR
implies that it ranks lowly on the other functions.

CMA-ES is a very powerful evolutionary algorithm for uni-
modal optimization, but does not necessarily perform well on
multi-modal functions when it suffers from the problem of pre-
mature convergence [38]. Thus, restart mechanisms have been
introduced in CMA-ES to enhance the probability of finding
the global optimum. The population in CMA-ES actually has
many chances to restart due to its very fast convergence. How-
ever, IPOP-CMA-ES does not outperform the LoTFWA on
multi-modal functions generally even though the exploitation
capability of the FWA is just ordinary (comparable to ABC,
PSO and DE). In particular, on composition functions where
local search becomes more difficult, the LoTFWA performs
better (see F21, F24, F25, F26, F27, F28). Based on these
experimental results, we think using the competitive interac-
tion among multiple populations may be a more promising
methodology for multi-modal optimization than restarting a
single population. In fact, the LoT proposed in this paper can

be transplanted to almost any population-based algorithms.
CMA-ES is a quadratic time algorithm while the others

are linear time algorithms. It takes about 2.2 hours for the
LoTFWA to optimize all the 28 functions for 51 times when
d = 30 on the Intel I7-6700HQ CPU (2.6GHz) and MATLAB
R2016a.

VI. CONCLUSION

This paper proposes a loser-out tournament based fireworks
algorithm for multi-modal optimization. Experimental results
on the CEC 2013 single objective benchmark suite indicate
that the proposed algorithm is powerful in multi-modal func-
tion optimization even though its local search capability is not
outstanding. Therefore, we believe the proposed framework
and the interactive mechanism are efficient for multi-modal
optimization. In addition, it can be easily embedded within
other population-based algorithms.

The LoTFWA should be considered as a new baseline for
the development of the fireworks algorithm. There are a lot
of works to be done to enhance the local search capability.
Besides, other kinds of interactive mechanisms are also worth
further investigation.
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