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Abstract. In order to improve the performance of fireworks algorithm,
this paper carries out a comprehensive enhancement for its framework.
Locally, the basic explosion operator is replaced by an efficient adapta-
tion method in CMA-ES. Globally, the explosion range of all fireworks is
effectively collaborated by search space partition. On the one hand, the
proposed algorithm can quickly adapt to local landscape and improve
the local exploitation efficiency significantly. On the other hand, it can
collaborate the search ranges of multiple fireworks to form a seamless
and non-overlapping partition of the search space, thereby ensuring the
global search ability. Since the proposed framework evaluates one batch
of a fixed large number of solutions in each iteration, it also achieves bet-
ter computational efficiency in modern parallel hardware. The proposed
algorithm is tested on the CEC 2020 benchmark functions with three dif-
ferent dimensions. The experimental results prove that those strategies
improve fireworks algorithm significantly.

Keywords: Fireworks algorithm · Swarm intelligence · Optimization ·
Collaboration

1 Introduction

Modern optimization problem has changed drastically in recent years. On the
one hand, more and more difficult objective functions have emerged in practi-
cal applications, which are usually multi-modal and high-dimensional. On the
other hand, modern computing technologies, especially parallel technology, put
forward new directions for the development of optimization algorithms.

The fireworks algorithm (FWA [12]) is a family of algorithms inspired by
the phenomenon of firework explosion, which is very promising for solving such
kind of problems effectively. During the optimization, each firework search a
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local area by explosion. All fireworks collaborate their strategies for overall effi-
ciency. Many variants of FWA have achieved competitive performance in stan-
dard benchmarks, such as EFWA [19], AFWA [7], dynFWA [18], GFWA [8] and
LoTFWA [6]. FWA has also solved real-world problems like image processing
[15], engineering [4] and resource scheduling [10].

However, in most variants of FWA, the efficiency of explosion operator based
on uniform sampling is very limited. Their collaborative strategies also have
little effect on the independent search of fireworks. At the same time, the parallel
efficiency is obviously weakened by operators like mutation, because they requires
an additional evaluation of a small batch of mutation sparks.

In this article, new strategies are proposed for both local explosion and global
collaboration. For each firework, the basic explosion method is replaced by an
adaptation strategy for a Gaussian distribution, which is able to fit the local
landscape and target the extreme very fast. For global optimization, a collabo-
ration method based on search space partition is proposed to arrange the search
areas of fireworks, thus greatly reduce the probability of overlapping or omission.
The restart strategy is also improved. Since all the evaluations in each iteration
are done in one large batch, the proposed algorithm is also well adapted to
large-scale parallel computing hardware.

The paper is organized as follows. It starts by introducing backgrounds in
Sect. 2. In Sect. 3, the proposed strategies are described in detail. In Sect. 4, the
proposed algorithm is evaluated and compared on benchmark problems. Finally,
the proposed algorithm is discussed and analyzed in Sect. 4 and concluded in
Sect. 5.

2 Backgrounds

2.1 Problem Definition

In this paper, we consider the general bound-constrained optimization problem
which targets to find the optimal solution x∗:

x∗ = arg min
x∈S

f(x) (1)

where f : R
d → R is an unknown objective function (also called fitness

function). S =
{
x ∈ R

d : lbi < xi < ubi

}
is the feasible space of f .

Optimization algorithms (or optimizers) are applied to approximate the opti-
mal x∗ or its value f(x∗) by iterating the process of ask and tell. Since we consider
complex objective functions with high time cost, the termination condition is a
specific number of evaluations. At the same time, in order to maximize the com-
putational efficiency, we hope the algorithm always provide a fixed number of
solutions in each batch. The actual size of batch should be determined by the
parallel computing devices.
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2.2 Fireworks Algorithms

Fireworks algorithm is a novel optimization framework that adopts multiple
collaborative isomorphic subgroups. Among all the novel implementations of
fireworks algorithm, LoTFWA [12] has achieved the most significant global opti-
mization performance with extremely simple mechanisms. In LoTFWA, each
firework optimize its local area by an uniform explosion within dynamic ampli-
tudes. A guided mutation spark is generated for each firework to accelerate its
local exploitation. Then, some unpromising fireworks are detected and restarted
to avoid waste of resources.

There are two major weaknesses in LoTFWA which are improved in the
proposed algorithm. First, the local search efficiency of the explosion operator
and mutation operator is limited by a basic uniform trust region scheme. Second,
the collaboration method is too weak because the restart mechanism is rarely
triggered and it can only save limited resources rather than guide fireworks to
cooperate.

2.3 Related Works

A great number of Evolutionary Algorithms (EAs) and Swarm Intelligence Opti-
mization Algorithms (SIOAs) have been proposed for similar optimization prob-
lems, but their ideas are fundamentally different from the proposed algorithm.

The idea of adopting multiple sub-populations for optimization is imple-
mented in a large number of recent research of EAs and SIOAs. In most cases,
different sub-populations evolve under different strategies in order to combine
their advantages and obtain efficient hybrid algorithm. For example, EBOwith-
CMAR [5] uses three sub-populations which apply Effective Butterfly Optimizer
or Covariance Matrix Adapted Retreat method respectively, and achieved out-
standing performance in the competition of CEC2017 [16]. Some optimizers use
the same algorithm with different parameters in sub-populations. For example,
BIPOP-CMA-ES [1] adopts multi-restart populations with different sizes. In
IMODE [11], the winner of CEC2020 competition [17], different sub-populations
with dynamic sizes evolve under different DE parameters. There are also many
algorithms like SHADE [13] that utilizes archive strategy to collect an elite pop-
ulation in order to enhance the optimization efficiency.

The essential difference between those methods and the proposed algorithm
is that we analytically defined the ranges of sub-populations according to the
principle of search space partition. And the sub-populations are diversified and
cooperated in different local areas instead of different strategies.

3 Proposed Strategies

The proposed algorithm is improved in both local exploitation and global col-
laboration. Locally, CMA-ES [3] is introduced to accelerate the optimization of
each firework. Globally, the explosion distributions are collaborated to form a
seamless and non-overlapping partition of the search space. The framework of
the proposed algorithm is described in Algorithm 1.
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Algorithm 1. Framework of Proposed Algorithm
Initialize each firework Xi

while termination conditions are not satisfied do
// 1. Adaptation
for each firework Xi do

generate λi sparks by explosion
end for
Gather and estimate all sparks
for each firework Xi do

update states of Xi

end for
// 2. Restart
Examine and restart fireworks
// 3. Collaboration
for each pair of fireworks Xi and Xj do

Determine their collaborative search boundaries
end for
for each firework Xi do

Fit search boundary towards the collaboration result
end for

end while

3.1 Adaptation

In order to enhance the local optimization efficiency, the uniform explosion is
replaced by a self-adaptive Gaussian distribution. With strategies introduced
from CMA-ES [2], it is able to estimate the local fitness landscape and generate
more effective sparks.

In the g-th generation, the k-th explosion spark x(g+1)
k is generated from a

Gaussian distribution:

x(g+1)
k ∼ m(g) + σ(g) × N (0, C(g)) (2)

where m and C is the mean and co-variance matrix. σ(g) is the overall step
size. In the proposed algorithm, each firework generate the same number of λ
sparks.

After evaluation of all sparks x(g+1), the explosion distribution is adapted
according to the strategies in CMA-ES. The complete adaptation algorithm is
provided in supplementary A. And a detailed explanation and parameter setting
of CMA-ES can be found in [2].

3.2 Restart

Since the adaptation accelerates local optimization significantly, several condi-
tions are proposed to ensure timely restart of fireworks that are not promising
to improve the global optimal.

Three restart conditions are determined by the search status of the firework
individual:
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1. Low Value Variance: var
[
f(x(g+1)

1:λ )
]

≤ εv

2. Low Position Variance: σ(g+1) × ∥
∥C(g+1)

∥
∥ ≤ εp

3. Not improving: Not improved for Imax not improve iterations.

One more restart condition is determined by the relationship between fire-
works:

1. Covered by Better: More than 85% of the firework’s sparks are covered by
a better firework’s explosion range.

3.3 Collaboration

The explosion boundary of a firework X with parameters (m, C, σ) is defined as:
{
x
∣
∣
∣
∣

∥
∥
∥
∥C

− 1
2 (

x − m
σ

)
∥
∥
∥
∥ = E ‖N (0, I)‖

}
(3)

Obviously, it is a elliptical shell and covers the majority of X’s explosion
sparks. The proposed strategy is designed according to two core ideas:

1. The explosion scopes tends to form a segmentation within the global opti-
mization area.

2. The better fireworks tend to search independently, and the worse fireworks
tend to search collaboratively.

The first idea is helpful to avoid overlapping or omission of search scopes,
so the overall efficiency of fireworks can be improved in collaboration. The sec-
ond idea ensures the local optimization of leading fireworks will not be severely
affected by collaboration. Based on these ideas, the proposed algorithm conducts
collaboration by the following steps:

a) Compare Fireworks. A fuzzy comparison between each pair of fireworks
is introduced to estimate their relative optimization progress, which is described
in Algorithm 2.

b) Compute Dividing Points. The dividing point for each pair of fireworks
is obtained, which specifies where the search range of both fireworks are divided.
Figure 1 gives examples of the collaboration method in 4 possible situations.

The following steps are conducted to calculate the dividing point:

1. Calculate the distance dij between Xi and Xj

2. Calculate the radius rij = |XiAi| and rji = |XjAj | on line XiXj

3. Determine the situation (See Fig. 1) according to rij , rji and dij

4. Calculate the position of Ai and Aj

5. If the optimization of Xi is ahead of Xj , Ai is the dividing point. If Xj is
ahead of Xi, Aj is the dividing point. Otherwise, the midpoint B of AiAj is
the dividing point.



456 Y. Li and Y. Tan

Algorithm 2. Fuzzy Comparison of Fireworks

Require: Fireworks Xi and Xj with sparks x
(g+1)
i,1:λ and x

(g+1)
j,1:λ (if not restarted)

if Both Xi and Xj are just restarted then
return Xi and Xj are similar

end if
if Xi is restarted then

return Xj is ahead of Xi

end if
... #vice versa
if minx

(g+1)
i,1:λ > maxx

(g+1)
j,1:λ then

return Xj is ahead of Xi

end if
... #vice versa
return Xi and Xj are similar

Before fitting the boundary to obtained dividing points of Xi, two additional
operations are required. First, only the closest N (the dimension of objective
function) dividing points are kept, so the collaboration is conducted locally.
Second, the distance of Xi to its dividing points with Xj is clipped within
[0.5rij , 2rij ], so there won’t be too drastic changes after collaboration.

(a) (b) (c) (d)

Fig. 1. Four cases of collaboration between two fireworks. Ai and Aj are the closer
intersections of line XiXj with their boundaries. The actual dividing point could be
any point on AiAj . The second row shows the collaboration results when taking the
midpoint B of AiAj as dividing point.

c) Fit Dividing Points. The boundary of firework X(m, C, σ) is adapted to
fit its dividing points. For each dividing point Pk, a new covariance matrix Ck

is calculated. On the direction of XPk, Pk lies right on the boundary. On the
conjugate directions, the radius of boundary is not changed. The mathematical
calculation for fitting a single split point is given in the Appendix B. The mean
of all adapted covariance matrix 1

K

∑K
k=1 Ck is taken as the overall collaborated

results of X.
Algorithm 3 outlines the framework of the proposed collaboration strategy:
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Algorithm 3. Framework of Fireworks Collaboration
Require: n fireworks Xi and parameters (mi,Ci, σi) in N dimensional feasible space
Ensure: Collaborated parameters of fireworks

for each pair of fireworks Xi and Xj do
Compare the progress of Xi and Xj

Calculate dij = |XiXj |, expected sample distance rij and rji on XiXj

Calculate the dividing point Pij (= Pji)
end for
for each firework Xi do

Gather K = min(N, n − 1) closest dividing points Pi,j1:K

Clip the length of XiPijk within [0.5rijk , 2rijk ]
for k ← 1 : K do

Fit Pijk on the boundary of Xi and obtain Cijk

end for
Ci ← 1

K

∑K
k=1 Cijk

end for

3.4 Experiments

The performance of proposed algorithm is tested on objective functions from
the CEC 2020 benchmark test suit [17]. According to the settings of the bound-
constrained single-objective optimization competition, each function is tested
for 30 repetitions with 10, 15, 20 dimensions. The termination condition is a
maximum of 1,000,000, 3,000,000 or 10,000,000 evaluations for 10, 15 or 20
dimensions, respectively.

For the generalization ability of the proposed strategies, there is few addi-
tional parameters introduced. In the restart conditions, εv and εp are both 1E−6,
and the maximum number of unimproved iteration Imax unimprove is 20. Its basic
settings are the same as LoTFWA, which includes 5 fireworks and 300 sparks
in each iteration. The parameters of local adaption is also set to be the same as
CMA-ES. As we can see, there is no parameter selection according to the target
problems.

In order to prove the effectiveness of our proposed strategies, the proposed
algorithm is compared with two baselines. LoTFWA is the most efficient one of
the main variants of the firework algorithm. CMAFWA is a compromise between
LoTFWA and the proposed algorithm, whose fireworks use the local search strat-
egy of CMA-ES but are collaborated by the loser-out tournament strategies from
LoTFWA.

The statistical test results of the three algorithms are shown in the Table
1, Table 2 and Table 4 for 10, 15 and 20 respectively. Their fitness curves are
shown in supplementary C.

As can be seen from the experimental results, the proposed algorithm outper-
forms LoTFWA significantly on all objective functions. CMAFWA improves on
uni-modal (1), basic functions (2, 3, 4) and hybrid functions (5, 6, 7) compared
with LoTFWA, but becomes worse in complex functions (8, 9, 10) due to inef-
fective collaboration. The proposed algorithm is overall better than CMAFWA,
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Table 1. Wilcoxon signed-rank test on 10D problems. (α = 0.05. Statistical test is
conducted against the proposed method. ‘+’ means the proposed method is signifi-
cantly better. ‘−’ means the proposed method is significantly worse. ‘=’ means the two
algorithm performs similarly.)

F. LoTFWA CMAFWA Proposed

Mean Std Mean Std Mean Std

1 9.123E+05 2.579E+05 + 0.000E+00 0.000E+00 = 0.000E+00 0.000E−00

2 3.947E+02 2.131E+02 + 2.558E+01 3.445E+01 − 1.427E+02 1.606E+02

3 3.629E+01 7.296E+00 + 1.147E+01 6.350E−01 − 1.295E+01 3.144E+00

4 3.456E+00 6.189E−01 + 6.900E−01 1.427E−01 + 0.000E+00 0.000E+00

5 8.592E+03 7.521E+03 + 2.227E+02 1.166E+02 + 3.110E+01 1.643E+01

6 1.367E+02 4.205E+01 + 8.365E−01 3.917E−01 = 7.231E−01 4.031E−01

7 4.532E+03 4.710E+03 + 7.656E+00 2.204E+01 = 5.257E+00 6.804E+00

8 9.747E+01 2.689E+01 + 2.240E+02 3.200E+01 + 9.507E+01 1.845E+01

9 3.022E+02 8.871E+01 + 3.305E+02 9.224E−01 + 1.616E+02 8.019E+01

10 4.140E+02 2.155E+01 + 4.313E+02 2.004E+01 + 3.978E+02 1.015E−01

Rank 2.60 2.00 1.20

Table 2. Wilcoxon signed-rank test on 15D problems. (α = 0.05)

F. LoTFWA CMAFWA Proposed

Mean Std Mean Std Mean Std

1 1.444e+06 2.522e+05 + 0.000e+00 0.000e+00 = 0.000e+00 0.000e−00

2 1.095e+03 3.681e+02 + 8.932e+01 5.050e+01 − 9.387e+02 4.298e+02

3 5.343e+01 5.794e+00 + 1.652e+01 2.682e−01 − 3.617e+01 1.679e+01

4 7.060e+00 1.108e+00 + 7.677e−01 1.449e−01 + 6.257e−01 3.998e−01

5 1.060e+05 8.527e+04 + 2.967e+02 1.062e+02 + 1.217e+02 3.851e+01

6 3.769e+02 9.960e+01 + 7.248e−01 1.722e−01 − 4.624e+01 2.497e+01

7 5.507e+04 3.426e+04 + 1.982e+00 9.683e−01 − 3.834e+01 4.806e+01

8 1.103e+02 5.193e−01 + 2.298e+02 1.095e+01 + 1.000e+02 1.666e−07

9 3.099e+02 1.458e+02 + 3.905e+02 2.175e−01 + 1.583e+02 7.640e+01

10 4.385e+02 7.625e+01 + 5.228e+02 8.684e+01 + 4.000e+02 4.451e−07

Rank 2.60 1.80 1.40

especially on composition functions (8, 9 and 10) and problems that have rela-
tively simple local landscape (4, 5). But it failed to improve on problems with
a large number of local areas with insignificant overall trend (2, 3) or related
hybrid problems when the dimension becomes large. The most possible reason
could be that the limited number of fireworks are not able to form an effective
partition of the huge search space when dimension grows. On the other hand,
linking the ranges of limited local search sometimes might leads to inefficient
local exploitation (Table 3).
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Table 3. Wilcoxon signed-rank test on 20D problems. (α = 0.05)

F. LoTFWA CMAFWA Proposed

Mean Std Mean Std Mean Std

1 1.798e+06 4.388e+05 + 0.000e+00 0.000e+00 = 0.000e+00 0.000e-00

2 1.454e+03 3.986e+02 + 5.772e+01 1.833e+01 − 4.299e+02 1.681e+02

3 6.751e+01 1.126e+01 + 2.316e+01 5.063e−01 − 6.181e+01 2.962e+01

4 1.017e+01 1.274e+00 + 1.985e+00 1.113e−01 + 1.867e+00 6.521e-01

5 2.564e+05 1.808e+05 + 7.899e+02 1.829e+02 + 1.891e+02 4.939e+01

6 5.239e+02 1.968e+02 + 1.947e+00 2.190e+01 − 1.594e+02 5.865e+01

7 9.663e+04 6.730e+04 + 5.185e+00 3.104e+00 − 1.005e+02 4.884e+01

8 1.001e+02 1.945e+01 = 2.694e+02 1.855e+01 + 1.000e+02 2.272e-07

9 4.446e+02 1.994e+01 + 4.005e+02 1.476e+00 + 2.112e+02 9.651e+01

10 4.255e+02 1.695e+01 + 4.063e+02 4.547e−13 + 4.024e+02 5.840e+00

Rank 2.70 1.50 1.40

The proposed algorithm is also compared with LoTFWA, IPOP-CMA-ES
[9] and LSHADE [14], which have been the most famous EA or SIOA in recent
years, in the Table 1 on CEC 2020 benchmark test suits with 20 dimensions. The
proposed algorithm outperforms LoTFWA and IPOP-CMA-ES in all problems.
It achieved better performance on composition functions but is not as good as
LSHADE on basic functions and hybrid functions of CEC 2020 test suits.

Table 4. Comparison with classic algorithms on 20D problems of CEC 2020

F. LoTFWA IPOP-CMA-ES LSHADE Proposed

Mean Std Mean Std Mean Std Mean Std

1 1.80e+06 4.39e+05 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e−00

2 1.45e+03 3.99e+02 2.16e+03 2.41e+01 2.39e+00 1.38e+00 4.30e+02 1.68e+02

3 6.75e+01 1.13e+01 5.43e+01 7.97e+00 2.08e+01 5.23e−01 6.18e+01 2.96e+01

4 1.02e+01 1.27e+00 2.32e+00 2.78e−01 4.70e−01 4.66e−02 1.87e+00 6.52e−01

5 2.56e+05 1.81e+05 1.23e+03 2.83e+02 5.51e+01 6.01e+01 1.89e+02 4.94e+01

6 5.24e+02 1.97e+02 4.91e+02 2.19e+00 3.48e−01 8.05e−02 1.59e+02 5.87e+01

7 9.66e+04 6.73e+04 7.18e+02 2.10e+02 8.13e−01 1.33e−01 1.00e+02 4.88e+01

8 1.00e+02 1.95e+01 2.48e+03 1.85e+02 1.00e+02 1.00e−03 1.00e+02 2.27e−07

9 4.45e+02 1.99e+01 4.32e+02 1.48e+00 4.03e+02 1.06e+00 2.11e+02 9.65e+01

10 4.26e+02 1.70e+01 4.30e+02 4.55e−01 4.14e+02 1.47e−02 4.02e+02 5.84e+00

Rank 3.7 3.0 1.2 1.7

There are also some highly efficient variants of classic algorithms in the CEC
2020 bound-constrained single-objective competition. The proposed algorithm
has certain advantages in the competition, especially on composition functions.
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But it is still insufficient to compete with the best algorithms. We do not com-
pare with these algorithms for several reasons: a) Many of them improve their
performance based on too delicate strategies and tricks, like applying additional
optimizer in certain stage of optimization. b) Almost all of them applied dynamic
population size, which violates our assumption on parallel computing devices.
c) Most of them are designed and fine-tuned for the specific problems of CEC
2020 instead of general problems.

4 Discussions

The collaboration strategy plays an important role for the proposed algorithm
in two ways.

Globally, the collaboration strategy tends to link the explosion ranges of
separated fireworks. Therefore, fireworks naturally fill their vacancy even when
searching in the same direction. It also help the poor fireworks to expand their
search ranges and get closer to the better fireworks.

Locally, the collaboration strategy helps to avoid overlapping explosion
ranges of different fireworks. Even when multiple fireworks fall into a same con-
vex area, they tends to form a segmentation of the local area and search together,
instead of overlapping and conduct similar searches independently.

Fig. 2. A simple example of the collaboration of 4 fireworks.

Figure 2 gives a simple example of the collaboration of 4 fireworks in a single-
modal problem. In the early stage of optimization, the explosion ranges expand
and connect each other quickly. While in the later stage, four explosion ranges
collaboratively search around the optimal, just like a single Gaussian distribution
with larger population size.

5 Conclusion

This paper proposed a novel fireworks algorithm which is enhanced in both local
adaptation and global collaboration. The uniform explosion method is replaced
by a self-adaptive Gaussian distribution with strategy introduced from CMA-ES.
The fireworks are effectively collaborated by the idea of search space partition.
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The experimental results show that the proposed algorithm has better perfor-
mance compared to former FWA variants.

The proposed algorithm is developed based on a theoretical thinking of fire-
work algorithm. There are still plenty of details could be improved. For example,
the balancing between local adaptation and global collaboration is extremely
valuable for an in-depth study.

Appendix

A. Covariance Matrix Adaption

The local adaption of firework is done independently by the strategies from
CMA-ES.

For firework X with parameters (m(g), C(g), σ(g)) and explosion sparks
x(g+1)

1:λ . First, a recombination weight w is applied to μ best sparks for updating
the mean:

m(g+1) = m(g) + cm

μ∑

i=1

wi(x
(g+1)
i − m(g)) (4)

where cm is the learning rate. wi ≥ 0 and
∑

wi = 1.
For the adaption of covariance matrix, a combined rank-μ update and rank-

one update is applied in CMA-ES:

C(g+1) = (1 − c1 − cμ

∑
wj)C(g)

+ cμ

λ∑

i=1

wiy
(g+1)
i (y(g+1)

i )T

+ c1p(g+1)
c (p(g+1)

c )T

(5)

where

– c1 and cμ are learning rates.
– y(g+1)

i = (x(g+1)
i − m(g))/σ(g).

– p(g+1)
c is the evolution path, which is intiallized as 0 and updated by Eq. 6

p(g+1)
c = (1 − cc)p(g)

c +
√

cc(2 − cc)μeff
m(g+1) − m(g)

σ(g)
(6)

For the adaptation of scale σ, a conjugate evolution path p(g)
σ is initialized

as 0 and updated in each iteration:

p(g+1)
σ = (1 − cσ)p(g)

σ +
√

cσ(2 − cσ)μeffC(g)−
1
2 m(g+1) − m(g)

σ(g)
(7)

In general CMA-ES, the rank-1 update plays a significant role in rapidly mov-
ing towards a better local position at the initial stage of search. However, we’d
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like the firework to focus more around its initial position. According to exper-
iments, the proposed algorithm performs much better without rank-1 update,
that is:

C(g+1) = (1 − cμ

∑
wj)C(g) + cμ

λ∑

i=1

wiy
(g+1)
i (y(g+1)

i )T (8)

Finally, the scale σ(g+1) is updated by comparing the length of ‖p(g+1)
σ ‖ with

its expected length E ‖N (0, I)‖:

ln σ(g+1) = ln σ(g) +
cσ

dσ

⎛

⎝

∥
∥
∥p(g+1)

σ

∥
∥
∥

E ‖N (0, I)‖

⎞

⎠ (9)

B. Fitting Single Dividing Point

Here, we fit a diving point x on the boundary (defined in Eq. 3) of a Gaussian
distribution N (m, C) and overall sample scale σ.

First, a linear transformation f(x) = C− 1
2 (x − m)/σ is conducted to the

entire space, so the normal distribution is transformed to N (0, I). Assume diving
point x is projected to z.

In the transformed space, the boundary should only be changed on the direc-
tion of z. So we can assume the adapted covariance matrix Cx in the transformed
space is aI + bzzT .

Extend z into a set of linear bases B = {z, z1, ..., zN−1}. Assume all zi is on
the boundary of N (0, I). Since the sample distance on the conjugate directions
of z should not be changed for C and Cx, they are also on the boundary of
N (0, aI + bzzT ). So we have:

∥
∥
∥(aI + bzzT )− 1

2y
∥
∥
∥ = E ‖N (0, I)‖ ,∀y ∈ B (10)

Let d = E ‖N (0, I)‖, it is equivalent to:

yT (aI + bzzT )−1y = d2,∀y ∈ B (11)

According to the Woodbury Matrix Identity (Eq. 13), the equations can be
solved to obtain a and b.

(A + UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 (12)

Finally, the adapted matrix in original space is :

Cx = C
1
2

(
aI + bzzT

)
C

1
2

= aC + b(x − m)(x − m)T /σ2
(13)

C. Fitness Curves

Here we provide the fitness curves of LoTFWA, CMAFWA and the proposed
algorithm on the CEC 2020 benchmark problems (Fig. 3).
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(a) 10D

(b) 15D

(c) 20D

Fig. 3. Fitness curves on CEC2020 problems.
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