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Abstract. Fruit fly optimization algorithm (FOA) was a novel swarm intelligent 
algorithm inspired by the food finding behavior of fruit flies. Due to the defi-
ciency of trapping into the local optimum of FOA, a new fruit fly optimization 
integrated with chaos operation (named CFOA) was proposed in this paper, in 
which logistic chaos mapping was introduced into the movement of the fruit 
flies, the optimum was generated by both the best fruit fly and the best fruit fly in 
chaos. Experiments on single-mode and multi-mode functions show CFOA not 
only outperforms the basic FOA and other swarm intelligence optimization algo-
rithms in both precision and efficiency, but also has the superb searching ability.  
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1 Introduction 

Bio-inspired algorithms provide a new perspective for solving complex problems by 
mimicking the biological behaviors and nature phenomenon, with the characteristics 
of high robust, low complexities, excellent efficiency and superb performance, and 
also overcoming the weakness in searching and calculation for finite solutions and 
high complexity in traditional algorithms. As a significant branch of bio-heuristic 
research, swarm intelligence is inspired by the behavior of birds, fish, ants and bee 
colonies and so on in order to search global optima.  Besides the characteristics of the 
meta-heuristic algorithms, swarm intelligent algorithms have the advantages of easy 
operating and having good parallel architecture. In recent years, novel swarm intelli-
gent optimization algorithms spring up continually and have driven many researches. 
For example, particle swarm optimization algorithm (PSO) [1], proposed in 1995, 
imitated the behavior of birds; Bacterial foraging optimization algorithm (BFO) [2], 
introduced in 2002, simulated the foraging of bacteria; Glowworm swarm optimiza-
tion algorithm (GSO) [3], developed in 2009, inspired by the glowworms for search-
ing the light. Artificial bee colony algorithm (ABC) has two different mechanisms 
consisting of foraging behavior [4] and propagating behavior [5]. Swarm intelligent 
algorithms have been applied in many fields such as function optimization [6, 7], 
traveling salesman problem [8], path planning [9], image segmentation[10], spam 
detection [11], data clustering [12], and functional modules detection in protein-
protein interaction network [13, 14] etc.. 
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Fruit fly optimization algorithm (FOA) [15] is a novel swarm intelligent algorithm 
proposed by Pan in 2011, mimicking the foraging behavior of fruit flies for searching 
global optimum. With the outstanding olfactory, fruit flies can perceive the smell in 
the air even the food source beyond 40 meters and fly toward it. Then, after it gets 
close to the food location, it can also use its sensitive vision to find food and the com-
pany’s flocking location, and also fly towards that direction.  

FOA has been applied in many field such as neural network parameters optimiza-
tion [16], [17], financial distress [18], PID controller [19], scheduling [20], and knap-
sack [21] and so on. Because FOA is a novel algorithm, its application in scientific 
fields is not very extensive, what’s more, its weakness avoid it using for many fields. 
In order to overcome the weakness, we adopt chaos to the basic FOA.  

Chaos [22] is a stochastic phenomenon created in nonlinear and ensured system 
with the characteristics of randomness, regularity, ergodicity, and sensitive to the initial 
values, which makes it applied to many scientific research field such as image 
processing [23], signal processing [24], electric power system [25], optical assessment 
[26], and neural networks [27] and so on. Due to the features of chaos are correspond-
ing to the features in swarm intelligence, chaos is combined with swarm intelligent 
algorithms for optimization problems to strengthen the performance of the swarm intel-
ligent algorithms, such as PSO [28, 29], ABC [30], and bat algorithm [31] and so on. 

In this paper, logistic chaos operation is introduced into FOA in the movement of 
the fruit flies, in which the optimum was generated by both the best fruit fly and the 
best fruit fly in chaos. Besides, the calculation of high dimension distance was 
adopted to basic FOA to overcome the drawback that it is only used for one dimen-
sional problems. 

The rest of this paper is organized as follows. Section 2 introduces the basic con-
cepts and principles including the chaotic mapping, distance metric, and basic FOA. 
Section 3 provides the chaotic fruit fly optimization algorithm. Results from experi-
ments are described in Section 4. Finally, in section 5, conclusions about the paper 
and future research are shown.  

2 Basic Concepts and Principles 

2.1 The Chaotic Mapping 

Some statistic distribution is used for enhancing the randomness of algorithms, such 
as uniform and Gaussian distribution. With the randomness properties, chaos is a 
superb choice to generate random data. Because of the chaotic characteristics of ergo-
dicity and mixing of chaos, algorithms can potentially carry out iterative search steps 
at higher speeds than standard stochastic search with standard probability distribu-
tions [32]. As a typical chaotic system, logistic mapping is the most representative 
chaotic mapping with simple operation and well dynamic randomness introduced by 
May [33] in 1976. Logistic mapping is defined as: 

 401011 ≤<∈−=+ μμ ),())()(()( ztztztz  .           (1) 
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in which c is a control parameter and determines whether chaotic variable z stabilizes 
at a constant value and t denotes the iteration number. Variable z cannot be assigned 
to 0, 0.25, 0.75, 0.5 and 1. When 4=μ , the sequence of the logistic mapping is 
chaotic. In later experiments, 4=μ  is adopted. 

2.2 Basic Fruit Fly Optimization Algorithm 

Fruit fly optimization algorithm is a novel swarm intelligent optimization algorithm 
with the property of simple operation. Figure 1 shows the fruit fly and group iterative 
food searching process of fruit fly [15].  

 

Fig. 1. Illustration of the group iterative food searching of fruit fly 

According to the basic FOA [15], several steps are involved as below: 
Step 1. Randomly initialize fruit fly swarm location which is shown in Fig.1. The 

initial location is marked as ( InitX_axis, InitY_axis). 
Step 2. Give the random direction and distance for the search of food using osphre-

sis by an individual fruit fly. New location can be calculated using: 
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where randomvalue is the movment value in each coordinate. As shown in Fig.1, Fly 
group move to the new locations like Fly1, Fly2, Fly3, the new locations compose the 
new fly group and new locations take place of the former fly group locations for cal-
culation. 

Step 3. Due to the food location cannot be known, the distance to the origin is thus 
estimated first, marked as Dist calculated by: 

  22
iii yxDist +=  . (3) 

The smell concentration judgment value (S) is calculated, and this value is the reci-
procal of Dist. 
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Step 4. Substitute smell concentration judgment value (S) into smell concentration 
judgment function (or called Fitness function) so as to find the smell concentration 
(Smelli) of the individual location of the fruit fly.   

 Smelli=Function(Si) . (4) 

Step 5. Find out the fruit fly with minimal smell concentration (finding the maxim-
al value marked as [bestSmell bestIndex]) among the fruit fly swarm.  

Step 6. Keep the best smell concentration value (marked as Smellbest) and x, y 
coordinates, and at this moment, the fruit fly swarm will use vision to fly towards that 
location.  

Step 7. Enter iterative optimization to repeat the implementation of Steps 2-5, then 
judge if the smell concentration is superior to the previous iterative smell concentra-
tion, if so, implement Step 6. 

3 Chaotic Fruit Fly Optimization Algorithm 

3.1 Principle of Chaotic Fruit Fly Optimization Algorithm 

As we know above, only one variable is referred in the basic FOA, we tried to seek 
for the algorithm for multiple variables, so comes to chance the distance metrics in 
tradition. In general, basic FOA is a powerful algorithm in swarm intelligent algo-
rithms with the features of simple calculation and high efficiency.  

As a consequence of basic FOA, several local optima are achieved instead of global op-
tima. Aimed at this deficiency, chaotic mapping is adopted to improve the performance of 
basic FOA escaping from the local optima in this paper. The modified FOA proposed in 
this paper is marked as chaotic fruit fly optimization algorithm (CFOA, for short). 

3.2 Distance Metric 

Distance is the metric for two variables in similarity, the larger distance, the more 
difference is. Several distance metrics [34] are used frequently such as Euclidean 
distance, Mahattan distance, Minkowski distance and Mahalanobis distance. Eucli-
dean distance is taken advantage to calculate the distance resulting in variable one 
dimension, while experiments show Mahalanobis distance performs well in high di-
mension as a consequence of vector variable. As can be seen above, high dimension 
problems are not involved in the basic FOA. It becomes obviously that Euclidean 
distance is not appropriate for the high dimension problems; meanwhile the complexi-
ty for calculating is a very time-consuming process. Hence, distance metric is rede-
signed to make the algorithm apply to problems in high dimension and reduce the 
computational complexity. Due to the unknown location of the food source, we as-
sume that it locates in zero in coordinates, then absolute distance is adopted in each 
dimension for lessening the calculation complexity and insuring the vector result re-
quired. That is to say, smell concentration judgment value (S) is a multidimensional 
variable for high dimension problems in CFOA instead of single dimension smell 
concentration judgment value in FOA. 



78 X. Lei et al. 

3.3 New Location Update 

The new location of the fruit fly group is combined the best location in the basic 
movement (xb) with the best chaotic location (xc) in logistic mapping. The new loca-
tion is defined as: 

 rtxataxtxtx cb )()()()()( −++=+ 11  . (5) 

where t stands for the iteration, r is a random number, a denotes the balance parame-
ter ranging from 0 to 1. If a = 1, new location depends on the movement of the fruit 
group independently; if a = 0, new location only depends on the chaotic mapping. In 
order to acquire the outperformance, random number r is introduced to avoid the ab-
soluteness and increase the possibility of seeking for the global optimum. 

3.4 CFOA Process 

CFOA includes several steps as below: 
Step 1. Initialization. Initialize the locations of the first fruit fly group, where uni-

form distribution is used for experiments to generate the random locations between 
the max and min values in the real models. The maximum iteration tmax, group size n, 
problem dimension d, and the bound values should be given at the beginning. 

Step 2. Fly group movement. According to the new location calculation method, 
use Eq. (5) to get the new location. Let the best location in the basic movement be 
equal to the best chaotic location (xb = xc) in the initial stage of the algorithm. 

Step 3. Calculation for smell concentration. As discussed above, absolute distance 
is introduced to calculate the smell concentration judgment value (S). After that, per-
form the 4th step of basic FOA in section 2.3, using Eq. (4) to achieve the value of 
smell concentration. Smell is the objective function value as well. 

Step 4. Frist selection. Find out the best location (xb) in fruit group with minimal 
smell concentration, mark the value of smell (smell1) as the same operation of 5th step 
of basic FOA in section 2.2 

Step 5. Chaotic operation. Let the whole fruit group in logistic mapping. On ac-
count of data in logistic mapping ranges from 0 to 1, variables in fruit group should be 
standardized in order to match the variable z in logistic mapping. Assume variables of 
fruit group (x) ranging from the low bound (low) to up bound (up), standardized vari-
able (z’) defines as: 

 [ ]uplowx
lowup

lowx
z ,' ∈

−
−=  . (6) 

z’ is matching the variable z in logistic mapping, operate the Eq. (1) to transform z’(n) 
to z’(n+1), where n denoting the iteration n in searching space.  

After the chaotic operation, the variable z’(n+1) ranges from 0 to 1, therefore, in-
verse substitution should be taken to transform z’(n+1) in logistic mapping to data in 
fruit group. Corresponding to Eq. (6), the substitution is presented below: 

 ),(')('' 10∈+−= zlowlowupzx  . (7) 
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Step 6. Best selection. Following the chaotic operation, Find out the best x’ in fruit 
group with the minimal smell concentration, mark the best chaotic location (xc) and value 
of smell (smell2) similar to the 3th step above. Compare the value of best smell in the 
basic movement and chaotic movement, mark the smaller as the best smell (bestsmell). 

Step 7. Enter iterative optimization to judge whether the iteration achieve nmax or 
not, if archives, end up the optimization get rid of loops and output global optima. 
Otherwise, go to the Step 2. 

4 Evaluation and Analysis of Experimental Results 

Algorithms are tested in Matlab 7.13 and experiments are executed on Pentium dual-
core processor 3.10 GHz PC with 4G RAM. 6 Benchmark functions are experimented 
to testifying the CFOA algorithm compared with PSO [1], BFO [2], GSO [3] and the 
basic FOA algorithms.  

4.1 Benchmark Functions 

In the experiments, benchmark functions are used to demonstrate the performance of 
the algorithm shown in Table 1. Among which, the former 3 functions (f1-f3) are 
unimodal and the others (f4-f6) are multimodal functions.  

Table 1. Benchmark functions. 

Id Name Equation Domain 

f1 Sphere 
=

d

i
ix

1

2  ±5.12
 

f2 Tablet +
=

d

i
ixx

2

22
1

610  ±100
 

f3 Quadric 
2

1 1
 
= =

d

i

i

j
jx )(  ±100

 

f4 Rastrigin  +−
=

d

i
ii xx

1

2 10210 ))cos(( π  ±5.12
 

f5 Ackley 
== −−+

−
d

i
i

d

i
i x

d
x

d eee 11

2 2
11

20

2020
)cos(. π
 ±32

 

f6 Schaffer 50
00101 22

2
2
1

2
2

2
1

2

.
))(.(

sin
+

++
+

xx

xx
 

±100 

4.2 Parameters Setting 

It can be seen from swarm intelligent algorithms such as PSO and GSO, the group 
size assignment is 50 in general. Here, the group size ranging from 10 to 60 are tested 
in search of the most suitable value, taking Sphere function in 30 dimensions as an 
example, which is shown in Table 2. “Convergence” is defined as the iteration where 
the value of objective function becomes changeless. “Time” denotes the running time. 
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Table 2. Influences of group size in CFOA 

Size Convergence Time(s) 
10 31 0.0921 
20 20 0.1909 
30 20 0.3081 
40 21 0.3890 
50 19 0.3720 
60 18 0.4827 

From Table 2, we can see that running time increase along with group size. In pace 
with group size augments, convergent iteration varies slightly. When group size 
ranged from 10 to 20, running time double increased, but from 20 to 30, running time 
changes little than double. As noted above, group size should be assigned to 20. 

Maximal iteration is set to 1000 in comparison between CFOA and FOA algorithm 
due to the curves converge approximately about 600 iteration; when comparing with 
other algorithms in Section 4.4, the maximal iteration is set to 200; other parameters 
are set in Table 3. 

Table 3. Parameters of algorithms 

Algorithm Parameters 

PSO n = 50, w = 0.8, 21 =c , 22 =c  

BFO n = 20, cn  = 10, sn = 5, rn = 2, rc  = 0.025 

GSO n = 20, ρ  = 0.4, γ = 0.6, )( 0il  = 4, tn  = 4, dr  = 50, sr  = 50 

4.3 Comparison between CFOA and FOA 

By virtue of FOA without the ability to handle high dimensional problems, the dis-
tance metric mentioned in section 3.2 is adopted for high dimensional problems here. 
We compare the best, mean and worst values of the 150 times running for the bench-
mark functions in 30 dimensions, along with the convergent searching curves gained 
by FOA and CFOA in Table 4 and Fig. 2, respectively. 

Table 4. Comparison of performances between CFOA and FOA 

Function FOA  CFOA 
Best Mean Worst  Best Mean Worst 

Sphere 1.0588e-
04 

1.1214e-
04 

1.1370e-
04 

 0 0 0 

Tablet 2.4690 2.7316 2.9027  0 0 0 
Quadric 0.0016 0.0017 0.0018  0 0 0 
Rastrigin 0.0211 0.2606 0.0219  0 0 0 
Ackley 0.0077 0.0080 0.0082  -8.8818e-

16 
-8.8818e-
16 

-8.8818e-
16 

Schaffer 1.0700e-
04 

1.1320e-
04 

1.1535e-
04 

 0 0 0 
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As can be seen from Table 4, CFOA outperforms the basic FOA in aspects of best, 
mean and worst values, the results win a perfect victory to the problems, reaching the 
precise value in real problems model mostly, expect for the Ackley problem. On the 
other hand, FOA is a stable algorithm which can be referred from the little deviation 
among the best, mean and worst values in Table 4. However, CFOA is more stable 
than FOA from the data in Table 4. 

 

 

Fig. 2. Searching curves between FOA and CFOA 

Basic FOA is not convergent commendably in the problem of Tablet, which can be 
brought out from Fig. 2. We can see the curves of basic FOA changes sharply and go 
oscillating in the former iterations, most get smooth in about 300 iterations, and even 
some diverges in the last such as Tablet. However CFOA converges faster evidently 
and its curves are smoother than FOA. 

4.4 Comparison among CFOA and other Swarm Intelligent Algorithms 

As noted above, some typical swarm intelligent optimization algorithms were 
emerged, in which PSO a well-known algorithm is applied in various fields, after that 
came BFO, then GSO in recent years. CFOA with PSO, BFO, and GSO are compared 
to reveal its excellent performance. Maximal iteration is assigned to 200 and d = 30.In 
addition, ABC cited in [35] is used for comparison. The best, mean and worst values 
are shown in Table 5. Searching curves of CFOA, PSO, BFO, and GSO are compared 
show in Fig. 3. 
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Table 5. Comparison of the best value among CFOA and other algorithms 

Function Algorithm Best value Mean value Worst value Time(s) 

Sphere 

PSO 0.7082 4.2435 16.3361 0.1536 
ABC 6.9216e-06 9.71e-06 1.7306e-05 - 
BFO 0.0569 27.9043 34.4376 2.2938 
GSO 15.1463 24.1407 37.9462 0.8207 
CFOA 0 0 0 0.1584 

Tablet 

PSO 9.2533 47.5864 151.2483 0.1633 
ABC - - - - 
BFO 0.8019 27.8247 54.2484 2.8789 
GSO 21.5472 26.2276 84.2679 0.7496 
CFOA 0 0 0 0.1858 

Quadric 

PSO 0.1471 6.8473 18.2545 0.2270 
ABC - - - - 
BFO 1.4393e-07 35.8423 62.8472 5.4017 
GSO 55.2578 89.1475 107.3562 0.8838 
CFOA 0 0 0 0.2755 

Rastrigin 

PSO 20.1543 70.5196 135.2792 0.1681 

ABC 9.6741e-04 0.0024 0.0054 - 
BFO 207.5546 222.6783 236.8989 2.7732 
GSO 203.8972 227.2889 278.0422 0.8361 
CFOA 0 0 0 0.1700 

Ackley 

PSO 0.0924 2.3001 4.1087 0.2427 
ABC - - - - 
BFO 0.0940 1.4919 5.3649 2.8435 
GSO 4.3467 4.6689 5.5228 0.8678 
CFOA -8.8818e-16 -8.8818e-16 -8.8818e-16 0.2138 

Schaffer 

PSO 0.0372 0.0622 0.0782 0.2109 
ABC 0.8701 1.0657 1.2542 - 
BFO 0.0165 0.0372 0.0412 2.4955 
GSO 0.0372 0.0372 0.0372 0.9135 
CFOA 0 0 0 0.1952 

From Table 5 we can see that CFOA reaches the best value of problems mostly to 
be the best in actual, values among the best, mean and worst are equivalent. Other 
algorithms cannot gain the accurate value in actual and even traps into local optima. 
Furthermore, although PSO runs faster than the other algorithms, CFOA has the advan-
tage in running time, better than PSO. Values obtained by CFOA, which exceeded far 
from BFO and GSO, better than PSO as well. As a consequence, CFOA is a superb 
algorithm with outstanding robustness and wonderful accuracy for the functions above. 

We tested PSO, BFO and GSO along with CFOA of performance in convergence 
and searching abilities. Searching curves of algorithms show in Fig.3, we can see that 
the convergent iteration begin to converge and the values changing in the iteration 
period. CFOA reaches the smallest values in Fig.3, what’s more, the CFOA curves  
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Fig. 3. Searching curves of CFOA and other swarm intelligent algorithms 

converges better than the other three algorithms, especially for the functions such as 
Tablet, Quadric, Rastrigin and Ackley. In addition, the approximately equivalent val-
ues are apparently for the Schaffer function. 

5 Conclusion and Discussion  

Aiming at the deficiencies of trapping into local optimum, converging slowly as well 
as not suitable for high dimension problems in the basic fruit fly optimization algo-
rithm, chaotic fruit fly optimization algorithm is presented in this paper. In the first 
place, we modified the distance metric to suit the high dimension problems, absolute 
distance is adopted here in each dimension to transform the distance into a vector. 
Secondly, we introduced logistic mapping, the famous typical chaotic mapping to the 
new algorithm to expand the searching space. Last but not least, new location update 
is designed to improve the optimum gained by the group. As superior results gained 
above, CFOA algorithm performs outstanding in both optima searching and running 
time, not only outperforms the basic FOA, but also other swarm intelligent algo-
rithms. We are intending to apply it to other fields for scientific research in the near 
future to testify whether it works well. 
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