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Abstract. Heterogeneous Multi-unit control is one of the most con-
cerned topic in multi-agent system, which focuses on controlling agents
of different type of functions. Methods that utilize parameter or replay-
buffer sharing are able to address the problem of combinatorial explo-
sion under isomorphism assumption, but may lead to divergence under
heterogeneous setting. This work use curriculum learning to bypass the
barrier of a needle in a haystack that is faced by either joint-action
learner or independent learner. According to the experiment on hetero-
geneous force combat engagements, the independent learner outperforms
the baseline learner by 10% of evaluation metrics with curriculum learn-
ing, which empirically shows that curriculum learning is able to discover
a novel learning trajectory that is not followed by conventional multi-
agent learners.

Keywords: Heterogeneous control · Curriculum learning · Multi-agent
system

1 Introduction

A series of benchmark has been proposed for determining the performance of
multi-agent reinforcement learning, with more agents, more complex agent archi-
tecture and sparser rewards indicating better algorithm needed to solve the prob-
lem. The StarCraft Multi-Agent Challenge (SMAC [33]) based on the StarCraft

This work is supported by the National Natural Science Foundation of China (Grant
No. 62250037, 62276008 and 62076010), and partially supported by Science and Tech-
nology Innovation 2030 - ‘New Generation Artificial IntelligenceMajor Project (Grant
Nos.: 2018AAA0102301 and 2018AAA0100302).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Tan and Y. Shi (Eds.): DMBD 2022, CCIS 1744, pp. 3–16, 2022.
https://doi.org/10.1007/978-981-19-9297-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9297-1_1&domain=pdf
https://doi.org/10.1007/978-981-19-9297-1_1


4 J. Chen et al.

II Learning Environment (SC2LE [45]) is currently one of the most wildly used
benchmark for multi-agent reinforcement learning algorithms, as shown in Fig. 1
However, the performance on SMAC is mostly determined by micromanagement
of every single agent rather than collaborative joint actions. Moreover, the agents
are with similar action spaces, move and attack, with difference only in attack-
ing range and defense. Yet such setting is still too weak for realistic applications
because isomorphism is often violated and requires collaborative joint actions
of heterogeneous agents. Besides, tasks are multi-stage and multi-target rather
than simply defeating the opponent by elimination.

Fig. 1. A snapshot of 27m vs. 30 m challenge in SMAC

Recently more complex and realistic environments that focuses on hetero-
geneous agents are being aggressively explored to develop algorithms for poli-
cies that are more robust to the dynamics of environment. Different from envi-
ronments with isomorphism agents, heterogeneity indicates decision structures
with little similarity among agents. Agents have different observation spaces and
action spaces, thus, neural networks with fixed sizes of input and output can not
be directly applied. Furthermore, the optimal parameters and network structures
are unique for every agent, which means that a normal technique that tries to
reduce the computational cost by sharing information among agents may fail.
For example, as shown in Fig. 2, in a heterogeneous force combat engagement
task, the view of a tank may be blocked by a nearby forest, and it is only able
to move along the facing direction or turn. However, a helicopter is with higher
motility and different action space, a control structure different from that of a
tank is needed.

Conventional methods like parameter sharing are reconsidered [41–43] since
the assumption of similar decision structures is violated under heterogeneous
settings. With carefully redesign of the observation spaces, action spaces and
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Fig. 2. A tank and a helicopter are heterogeneous agents

neural network structures among all agents, the technique of parameter sharing
is able to applied under heterogeneous setting. Meanwhile, this reveals the fact
most techniques that developed under the assumption of isomorphism agents
failed to directly generalize to heterogeneous setting. As a consequence, methods
that fit those benchmarks well are needed to reconsidered if it is over-fitted to
isomorphism agents.

2 Related Works

A series of methods is developed under the widely used framework of centralized
training and decentralized execution (CTDE [27]). These methods are classified
in mainly two classes based on their optimization method, value decomposition
or policy gradient.

Value based methods try to fit a value function Q(s,a) that is able to eval-
uate the accumulative rewards of an immediate joint action a, by iterating the
bellman equation, that is

Q(s,a) ← r + γ max
a′

Q(s′,a′) (1)

which is a direct utilization of value iteration in single agent reinforcement learn-
ing. However, Q function suffers from the curses of dimensions with the increase
of the number of agents. To address this problem, alternatives of decomposing
the centralized value function are aggressively explored. Linear decomposition
[38] assumes that the centralized value function is equal to a linear summation
of functions on all agents. QMix [32] consider the monotonic aggregation based
on the Individual-Global-Max (IGM) condition. QTRAN [36] claims that mono-
tonic aggregation is not necessary condition for IGM and proposed a method
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based on affine transformation, showing better adaptation on complex games.
WQMix [31] claims that QMix may lead to divergence or underestimation, and
therefore proposed a weighted version of QMix. QPLEX [46] decomposes the
value function with dueling structure, and claims that it is able to learn every
decomposable value function satisfying the IGM condition.

While policy gradient method optimizes the parameters directly from an
estimation of accumulative rewards. To formalize, the gradient of neural network
weights

∇J(θ) = R(τ)∇P (τ |θ) ≈ 1
N

N∑

n=1

R(τn)∇ ln P (τn|θ) (2)

yet it is also necessary to decompose the gradients onto every agent, which is
also known as a credit assignment problem [25]. MADDPG [22] uses a central-
ized critic network to distribute gradients among training agents. COMA [7]
introduces counterfactual baseline to reduce the variance of gradients. MAPPO
[51] generalizes proximal policy optimization (PPO [35]) to multi-agent environ-
ments with 5 proposed techniques. MATRPO [19] generalizes trust region policy
optimization (TRPO [34]) to multi-agent environments to acquire a better the-
oretical guarantee multi-agent reinforcement learning algorithm.

However, methods based on CTDE framework is often assumed that the
agents are isomorphism. Although in benchmarks like SMAC there are multiple
races or units in an environment, the goals of the challenges and the decision
structures of agents are of little difference. Thus algorithms with significant
empirical results on these benchmarks may fail under heterogeneous settings.
Thus alternatives focus on avoiding the assumption of isomorphism are widely
explored.

Some consider independent training of every agent so that heterogeneous
agents don’t interfere each other. IQL [39] is proposed to learn individual Q
function directly from iterating bellman equation independently on every single
agent. IPPO [49] applies PPO algorithm directly to multi-agent environments
and shows better empirical results than QMix and IQL on several challenges in
SMAC. MA2QL [37] applies a minimal modification on IQL to acquire the theo-
retical guarantee on converging to a Nash Equilibrium [26]. MABCQ [14] exploits
value deviation and transition normalization to modify the transition probability
to derive an offline decentralized multi-agent algorithm. Yet the assumption of
independence may lead to divergence or rather low sample complexity [22], thus
these algorithm may lose scalability to the number of agents.

Some applies modern techniques in reinforcement learning or deep learn-
ing to address the problem of heterogeneous agents. Graph neural networks
[9,50,53] are introduced to describe the relationships between heterogeneous
agents, and HMAGQ-Net [23] proposed a graphical description of multi-agent
system. Communication [2,20,24] is introduced to stabilize the training of inde-
pendent learners, which builds channels between agents to achieve better collab-
oration. DDDQN [5] introduces 3 techniques in reinforcement learning to solve
a heterogeneous traffic light control problem. These methods bypass the prob-
lem of heterogeneous agents by more expressive neural structures or training
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methods, but may introduce more computational cost or training difficulty that
requires carefully fine tuning.

Some methods are inspired by population based training [6,10,16,21,40,52,
54]. League training [44] is introduced to find weakness of policies. IQ-algorithm
[29] introduces an imitation learner to solve a heterogeneous multi-agent prob-
lem. Role based learning [47,48] introduces roles to break isomorphism. These
methods address directly to the problem of heterogeneous agents, but may
requires prior knowledge of the environment. Others focuses on quantifying het-
erogeneity. Model-free conventions [17] are considered in heterogeneous settings
to encourage exploration. FMQ [15] algorithm is proposed to learn to coordi-
nate heterogeneous agents. And communication heterogeneity [3] is considered
to provide an analysis tool to describe and quantify heterogeneity during com-
munication.

3 Method

Here we describe an alternative to address the problem of heterogeneous agents
by curriculum learning.

3.1 Preliminaries

Consider how a human student learn skills from class. She starts with learning
basic concepts and practicing by solving simple problem. As she gets familiar to
the newly learnt knowledge, she turns to practice with more difficult problems
to become an expert. This is how Curriculum Learning [1] works. To formalize,
the preferred curriculum learning is to search for a task selection function [28]
D : H → T where H contains information about past interactions and T is the
target task, the objective

Obj : max
D

∫

T∼Ttarget

PN
T dT (3)

indicates the outcome of curriculum learning, where Ttarget denotes the distri-
bution of target tasks, N denotes the number of training steps and PN

T denotes
the fitness on task T after training N steps.

The way to choose a task selection function is one of the most central problem
of curriculum learning. The task selection function can be viewed as a control
of training trajectory, as shown in Fig. 3, on the skill potential landscape the
two training trajectories A and B are of the same starting and target points.
However, trajectory A tries to climb through the cliff, which means a rapid
increase on training task. This will result in the agent is not prepared to solve the
upcoming problem thus getting stuck at the valley. While trajectory B looks for a
tortuous path but with slowly ascending difficulty. Therefore although trajectory
B is geometrically longer than trajectory A, it is more training friendly. In
particular, when the agent is trained directly from the target task, it means to
jump vertically from the starting point to the target and is usually the most
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Fig. 3. Different training trajectory means different learning difficulty [13]

difficult trajectory. Therefore, there are tasks that are nearly impossible to learn
even with long training time, but can be solved by curriculum learning.

Alternatives to select tasks along training process are broadly explored [28].
BARC [11] determines the initial states to control the difficulties. The reward
function is also considered for exploration [4], guidance [8] or intrinsic goals [12].
Others may also consider changing the goal [18,30] during training, which is also
known as multi-goal learning.

3.2 Curriculum Learning by Adjusting Opponents

In this work, a curriculum learning task selection by modifying the behaviour
of opponents is used, since in heterogeneous force combat engagement problem
there are naturally two competitive teams. The difficulty of the task of defeating
the opponent can be slowly shifted by interfering the behaviour. Intuitively,
consider a talented coach trying to train a teammate by sparring, the coach can
conceal his skill in early days and make it all-out when the teammate is trained.
Here we proposed two methods that can control the strength of the opponent.

The first method is to blur the observation of the opponent by a vanishing
noise, as shown in Fig. 4. To be specific, let the observation of the opponent to
be o and now is the j-th round of training, we feed observation

o′ = o +
N(0, σ)

j
(4)

as the input of the opponent. As the decision of the opponent is misled by the
noise, it will no longer be a fatal threat that prevents the learner to learn even
the basic rules of the game.

Theorem 1. For a task with continuous action spaces, consider a perfectly
trained linear controller G. Under the blurred observation, the distance between
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Fig. 4. Control opponent action by blurring observation

the actual behaviour and the best reaction is proportion to a Gaussian with mean
0 and variance σ

j2 .

Proof.
||G(o) − G(o′)||1 = ||G(o − o′)||1 ∼ ||o − o′|| ∼ N(0,

σ

j2
)

which indicates that we are able to control an opponent with ascending strength.
The second method is to randomly interfere the action commands of the

opponent, which prevent the opponent from acting correctly. For a task with
continuous action spaces, the output action a is added by a vanishing Gaussian
noise, that is

a′ = a +
N(0, σ)

j
(5)

For a task with discrete action spaces, the action commands are randomly drop
with refer to a probability inversely proportion to the number of rounds trained,
that is

drop(a) =
1
j

(6)

so we derives a method of interfering the behaviour of the opponent, with
descending noise away from the best reaction.

4 Experiments

To evaluate the effectiveness of curriculum learning, we adopt the heterogeneous
force combat engagements environment.
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4.1 Environment and Settings

The task of heterogeneous force combat engagements is to defeat the opponent
by destroying the command post. There are multiple agent types including radar,
GBAD, destroyer, fighter plane, jammer, bomber and scout. As shown in Fig. 5,
agents are highly heterogeneous and the observation is complex.

Fig. 5. A snapshot of the environment

Due to limited speed of the simulator, we utilize distributed training with a
cluster of 8 GPUs, with each GPU we collect data from 8 parallel environments.
And we compare the performance between the backbone multi-agent reinforce-
ment learning algorithm with or without curriculum learning.

To examine the effectiveness of the two proposed methods of curriculum
learning, two sets of contrast experiments are carried out. A hierarchical decision
framework with high level instructions from the neural network controller and
low level execution by a rule based controller is used. Two sets of rules of the
executor are used respectively in two experiments to dispel the effects of rule-
based controllers.

4.2 Evaluation

To evaluate the performance of the proposed methods, four metrics summarized
from the training process are used.

– asymptotic expected rewards Vπ∗(S0)
– maximum expected rewards maxt Vπt

(s0)
– time to converge t∗
– time to reach a threshold of rewards λ, tλ

concepts of the four metrics are visualized in Fig. 6.



Curriculum Learning for Heterogeneous MARL 11

Fig. 6. The metrics used to evaluate an algorithm

4.3 Results

This work first did an experiment on blurring the observation of the opponent.
Figure 7 shows the training curves of the baseline algorithm based on rule set
A, where 7(a) shows the loss function of PPO and 7(b) shows the expected
accumulative rewards.

Fig. 7. The loss curve (a) and accumulative rewards (b) of baseline algorithm

As a contrast, Fig. 8 shows the training curves of the curriculum learning
based on observation blurring, which also uses the rule set A for its low-level
controller. According to the accumulative rewards, the four metrics are summa-
rized in Table 1, where the threshold λ = 4.7.
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Fig. 8. The loss curve (a) and accumulative rewards (b) of observation blurring

Table 1. Comparison of baseline and observation blurring

Metrics Vπ∗ maxVπt t∗ tλ

Baseline 4.8 4.9 68 62

OB 5.6 5.75 45 18

The second part of the experiment consists of evaluating curriculum learning
based on action interference. Figure 9 shows the training curves of the baseline
algorithm based on rule set B.

Fig. 9. The loss curve (a) and accumulative rewards (b) of baseline algorithm

While Fig. 10 shows the training curves of curriculum learning based on
action interference, which also uses rule set B for low-level control. Table 2 sum-
marizes the metrics of both training process, where λ = 5.

4.4 Discussion

The experiments reveal that both implementations of curriculum learning, obser-
vation blurring and action interference, outperforms the baseline algorithm in
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Fig. 10. The loss curve (a) and accumulative rewards (b) of action interference

Table 2. Comparison of baseline and action interference

Metrics Vπ∗ maxVπt t∗ tλ

Baseline 4 7 2000 2000

AI 5 10 2000 1000

policy performance, convergence and sample efficiency. Firstly, as shown in the
comparison of max Vπt

, curriculum learning found policies that gains rewards
10% more than the baseline algorithm. This shows that curriculum learning is
able to find better policy, as we are trying to exploit reinforcement learning
to find an optimal controller for the problem. Secondly, the comparison of Vπ∗

and t∗ also reveals that curriculum learning outperforms the baseline algorithm
in asymptotic performance, no matter in convergent point or time to converge.
Thirdly, the comparison of tλ reveals that curriculum learning boosts the sample
efficiency for at least 10%. This also in line with expectation, since curriculum
learning leverage the training trajectory that is more suitable all along the train-
ing process. To sum up, the experiments show a 10% boosting on performance
and in turn support the claims this work mentioned above.

5 Conclusion

In this work we proposed an curriculum learning method based on interfering
the opponent to solve an heterogeneous force combat. According to the empirical
results, the two proposed interfering alternative, observation blurring and action
dropping, are both able to achieve a 10% boosting on evaluation metrics.

Although the empirical results show the effectiveness of this method, the
theoretically understanding of applying curriculum learning to heterogeneous
multi-agent learning problem is still unclear, which we will leave as a future
work.
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