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Abstract. Byte level N-Gram is one of the most used feature extraction
algorithms for malware classification because of its good performance and
robustness. However, the N-Gram feature selection for a large dataset
consumes huge time and space resources due to the large amount of dif-
ferent N-Grams. This paper proposes a partitioning based algorithm for
large scale feature selection which efficiently resolves the original prob-
lem into in-memory solutions without heavy IO load. The partitioning
process adopts an efficient implementation to convert the original inter-
actional dataset to unrelated data partitions. Such data independence
enables the effectiveness of the in-memory solutions and the parallelism
on different partitions. The proposed algorithm was implemented on
Apache Spark, and experimental results show that it is able to select
features in a very short period of time which is nearly three times faster
than the comparison MapReduce approach.

Keywords: Malware classification · Feature selection · Data partition-
ing · Apache Spark

1 Introduction

With the rapid popularization of the Internet, malware has become the main
threat to computer security. Hundreds of millions of new malware samples are
created every year [2]. How to detect and classify such a large amount of new
malware has become a challenging issue in computer security.

Many researchers have proposed to use machine learning to detect and clas-
sify new malware in recent years. The malware detection task trains a classifier
such as support vector machine [12] and random forest [6] to classify executable
files into benign or malware, while the malware classification task uses a classifier
to classify executable files into families. It can be seen that malware detection
is just a special case of malware classification. Therefore, we just use the term
malware classification to refer to both tasks hereinafter.

The machine learning based malware classification approaches proposed so
far mainly differ on the way to extract malware features. Schultz et al. [9] pro-
posed to use DLLs, APIs, strings and byte sequences as malware features. Kolter
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et al. [4,5] selected a certain number of byte level N-Grams using information
gain [17] to construct malware features. Tabish et al. [13] divided binary files
into blocks and calculated 13 statistical features on each block. Each block was
classified as a normal block or a potentially malicious block, and the correlation
module was used to combine the classification results of different blocks from a
single binary file. Shafiq et al. [10,11] regarded the key fields of the PE structure
[7] as features.

Among the proposed feature extraction algorithms, N-Gram shows good
experimental performance and is more robust than other algorithms. There-
fore, there are many derived feature extraction algorithms from N-Gram. Wang
et al. proposed the immune concentration of N-Grams to construct a low dimen-
sional feature [15,16]. Zhang et al. used the class-wise information gain to select
malicious N-Grams to detect infected executables [18].

The value N for N-Gram is usually set to 4, which is able to keep a balance
between final classification performance and the robustness. A smaller N will
decrease the classification performance heavily while a larger N can be easily
obfuscated by the insertion of irrelevant machine instructions.

However, the feature selection of N-Gram is very expensive in real world
applications. Most feature selection algorithms need to count the numbers of N-
Grams in all classes, while there are a huge number of different N-Grams when
the dataset is large. The main memory of an ordinary computer usually does
not have enough space to store the variable (e.g. a hash map which stores the
counts of all N-Grams for each class) used to collect the counts. Kolter et al. [4]
adopted a disk-based implementation to handle this problem but they said that
their implementation was very slow.

This paper proposes a partitioning based N-Gram feature selection algorithm
which divided the huge number of N-Grams into several partitions and uses an
in-memory implementation to select the most informative features.

We will introduce the N-Gram feature selection algorithm in Sect. 2 and
explain the proposed partitioning based algorithm in Sect. 3. Sections 4 and 5
will give the experimental results and the conclusion respectively.

2 N-Gram Feature Selection for Malware Classification

In the feature selection process of malware classification, each executable sample
is broken into N-Grams using an overlapping sliding window of N bytes. The
window slides from the beginning of a binary file to the end with a step of one
byte. At each step the binary content in the window is regarded as an N-Gram
feature. Duplicated N-Grams in a sample will be removed.

After generating N-Grams for all of the samples in the training set a feature
selection metric score is calculated for each unique N-Gram and the top K N-
Grams with the largest metric scores will be selected as the final features, where
K is a pre-specified variable.

Information gain is the most used feature selection metric, which is defined
as Formula 1 [5].
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IG (f) =
∑

vf∈{0,1}

∑

c∈C

P (vf , c)
P (vf , c)

P (vf ) P (c)
. (1)

In this formula f represents the feature and vf represents the feature value.
vf = 0 means the feature f is not in a sample, while vf = 1 means the feature
f appears in a file sample. C is the set of all classes. P (vf , c) is the probability
that the class of a sample is c and its feature value for f is vf . P (vf ) represents
the probability that a sample’s feature value for f is vf and P (c) represents the
probability that a sample’s class is c.

Formula 1 needs to calculate three probabilities (i.e. P (vf , c), P (vf ) and
P (c)) in advance. P (c) can be easily obtained by calculating the fraction of
samples with class c in the training set. If we have calculated P (vf , c), P (vf )
can be derived as the sum of P (vf , c) over all classes, as shown in Formula 2.

P (vf ) =
∑

c∈C

P (vf , c). (2)

The remaining work is to calculate P (vf , c). We can obviously get Formula 3.

P (vf = 0, c) + P (vf = 1, c) = P (vf , c) . (3)

Therefore we only need to calculate P (vf = 1, c) first and then derive
P (vf = 0, c) using Formula 4.

P (vf = 0, c) = P (vf , c) − P (vf = 1, c) . (4)

P (vf = 1, c) can be calculated using Formula 5.

P (vf = 1, c) =
T (vf = 1, c)

T
. (5)

T in Formula 5 is the total number of samples in the training set and
T (vf = 1, c) is the number of samples in the training set whose feature values
for f are all 1 and classes are all c.

When applied to N-Gram feature selection for malware classification,
T (vf = 1, c) can be written as T (g, c), which represents the number of an N-
Gram g in class c, provided that the duplicated N-Grams in a single executable
file are removed.

However, the number of possible N-Grams is exponential to the length of
N-Gram N . For example when N = 4 there will be 232 (i.e. about 4.3 billion)
possible N-Grams. For a large training set a large fraction of the possible N-
Grams will appear. If there are 100 classes and we use a 32-bit integer to store
the number of an N-Gram, we will need at most 1.6 TB space to store the
numbers, even not including the additional space used by the data structure
(e.g. a hash table) to store and organize the N-Grams, which could be in the
same order of magnitude as the space used by the numbers.

When traversing the training set to calculate T (g, c), the whole variable that
stores T (g, c) for all of the N-Grams and all of the classes should be kept in main
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memory because the variable will be accessed frequently and randomly, while an
ordinary computer with a limited memory size is not able to store such a large
variable in main memory.

To handle this problem, Kolter et al. [4] claimed that they implemented a
disk-based approach which consumed a great deal of time and space, but they
didn’t give the detailed description of their implementation.

A straightforward solution is to split the training set into small subsets and
calculate the numbers of N-Grams for each subset. The result for each subset
is written to a file on the disk. After all the subsets are traversed the files for
different subsets are merged into a single one. This solution is workable but it
needs a lot of IO operations which are very inefficient.

Another possible solution is to use MapReduce [3,8] which is designed for
distributed systems. Most MapReduce tutorials begin with a word count exam-
ple, while calculating the number of N-Grams is just a special case of the word
count problem; we need to take count of N-Grams for all of the classes. However,
the shuffle operation of MapReduce is very time-consuming which will heavily
decrease the time efficiency of feature selection.

In the next section we will propose an efficient N-Gram feature selection
algorithm based on partitioning.

3 Partitioning Based N-Gram Feature Selection

The process of partitioning based N-Gram feature selection is shown in Algo-
rithm 1.

Algorithm 1. Partitioning Based N-Gram Feature Selection
Input: the training set.
Input: K: the number of N-Gram features to be selected.
Output: K N-Gram features with the largest information gains.
1: Determine the number of partitions P according to the training data size and the

main memory size available in a computer.
2: Create P lists which are stored in the external memory, namely L0, L1, ..., LP−1.
3: for all executable sample in the training set do
4: c = the class of the sample
5: for all unique N-Gram g generated from the sample do
6: Lhash(g)%P .add(< g, c >).
7: end for
8: end for
9: the feature set F = ∅

10: for all i ∈ {0, 1, ..., P − 1} do
11: Use an in-memory feature selection algorithm to select top K features from Li.
12: Add the selected N-Gram features to F .
13: end for
14: return the top K features in the set F .
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First of all, the number of partitions should be determined so that each
partition can be processed using an in-memory algorithm. Let the total size of
the training data be S and the main memory size available be M . The average
data size of each partition is S/P.

The actual memory occupied by the in-memory algorithm used below is
approximatively proportional to the size of data in a partition. Let the propor-
tionality coefficient be λ. Then we have λ ∗ S/P ≤ M , that is P ≥ λ ∗ S/M .

The coefficient λ depends on the programming language and the data struc-
ture used in the program. We need to estimate its value according to the detailed
implementation. If λ is underestimated, there may be not enough main memory
space for the program and the program may crash. Therefore, we should select
a slightly large value for λ.

Then, P lists are created to store the temporary data. The temporary data
is also too large to be stored in main memory. Therefore, the data are actually
stored in external memory such as the disk. A cached implementation of the list
in external memory will significantly reduce the amount of IO operations. When
adding data to the list, the new data are stored into a buffer in main memory
first. Once the buffer is full all the data in it will be written to external memory
and the buffer is set to empty again.

Next, each executable file in the training set is broken into N-Grams and
duplicated N-Grams in a file are removed. For each N-Gram a hash function is
calculated based on its binary content. The remainder of Euclidean division of
the hash value and P determines which list the N-Gram goes to. The pair of the
N-Gram and the class of the executable file is added to the list.

For the cached implementation of the list in external memory, a smaller P
will consume less cache space for all the lists in main memory. From the above
analysis we know that the condition for selecting P is P ≥ λ ∗ S/M . Therefore,
we can just choose P = λ ∗ S/M .

This partitioning process will make the same N-Gram across the whole train-
ing set to be partitioned into the same list. Therefore, the information gain of
the N-Gram can be calculated within the list.

After that, for each list an in-memory feature selection algorithm is used
to select top N-Grams. The numbers of all N-Grams in the list is counted for
each class and the information gains are calculated using Formulas 1-5. The K
N-Grams with largest information gain is selected. The P lists produce P ∗ K
N-Grams in total.

Finally, the top K N-Grams are selected from the P ∗ K N-Grams.
The time complexity of Algorithm 1 is proportional to the size of training

data. The partitioning process reads the whole training set linearly and writes
the pairs of N-Grams and the classes to external memory. We estimate the total
size of data in external memory here without considering the data compression
and indexing. For N = 4, after removing duplicated N-Grams the number of
N-Grams will reduced to about one half according to our experiment. Therefore,
the external memory space occupied by the contents of N-Grams is about 2 (i.e.
4 ∗ 0.5) times larger than the training data size. If the number of classes is not
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larger than 128 we can use one byte to store the class value for each N-Gram, and
the external memory space occupied by the classes of N-Grams will be about the
same as the training data size. If the number of classes is between 129 and 65536
the class value will need two bytes and the external space will be about 2 times
larger than the training data size. Therefore, the total size of data in external
memory is about 3 or 4 times larger than the training data size, depending on
the number of classes. The in-memory feature selection algorithm will read the
data from external memory again to calculate information gain. In conclusion
the data size of IO operations is about 7 or 9 times larger than the training data
size. Such amount of IO operations is acceptable in the real world application.

Algorithm 1 can be easily parallelized in a very efficient approach. The most
time-consuming processes of Algorithm 1 are partitioning N-Grams from all files
into different lists and calculating information gain for each list. The partitioning
process for each file is independent, and the calculations of information gain for
different lists are also independent. Therefore, these two processes can both be
distributed to different CPU cores or even different computers.

4 Experiments

The proposed algorithm was implemented on Apache Spark [1] using Python.
Apache Spark has a built-in data partitioning routine which makes the proposed
algorithm very easy to be implemented. What’s more, Apache Spark can dis-
tribute the computation tasks to different CPU cores and different computers,
enabling the parallelization of the proposed algorithm automatically.

We used two workers for the Apache Spark cluster, each with one CPU core
and 5 GB memory.

The dataset we used contains 11058 executables, including 5563 benign files
and 5495 malicious files from the VX Heaven virus collection [14]. The total size
of the dataset is 5.50 GB. We did a two-class malware detection task on this
dataset.

When selecting the number of partitions using the formula P = λ ∗ S/M , λ
was estimated as about 100. At last we chose 100 as the number of partitions.

We also implemented a comparison algorithm based on the famous word
count example using MapReduce given in the Apache Spark website1, which is
shown as follows:

counts = t e x t f i l e . f latMap (lambda l i n e : l i n e . s p l i t ( ” ” ) ) \
.map(lambda word : (word , 1 ) ) \
. reduceByKey (lambda a , b : a + b)

The function of this piece code is to calculate the numbers of all words from a
given text file. Each line of the file is mapped to several words and the same word
will be reduced to get the count. We extend this algorithm to calculate the number
of N-Grams for all of the classes and then calculate the information gains.

1 http://spark.apache.org/examples.html.

http://spark.apache.org/examples.html


Partitioning Based N-Gram Feature Selection for Malware Classification 193

Shafiq et al. [11] used the N-Gram feature as a comparison algorithm of
their proposed PE-Miner. In their article they claimed they had developed an
optimized implementation of N-Gram which is more efficient. We also took their
implementation as one of our comparison algorithms.

The time consumption of different implementations is shown in Table 1.

Table 1. Feature selection time for partitioning based algorithm, MapReduce based
extended word count algorithm and the implementation of Shafiq et al.

Algorithm #Samples Hardware and platform Time

Partitioning 11058 3.0 GHz+3.3 GHz, Spark, Python 3.4 h

MapReduce 11058 3.0 GHz+3.3 GHz, Spark, Python 10.1 h

Shafiq et al. 2895 2.19 GHz, C++, STL 25.3 h

As we can see in the table, partitioning based algorithm is almost three times
faster than MapReduce based algorithm. MapReduce needs to shuffle the huge
amount of N-Grams, while shuffle is very expensive.

Both partitioning based algorithm and MapReduce based algorithm have
two stages in the Spark jobs. The time consumption of each task for the two
algorithms is shown in Fig. 1.

For partitioning based algorithm, stage 1 partitions the N-Grams, while stage
2 counts the N-Grams and calculates information gain to select top N-Grams.
The two stages takes 1.6 h and 1.8 h respectively. The most expensive opera-
tion of the two stages is IO, and the IO data sizes of the two stages are close.
Therefore, the time consumptions of this two stages are close. The calculation
of information involve some expensive logarithm operations in stage 2, so that
the time consumption of stage 2 is slightly higher than that of stage 1.

For MapReduce based extended word count algorithm, stage 1 uses MapRe-
duce to obtain the numbers of N-Grams in each class while stage 2 maps the
counts of an N-Gram in all the classes to information gain. Stage 1 takes 6.8 h
which is twice as the whole time consumption of partitioning based algorithm.
The most expensive operation of stage 1 is shuffle. We can see that shuffle will

Fig. 1. The time (in hour) of different stages for partitioning based algorithm and
MapReduce based extended word count algorithm
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significantly decline the time efficiency of the whole algorithm. Stage 2 of this
algorithm takes 3.2 h while stage 2 of partitioning based algorithm only takes
1.8 h. The superiority of partitioning based algorithm is achieved by using the
concentrative in-memory feature selection for the whole partition.

The last row of Table 1 gives the estimated result of Shafiq et al.’s imple-
mentation. They used many categories of executables in their experiments. The
average number of executables in each category is 2895. They reported that the
average feature selection time for a file of their implementation is 31.5 s. There-
fore, we estimated that the total feature selection time for 2895 files is 25.3 h.

The size of dataset used by partitioning based algorithm is almost 4 times
larger than that used by Shafiq et al. We used two CPU cores and the CPUs’ fre-
quencies are higher than theirs. Besides, they adopted a faster C++ implementa-
tion. We can estimate that our computation capability is about 4 times stronger
than theirs. Considering the dataset size and the computation capability, the
numeric difference between the time consumption of Shafiq et al.’s implemen-
tation and the partitioning based algorithm in Table 1 is able to roughly reflect
the difference between the time efficiencies of the two algorithms. Shafiq et al.’s
implementation took more than one day to select features, while partitioning
based algorithm only took 3.4 h, which is more than 7 times faster.

5 Conclusions

Byte level N-Gram is a well-known feature extraction algorithm for malware
classification which is able to extract relevant features for malware and is very
robust. However, the feature selection of N-Gram suffers from heavy time and
space load because the large number of features generally cannot be stored in
main memory. This paper proposed a partitioning based approach to accelerate
the feature selection process. The proposed approach divides N-Gram features
into independent partitions and uses the in-memory feature selection algorithm
for each partition. Experimental results showed that the partitioning based algo-
rithm is very efficient and is superior to a MapReduce based implementation and
the optimized implementation by Shafiq et al.
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