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Abstract—Fireworks algorithm (FWA) as an efficient and
robust swarm intelligence algorithm can successfully deal with
complex multi-modal problems. In this paper, a novel new
explosion operator called exponentially decaying explosion is
proposed to enhance the local search ability of fireworks algo-
rithm based on the principle of utilizing more information. The
proposed method takes the idea of guided mutation a step further
and dismantled the explosion process into an exponentially
decaying series of guided explosion. The FWA variant with this
explosion operator is called exponentially decaying fireworks
algorithm (EDFWA). Theoretical analysis proved the superiority
of EDFWA in terms of information utilization ratio compared
with GFWA. Experimental results showed that EDFWA not
only surpassed LoTFWA in low dimensional situations, but also
exhibited powerful searching capability on 1000 dimensional high
dimensional problems compared with multiple representative
optimizers specially designed for large-scale problems.

Index Terms—Fireworks Algorithms, Large-scale Optimiza-
tion, Multi-modal Optimization, Swarm Intelligence, Evolution-
ary Algorithm, Information Utilization, Exponential Decay

I. INTRODUCTION

Fireworks algorithm (FWA) is a swarm intelligence al-

gorithm proposed by Tan et al. [1] in 2010. The general

framework of FWA consists of two layers, one is the global

coordination between fireworks, the other is the local search of

fireworks. This hierarchical architecture gives FWA the ability

to adapt to a wide range of complex and difficult multi-modal

problems. As its name implies, FWA features a local search

procedure in which each firework generates a group of sparks

as candidates with a uniform distribution. This design choice

on the one hand makes FWA very robust and stable, but on

the other hand can restrict the local search ability of FWA

to some extent, since the uniform distribution incorporates no

bias of the local landscape of the function.

Some efforts have been made to enhance the local search

ability of FWA, and the most notable one is guided FWA

(GFWA) [2]. The main principle proposed by GFWA is to

increase the information utilization ratio in each generation,

and this principle leads to the mechanism called guiding spark.

The introduction of guiding spark greatly increases the local

search ability of FWA as it can capture the local feature of the

function to certain extent. However, according to the idea of

utilizing more information, guiding spark still hasn’t utilized

enough information acquired by sparks, and thus the local

search ability still has room for further improvement.

This work extends the idea of the guiding spark in GFWA

a step further. Instead of guiding the uniform search with

one single guiding spark, a mechanism called exponentially

decaying explosion is proposed and the resulting algorithm is

called exponentially decaying fireworks algorithm (EDFWA).

During each generation of EDFWA, a series of guided uniform

distributed sparks are sampled and the magnitude as well as the

spark number decays in exponential manner. This mechanism

can enhance the local search ability of fireworks algorithm,

especially in high dimension large-scale problems.

In the following section, we provide essential background

information and related works in section II, where the main

procedure of FWA and some notable FWA variants including

GFWA and LoTFWA [2] [17] are introduced. Section III

contains detailed description and analysis of our proposed

method. Then in section IV we’ll present the experimental

results to showcase the performance of EDFWA on two

benchmark suites: CEC2017 real value bounded benchmark

[14] and CEC2013 large-scale benchmark [18]. Finally we

conclude our work in section V.

II. RELATED WORKS

A. Fireworks Algorithm Framework

Inspired by the real-world fireworks explosion, FWA initial-

izes multiple fireworks which iteratively conducts explosion

and selection operation to find the optimal solution. In the

explosion process, each fireworks generate its explosion sparks

around it according to an explosion operator. Then those gener-

ated sparks together with their parents (fireworks) go through a

selection phase where fireworks for the next generation will be

selected. The most conventional selection strategy resembles

Evolution Strategy, where every individual is included in a

single selection pool. However, later research [17] indicated

that letting each firework form their own selection pool is978-1-7281-8393-0/21/$31.00 ©2021 IEEE
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a better choice in the case of multi-modal optimization.

Apart from selection, fireworks also cooperate with each other

according to global cooperation strategies. These strategies

can be very versatile, for example, the number of sparks

can be globally coordinated [17] [7], the restart schedule

can be designed [17], etc. As a matter of fact, the overall

framework of fireworks algorithm can be abstracted into two

main procedures: 1. Conduct local search by explosion. 2.

Conduct global coordination of local explosions [21]. These

two principle together enable fireworks algorithm to solve a

large variety of optimization problems efficiently. Figure 1

provides a intuition of the framework of FWA. Algorithm 1

describes the main procedure of FWA.

Fig. 1. An illustration of the fundamental framework of fireworks algorithm.
Two main components of fireworks algorithm is local search via explosion
and global coordination.

Algorithm 1: Fireworks Algorithm

Input : µ, λ
Output: Optimal solution

Initialize µ fireworks randomly within the search space

while termination condition not met do

for Fireworksi in Fireworks do
Generate λi sparks Ui uniformly around

Fireworki within amplitude Ai

Select the best candidate among

{Ui ∪ Fireworki} as the next Fireworki
Adapt Ai according to selection result

end

end

Over the course of development, FWA has attracted much

attention from the research community. On the one hand, FWA

has been applied to solve real world problems such as image

processing [13], matrix factorization [12], spam detection

[11], vehicle routing problem [5], large-scale travel salesman

problem [9]. On the other hand, there has been numerous

theoretical attempts made to improve the performance of FWA

itself. Some important variants are enhanced FWA (EFWA)

[8], dynFWA [7], bare-bones FWA (BBFWA) [6], guided

FWA (GFWA) [2], loser-out tournament FWA (LoTFWA)

[17]. Among them, GFWA and LoTFWA marks two of the

most milestones. GFWA greatly improves the local search

ability of FWA while LoTFWA introduced an effective global

coordination mechanism between fireworks based on GFWA.

B. Information Utilization Ratio

IUR(g) =

∑g
i=1H

(

Zi | X̄i−1, Z̄i−1

)

∑g
i=1H

(

Yi | X̄i, Ȳi−1

) (1)

Information utilization ratio (IUR) of an algorithm can act

as an effective metric to compare heuristic algorithms within

the same algorithm family. For example, [20] showed that

in the the PSO family, IURPSO ≤ IURSPSO, in the ES

family, IURCMA−ES ≤ IUR(µ,λ)−ES , in the DE family,

IURJADE ≤ IURDE , which correspond to the fact that those

algorithms with larger IUR value tend to perform better.

For typical (µ, λ) − ES, [20] has derived its IUR to be

equation (2), where g represents the generation, µ is the

number of parents, λ is the number of offspring.

IUR(µ,λ)−ES(g) =
(g − 1) ln(Cµ

λ )

gλH(f(x))
(2)

In the simple case of Luus-Jaakola algorithm where a single

sample is generated with a uniform distribution, it has an IUR

of eqaution (3)

π(i) = −
g

g + 1
ln

g

g + 1
−

1

g + 1
ln

1

g + 1
(3)

IURLJ(g) =

∑g−1
i=1 π(i)

gH(f(x))
(4)

In the case of FWA family, the simpler BBFWA has an IUR

bounded according to equation (5), This equation is derived

from the fact that valina BBFWA enjoys similar properties

with (µ, λ) − ES and Luus-Jaakola algorithm, and its IUR

can be bounded by their respectivie IUR.

(g − 1) ln(λ+ 1)

gλH(f(x))
≤ IURBBFWA(g) (5)

≤

∑g−1
i=1 π(i)

gH(f(x))
(6)

C. Guided Fireworks Algorithm and Loser-out Tournament

Fireworks Algorithm

The Guided Fireworks Algorithm takes advantage of Infor-

mation Utilization Ratio to enhance the local search ability of

Fireworks Algorithm. In each generation, each firework first

conducts a uniform explosion to generate sparks as usual,

and then those sparks are evaluated and ranked according

to their fitness. With a predefined guiding mutation ratio σ,

a guiding vector is calculated by calculating the difference

vector between the the best set of sparks and worst set of

sparks. Then this guiding vector is added to the firework

position to form a guiding spark. The procedure of GFWA

is described the Algorithm 5.

For GFWA, it has an IUR larger than BBFWA due to the

fact that it utilizes the information from the ranking of sparks

1407
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Algorithm 2: Guided Fireworks Algorithm

Input : µ, λ, σ
Output: Optimal solution

Initialize µ fireworks randomly within the search space

while termination condition not met do

for µi in µ do
Generate λi sparks Ui uniformly around

Fireworki within amplitude Ai

Evaluate λi and rank sparks according to

fitness in ascending order

Gi = Ūi[: σλi]− Ūi[−σλi :] + Fireworki
Evaluate Gi

Select the best candidate among

{Ui ∪Gi ∪ Fireworki} as the next

Fireworki
Adapt Ai according to selection result

end

end

during the generation of the guiding spark. Thus GFWA has

a larger IUR which is bounded by equation (7)

(g − 1)(lnCσλ
λ + lnCσλ

λ−σλ)

g(λ+ 1)H(f(x))
≤ IURGFWA(g) (7)

≤
(g − 1)

(

lnCσλ

λ + lnCσλ
λ−σλ + ln(σλ+ 1)

)

g(λ+ 1)H(f(x))
(8)

Loser-out tournament fireworks algorithm introduced com-

petition between fireworks on top of GFWA. To be specific,

in each generation, every firework will calculate its expected

final fitness at the end of optimization process with a linear

estimation. When the estimated fitness of a firework falls

below the current best real fitness value in the population, it is

considered a loser and will be randomly restarted in the next

generation. Algorithm 3 describes the workflow of LoTFWA

in detail. Compared to GFWA, LoTFWA greatly enhances its

ability to deal with more complex multi-modal problems. But

on some uni-modal problems and large-scale problems, GFWA

is still a better option.

III. PROPOSED METHOD

A. Exponentially Decaying Fireworks Algorithm

The guided fireworks algorithm improves the local search

ability of fireworks algorithm, but this idea only exploits

the information from sampled candidates with one guiding

mutation. In order to further utilize the information of the

population and better adapt to the local landscape of the

function, a new explosion operator to improve the explosion

operator with a series of guided explosion in an exponentially

decaying manner is proposed.

For a specific firework f in generation g, its local search

samples is denoted with S. In the case of GFWA, these

samples consist of a group of uniform isomorphic samples

and an additional guided mutation sample. We denote samples

Algorithm 3: Loser-out Tournament Step

for Fireworksi in Fireworks do
Conducts local search according to algorithm 2

p = f(Fireworkscurrenti )−f(Fireworkspreviousi )
if p < 0 then

gleft = floor( evaluation left
µ

)

f̂(Fireworksfinali ) =
f(Fireworkscurrenti ) + p ∗ gleft

if f̂(Fireworksfinali ) >
min(Fireworkscurrent) then

Restart Fireworksi and reset its

parameters
end

end

end

generated by the uniform search distribution with U , and the

guiding spark as G. The explosion center of U is denoted as P ,

the amplitude of U is denoted as R, and the number of samples

(sparks) of U is determined by M . The tuple {P,R,M} is a

complete description of U .

S(GFWA) = U +G (9)

In EDFWA’s case, S now consists of a series of uniform

samples whose amplitudes decay in an exponential manner.

S(EDFWA) = U0 + U1 + ...+ Un (10)

In the above equation, it can be seen that the G term is

omitted.This design choice is made out of the consideration

that our samples will search in the neighborhood region of

the guided spark, and thus there is no need to sample another

point.

Fig. 2. Illustration of exponentially decaying explosion sparks generated for
one firework in one generation. The red lines indicate explosion amplitudes,
blue stars represent sampled candidates, blue arrows represent guided mutation
vectors.
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Each Ui(0 < 1 ≤ n) is completely determined by Ui−1.

To be specific, after the uniform explosion of Ui−1, we first

evaluate the fitness of the sparks in Ui−1, and calculate the

guiding mutation vector and add it to Pi−1 to form Pi. In

terms of Ai and Mi, they are obtained by multiplying an

exponentially decaying ratio parameter γ with Ai−1 and Mi−1.

This procedure is repeated until Mi becomes too small (when

Mi < 2) to generate future samples. The full procedure of the

exponentially decaying algorithm is described in Algorithm 4

Pi+1 = Pi +Gi−1 (11)

Ai+1 = Ai ∗ γ (12)

Mi+1 =Mi ∗ γ (13)

The global coordination between fireworks is the same as

LoTFWA, which means that fireworks whose expected final

fitness is worse than the current best fitness will be restarted.

Based on the idea of utilizing more information, and making

it possible for explosion sparks to better adapt to local struc-

ture, a new explosion operator called exponentially decaying

explosion operator is proposed. The overall procedure of

EDFWA is as described in algorithm 5, and the explosion

process of EDFWA is depicted in Figure 2. Figure 3 illustrates

the sampling distribution of EDFWA vs GFWA. It can be

clearly seen from the 2-dimensional illustration that EDFWA

stretched its sampling distribution according to the global

structure of the function landscape while GFWA could only

sampling inside a cube area.

Algorithm 4: Exponentially decaying explosion

Input : f, U0, P0, A0,M0, γ, σ
Output: S
Let S = U0 , i = 0
while Mi ≥ 2 do

Sort Ui according to f(Ui)
Ngm =Mi ∗ σ
Gi = Ui[: Ngm]− Ui[−Ngm :]
Calculate Pi+1, Ai+1,Mi+1 according to equation

(11)

Sample Ui+1 according to Pi+1, Ai+1,Mi+1

S = S + Ui+1

i = i+ 1
end

B. Analysis of the IUR of Exponentially Decaying Explosion

Now consider the case in EDFWA, its IUR is analysed and

compared to GFWA under the condition of identical spark

numbers. Since EDFWA differs from GFWA only in terms

of the explosion operator, we only need to focus on the sum

lnCσλ

λ + lnCσλ
λ−σλ to do the comparison. This sum comes

from the fact that GFWA utilizes the information of the best

σλ and the worst σλ sparks. Suppose in generation g, EDFWA

generates a total of λ = λ0 + λ1 + ...+ λn, where λi = λ0γ
i

sparks, and these sparks sum up to λ. Let’s first construct

a function I(x) according to equation (14), we claim that

IEDFWA = I(λ0)+I(λ1)+...+I(λn) ≥ IGFWA(λ). Though

this inequality does not directly imply that EDFWA has larger

IUR than GFWA since it only lifts the lower bound and the

upper bound of the original IURGFWA, our proof do convey

the idea that EDFWA do utilize more information than GFWA.

I(λ) = lnCσλ

λ + lnCσλ
λ−σλ (14)

Proposition 1: suppose λ =
∑n

i=0 λ0γ
i, we have the

following inequality:

n
∑

i=0

I(λ0γ
i) ≥ I(λ) (15)

Proof 1: The above inequality holds if I(x) is a convex

function according to Jensen’s inequality. We now show that

I is indeed a convex function due to the fact that its second

derivative is positive.

Let

f(λ) = lnCσλ
λ (16)

since

lnCσλ
λ =

λ!

(σλ)!(λ− σλ)!
(17)

and

n! = Γ(n+ 1) (18)

where Γ is the Gamma function, we then have:

f(λ) = lnΓ(λ+ 1)− ln Γ(σλ+ 1)− ln Γ(λ− σλ+ 1)
(19)

consider the fact that:

ln Γ(x)

dx
=

Γ′(x)

Γ(x)
(20)

= −γ′ +

∞
∑

k=1

(
1

k
−

1

k + x+ r − 1
) (21)

In our case, x can only take positive integer values, so we

have:

ln Γ(x)

dx
= γ′ +Hx−1 (22)

Hx−1 =

x−1
∑

k=1

1

k
(23)

where γ′ is the Euler-Mascheroni Constant, and Hx−1 is the

harmonic number. Then the first derivative would be:

df

dλ
= Hλ − σH(σλ)− (1− σ)H(λ− σλ) (24)

consider the relation of harmonic number and Riemann zeta

function ζ, there is a such relation that can help us get the

second derivative:

dnHx

dxn
= (−1)n+1n! [ζ(n+ 1)−Hx,n+1] (25)
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Fig. 3. A direct comparison of a single explosion between EDFWA and GFWA on 2 dimensional Shifted and Rotated Schaffer’s F7 Function, which is
multi-modal and has a huge number of local optima. In the above figure, the function value is represented by color differentiated contour plot. The blue color
corresponds to a small function value (better). The global optimum lies on the right side of the figure with large number of blue circles surrounding it. Each
black cross is a firework. Figure a corresponds to EDFWA, and figure b corresponds to GFWA. It can be seen that EDFWA can capture the global structure
to some extent while GFWA can only rely on uniform sampling.

this leads to the second derivative of f :

d2f

dλ2
= 2σζ(2) + σ2Hσλ,2 + (1− σ)2H(1−σ)λ,2 −Hλ,2 ≥ 0

(26)

Considering the relationship of generalized harmonic numbers

with polygamma functions and Gamma functions in the fol-

lowing form:

Hn,r = n−r +
ψr−1(n)

Γ(r)
+ ζ(r) (27)

This relationship leads us to the following equation:

d2f

dλ2
= Γ(2)(σ2ψ(σλ) (28)

+ (1− σ)2ψ((1− σ)λ)− ψ(λ) + 2σ2ζ(2))

Here, Γ(2) > 0, 2σ2ζ(2) > 0, and 0 < σ < 1. It is sufficient

to prove the sum of the first three terms inside the parenthesis

is larger or equal to 0. To prove this fact, consider the definiton

of polygamma function:

ψn(z) = (−1)n+1n!

∞
∑

k=0

1

(z + k)n+1
(29)

Since in our case, the order of ψ is 1, we then have:

s(σ) = σ2
∑ 1

(k + σλ)2
(30)

+ (1− σ)2
∑ 1

(k + (1− σ)λ)2
−

∑ 1

(k + λ)2

To prove that s(σ) ≥ 0, it is sufficient to prove that every term

inside the summation is greater or equal to 0, that is:

σ2

(k + σλ)2
+

(1− σ)2

(k + (1− σ)λ)2
−

1

(k + λ)2
(31)

The above equation is equivalent to the following form:

σ2(k + (1− σ)λ)2(k + λ)2 + (1− σ)2(k + σλ)2(k + λ)2

(k + σλ)2(k + (1− σ)λ)2(k + λ)2

(32)

−
(k + σλ)2(k + (1− σ)λ)2

(k + σλ)2(k + (1− σ)λ)2(k + λ)2

It is then sufficient to prove that the sum of the denominators

is greater or equal to 0. The following substitution is made:

a = k + λ (33)

b = k + σλ

c = a− σλ

Then the denominator becomes:

sd(σ) = σ2a2c2 + (1− σ)2a2b2 − b2c2 (34)

= σ2c2(a2 − b2) + ((1− σ)2a2 − (1− σ2)c2)b2

Notice that:

(1− σ)2 − (1− σ2) ≥ 0 (35)

this leads to:

sd(σ) ≥ σ2c2(a2 − b2) + (1− σ2)b2(a2 − c2) (36)
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TABLE I
COMPARING EDFWA WITH LOTFWA ON CEC2017.

LoTFWA EDFWA

FuncId Mean Min Max Std Mean Min Max Std Won

1 1.65e+02 2.30e-03 2.17e+03 2.65e+02 2.48e+02 7.63e-06 2.19e+03 3.81e+02 =

2 6.53e-03 3.57e-03 1.67e-02 1.77e-03 1.17e-03 8.09e-04 1.59e-03 1.51e-04 +

3 4.83e-04 0.00e+00 3.72e-03 5.44e-04 5.39e-06 0.00e+00 3.05e-05 1.16e-05 +

4 6.72e+01 5.89e-03 1.18e+02 3.02e+01 5.28e+01 2.75e-04 1.16e+02 3.96e+01 +

5 6.85e+01 3.59e+01 1.04e+02 1.19e+01 4.05e+01 2.29e+01 6.67e+01 8.86e+00 +

6 4.08e-01 0.00e+00 9.90e+00 1.01e+00 4.81e-03 0.00e+00 1.41e-01 2.18e-02 +

7 6.08e+01 3.23e+01 8.58e+01 7.74e+00 6.07e+01 4.63e+01 7.68e+01 5.79e+00 =

8 6.25e+01 3.28e+01 8.66e+01 1.03e+01 3.49e+01 2.19e+01 4.97e+01 5.41e+00 +

9 4.60e+01 0.00e+00 9.11e+02 1.60e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 +

10 2.47e+03 1.25e+03 3.56e+03 3.34e+02 1.98e+03 1.03e+03 2.58e+03 3.04e+02 +

11 1.15e+02 1.99e+01 2.97e+02 4.17e+01 9.77e+01 4.88e+01 1.76e+02 2.39e+01 +

12 1.16e+06 2.51e+04 6.12e+07 4.37e+06 1.92e+05 1.25e+04 1.02e+06 1.38e+05 +

13 2.14e+04 6.41e+03 4.83e+04 8.53e+03 2.38e+04 7.96e+03 5.16e+04 9.73e+03 -

14 8.05e+02 2.57e+02 3.50e+03 5.98e+02 8.20e+02 2.15e+02 6.67e+03 7.76e+02 =

15 1.17e+04 1.49e+03 3.17e+04 5.37e+03 1.32e+04 1.69e+03 3.52e+04 6.79e+03 =

16 6.08e+02 1.71e+02 1.11e+03 1.53e+02 5.48e+02 1.85e+02 8.74e+02 1.34e+02 =

17 1.19e+02 4.63e+01 3.36e+02 4.15e+01 1.14e+02 4.30e+01 2.56e+02 4.25e+01 =

18 5.63e+04 4.76e+03 1.35e+05 2.50e+04 4.92e+04 1.53e+04 1.29e+05 2.04e+04 =

19 9.07e+04 1.66e+03 3.96e+05 7.22e+04 3.94e+04 3.71e+03 9.05e+04 1.91e+04 +

20 2.36e+02 8.28e+01 4.49e+02 6.49e+01 1.99e+02 7.83e+01 3.49e+02 5.84e+01 +

21 2.66e+02 1.02e+02 3.07e+02 2.35e+01 2.44e+02 1.00e+02 2.65e+02 2.20e+01 +

22 1.00e+02 1.00e+02 1.00e+02 0.00e+00 1.00e+02 1.00e+02 1.00e+02 0.00e+00 =

23 4.66e+02 1.00e+02 6.01e+02 3.89e+01 4.45e+02 3.92e+02 4.95e+02 2.15e+01 +

24 6.46e+02 4.84e+02 9.70e+02 1.09e+02 5.12e+02 4.48e+02 5.52e+02 1.89e+01 +

25 3.99e+02 3.81e+02 4.65e+02 1.28e+01 3.87e+02 3.84e+02 3.90e+02 1.08e+00 +

26 1.19e+03 2.00e+02 2.42e+03 8.78e+02 1.14e+03 2.00e+02 2.31e+03 7.70e+02 =

27 5.78e+02 4.97e+02 8.65e+02 9.63e+01 5.51e+02 5.24e+02 5.96e+02 1.47e+01 +

28 3.54e+02 3.00e+02 4.58e+02 5.00e+01 3.11e+02 3.00e+02 4.07e+02 3.04e+01 +

29 7.21e+02 3.86e+02 1.27e+03 1.44e+02 6.70e+02 4.60e+02 9.25e+02 7.83e+01 =

30 1.83e+05 4.48e+02 1.18e+06 1.97e+05 1.48e+05 2.88e+04 4.99e+05 8.31e+04 +

won:1 lost:19 draw:10 won:19 lost:1 draw:10

It is not hard to observe the following relationship:

a, b, c > 0 (37)

a > b

a > c

Then it is pretty obvious that sd(σ) ≥ 0. This proves the fact

that:

d2f

dλ2
≥ 0 (38)

This second order derivative becomes 0 only when σ = 0
and is always positive when σ > 0. This directly proves the

convexity of f , and the other part of I can follow a similar

proof and lead to the same conclusion. Since I is a positive

combination of two convex terms, it is also convex, which

then leads to the conclusion of proposition 1. This proof

indicates that EDFWA can take advantage more information

than GFWA, and thus can lead to better performance.

Algorithm 5: Exponentially Decaying Fireworks Al-

gorithm

Input : µ, f, U0, P0, A0,M0, γ, σ
Output: Optimal solution

Initialize µ fireworks randomly within the search space

while termination condition not met do

for Fireworksi in Fireworks do
Conduct local search according to algorithm 4

Conduct global coordination according to

algorithm 3
end

end

IV. EXPERIMENTS

A. Benchmark Functions

To test the performance of EDFWA, we adopted two

benchmark suites to evaluate different aspects of EDFWA.

The first benchmark suite is CEC2017 benchmark for bounded

real parameter optimization, where the problems dimension
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TABLE II
COMPARING EDFWA WITH THREE STRONG BASELINES SPECIALLY DESIGNED FOR LARGE-SCALE OPTIMIZATIONS AND GFWA ON CEC2013

LARGE-SCALE

FuncId MPS DECC-G CC-CMA-ES GFWA EDFWA

1 6.68e+08 0.00e+00 0.00e+00 5.95e+07 2.35e+07

2 4.20e+03 1.31e+03 1.37e+03 1.59e+04 1.26e+04

3 1.94e+00 1.09e+00 0.00e+00 2.03e+01 2.08e+01

4 1.07e+11 2.16e+11 2.82e+09 8.31e+11 2.52e+10

5 1.20e+06 8.30e+06 7.28e+14 8.22e+06 6.46e+06

6 6.01e+03 1.74e+05 4.56e+05 1.00e+06 1.00e+06

7 7.19e+07 1.02e+09 2.26e+06 3.21e+13 4.10e+06

8 2.04e+14 6.94e+15 3.32e+14 1.08e+14 6.52e+13

9 1.66e+08 5.47e+08 3.82e+08 8.53e+08 7.36e+08

10 3.53e+06 2.43e+07 4.51e+06 9.08e+07 9.08e+07

11 2.20e+09 1.21e+11 1.24e+08 2.04e+15 6.37e+08

12 1.75e+04 4.53e+03 1.33e+03 1.47e+12 1.31e+03

13 9.87e+08 9.40e+09 1.80e+09 2.99e+15 5.83e+07

14 1.03e+09 1.36e+11 3.58e+08 2.32e+15 3.17e+08

15 2.76e+07 1.17e+07 3.13e+07 2.19e+12 5.93e+06

AR 2.60 3.07 2.27 4.53 2.47

is 30. This benchmark is used to show that our proposed

method outperforms the state-of-the-art FWA variant LoTFWA

(which is GFWA with loser-out tournament mechanism). The

second benchmark suite is CEC2013 large-scale optimization

benchmark, which is used to show that our proposed algo-

rithm is very competitive on high-dimensional large scale

problems even without additional mechanisms like cooperative

co-evolution. In this benchmark, the problems are very large-

scale and has 1000 dimensions to be optimized.

B. Parameter Settings

For FWA variants, is has been shown that two coefficient of

dynamic amplitude namely Cr, Ca are set to Cr = 0.9, Ca =
1.2 respectively. We also choose to follow this convention.

Other parameters that arise in FWA variants are the firework

number µ, the spark number λ and the guided mutation ratio

σ. For LoTFWA, these values are set to be µ = 5, λ = 60, σ =
0.2, A = (UpperBound − LowerBound)/2 as described in

[17]. Note that the setting of λ can be different between

fireworks, we initialized all λs to be the same since we do

note consider more complex spark assignment strategies in

this paper.

In the case of EDFWA, we discarded parameter λ in favor

of two new parameters λ0 and γ because the number of sparks

for each firework can’t be set in advance, as our exponentially

decaying explosion will generate a series of sparks and the

spark number is the sum of a geometric progression which is

determined by the initial number of explosion sparks λ0 and

the decaying factor γ. Several different combinations of λ0
and γ are compared, and we find that setting µ = 3, λ0 =
30, γ = 0.75 yields the best results in the case of CEC2017.

C. Results

The experiments platform is Ubuntu 18.04 with Intel(R)

Xeon(R) CPU E5-2675 v3. For the CEC2017 benchmark, we

ran 51 times repeatedly for each function of dimension 30

with a maximum evaluation number of 300000. For CEC2013

Large-Scale benchmark, we ran 25 times for each function

of dimension 1000 with a maximum evaluation numebr of

3000000. These settings are standard experimental settings for

those benchmarks.

Wilcoxon rank-sum tests are conducted on CEC2017 results

to verify the performance gain of EDFWA compared to LoT-

FWA on CEC2017 benchmark suite. We consider a confidence

level of 95% to be of significance. Results from I indicates that

EDFWA outperforms LoTFWA and only lost on 1 problem.

In large-scale benchmark, the story is more complicated. We

chose 4 algorithms as competitors to test how EDFWA per-

forms on larger-scale problems. MPS is Minimum Population

Search algorithm which is a recently developed metaheuristic

specifically designed to optimize high dimensional multi-

modal functions. DECC-G is a variant from the differen-

tial evolution family with JADE and cooperative coevolution

mechanism that can serve as a strong baseline from the

DE family. CC-CMA-ES is a CMA-ES variant coupled with

cooperative coevolution which aims to scale CMA-ES to large-

scale problems. The last algorithm for comparison is GFWA

which is used to test how much improvement is made due

to our proposed method. It can be seen from Table II that

the average ranking of EDFWA is 2.47, which is just slightly

worse than CC-CMA-ES, making EDFWA the second best

algorithm.

EDFWA as an algorithm without any special mechanism for

large-scale optimization exihibited very strong performance

compared to those specially designed ones. Except the first 3

fully separable functions where dimension variable grouping

can yield huge performance gain, EDFWA performs better

or close to other competitors. On the last 4 functions where

the relationship between dimensions is hard to decode or the
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problem is fully non-separable, EDFWA showed dominating

performance. In comparison with GFWA, it is surprising for

us to observe a large performance jump. On several functions,

EDFWA outperforms GFWA by orders of magnitude, which

indicates that our proposed method is very effective under

large-scale high dimensional situations.

Overall, our theoretical and experimental results suggest that

exponentially decaying explosion can greatly enhance the local

search ability of fireworks algorithm, especially in large-scale

high dimensional situations. There are still many future works

to be done to further push the boundary of fireworks algorithm,

such as integrating EDFWA with cooperative co-evolution

mechanisms, and designing more efficient global coordination

strategies.

V. CONCLUSION

In this paper, an exponentially decaying explosion fireworks

algorithm is proposed. Its information utilization ratio was

theoretically analysed and the result showed that EDFWA can

make better use of information than GFWA. Its performance

was tested against LoTFWA on the CEC2017 benchmark,

where EDFWA showed significant advantage. Then EDFWA is

compared on the CEC2013 large-scale benchmark suite against

three representative algorithms specially designed for high

dimensional optimization and GFWA. Experimental results

indicated that even without any mechanism specially designed

for high dimensional scenarios, EDFWA is very competitive

against those specialized optimizers from different families.

It can even outperform GFWA with orders of magnitude

improvement. We expect future variants of FWA to utilize

this new mechanism and be able to solve a larger range of

problems.
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