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Abstract. Multi-task learning has shown promising results in many
applications of machine learning: given several related tasks, it aims
to generalize better on the original tasks, by leveraging the knowledge
among tasks. The knowledge transfer mainly depends on task relation-
ships. Most of existing multi-task learning methods guide learning pro-
cesses based on predefined task relationships. However, the associated
relationships have not been fully exploited in these methods. Replacing
predefined task relationships with the adaptively learned ones may lead
to superior performance as it can avoid the misguiding of improper pre-
definition. Therefore, in this paper, we propose Task Relation Attention
Networks to adaptively model the task relationships and dynamically
control the positive and negative knowledge transfer for different sam-
ples in multi-task learning. To evaluate the effectiveness of the proposed
method, experiments on various datasets are conducted. The experimen-
tal results demonstrate that the proposed method outperforms both clas-
sical and state-of-the-art multi-task learning baselines.

Keywords: Representation learning · Multi-task learning · Knowledge
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1 Introduction

Multi-task learning (MTL) aims to generalize better on the original tasks, by
leveraging the shared knowledge among tasks [15]. In MTL, positive knowledge
transfer leads to improved performance, because: 1) more related information
is incorporated into the target tasks, which benefits the feature learning pro-
cess to obtain better feature representations; 2) the incorporated information
of positively related tasks acts as regularizer to avoid the risks of over-fitting.
The knowledge transformer mainly depends on the task relationships. Therefore,
how to appropriately model task relationships and how to control the knowledge
transfer among tasks are crucial in MTL.
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With the recent advances in deep learning, MTL with deep neural networks
has been used widely and successfully across many applications of machine learn-
ing, from natural language processing [7] to computer vision [11]. In most of these
existing methods, the task relationships guiding the learning process are gener-
ally predefined, and the knowledge transfer among tasks relies on the sharing of
hidden layers. Despite they have achieved promising results, but there are still
several challenges for further improving the performance of MTL methods.

The first challenge is adaptively learning the task relationships instead of
relying on predefined relationships. For some multi-task learning problems with
complex task associations, the pre-definition based on limited human knowledge
requires costly human efforts. Besides, if there are not adequate efforts for sophis-
ticated pre-definitions, there is likely to be negative knowledge transfer because
of the misguiding of improperly predefined task relationships [8,16]. Since an
improper pre-definition of task relationships may result in negative knowledge
transfer, it is essential for MTL methods to adaptively and appropriately model
the task relationships with learning-based modules.

The second challenge is controlling the knowledge transfer with the dynami-
cally learned task relationships instead of the fixed ones. The relationships among
tasks are not constantly fixed, but vary slightly from different samples. However,
in most of the methods relying on pre-definition, the task relationships are fixed
[9], even in some MTL methods equipped with adaptively learning modules [14].
A concrete example is, in the works of [21], the task relationships are deter-
mined by the inputs X and outputs Y of training data. In the testing phase, the
model directly performs predictions on the learned relationships and the inputs
Xtest, i.e., the relationships are fixed for the testing data. However, the task
relationships in different samples may not be necessarily consistent. Therefore,
dynamically modeling these relationships based on different inputs may lead to
superior performance.

To address these challenges, in this paper, we propose Task Relation Atten-
tion Networks (TRAN) to adaptively capture the task relationships and dynami-
cally control the knowledge transfer in MTL. Specifically, TRAN is an attention-
based model to adaptively capture the task relationships via task correlation
matrix according to their inputs and specify the shared feature representations
for different tasks. Since the task relationships are adaptively learned by TRAN
during the learning process, it is replacing the predefined relationships. And
TRAN relies on the inputs, therefore, it can dynamically model the correlations
for different samples.

To evaluate the effectiveness of the proposed method, the experiments on
various datasets are conducted. The experimental results demonstrate the pro-
posed method can outperform both classical and state-of-the-art MTL baselines.
The contributions of this paper can be summarized as follows:

– This paper proposes Task Relation Attention Networks (TRAN) to adaptively
learn the task relationships to replace the predefined ones.

– The proposed method can dynamically control the knowledge transfer in
multi-task learning based on the adaptively learned task relationships.
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– This paper provides an explicable learning-based framework for multi-task
learning to learn the shared feature representations for different tasks.

2 Related Works

2.1 Multi-task Learning

Multi-task Learning (MTL) provides an efficient framework for leveraging task
relationships to achieve knowledge transfer and leads to improved performance.

The typical MTL architectures were sharing the bottom layers for all tasks
and split top layers for different tasks, proposed by [3]. Afterwards, there have
been some attempts to design partly shared architectures between tasks, instead
of only sharing the bottom hidden layers. For leveraging the task relationships
in MTL, there are some recent examples. The cross-stitch networks [14] learned
an optimal combination of task-specific representations for each task using linear
units. The tensor factorization model [20] generated the hidden layer parameters
for each task. The multi-gate mixture-of-experts model [13] using gating mecha-
nism to capture the task differences and implicitly model the task relationships.
In the works of [21], they applied attention networks to statically capture the
task relationships.

Compared to the typical MTL methods, these works performed better fea-
ture learning for shared and task-specific representations and achieved better
performance. However, there are still some limitations: the method of [14] can
hardly expand to a large number of tasks; the method of [20] relies on a specific
application scenario; the method of [13] applies linear gates to implicitly model
the task relationships and performs poor efficiency as the number of experts
increases; the method of [21] captures the task relationships statically.

2.2 Attention-Based Neural Networks

The key idea of attention mechanism is mainly based on the human visual atten-
tion, which has been successfully applied in various applications, such as natural
machine translation [12] and text summarization [1].

Graph attention networks [18] was proposed for feature learning of graph-
structured data, based on the self-attention mechanism. [10] applied the self-
attention networks for time series warping. [17] performed self-attention on sen-
tence encoding models, called Transformer, dispensing with recurrence and con-
volutions entirely [17]. Based on the Transformer, a language representation
model called BERT was proposed [5]. In this paper, we attempt to adaptively
model the task relationships in MTL with self-attention networks. Based on the
learned relationships, the knowledge transfer among tasks can be dynamically
controlled and each task can obtain a better shared feature representation, lead-
ing the MTL method to better performance.
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3 Method

3.1 Problem Statement for Multi-task Learning

Given a single task, which can be regression or classification, the formal definition
is as follows:

Ŷ = M(X) ≈ E (Y |X) , (1)

where X represents the inputs, Y represents the ground truth values, Ŷ is the
predicted values, E(·) is the mathematical expectation and M(·) is the model.

In MTL, assuming that there are K tasks, the problem can be described as
follows: (

Ŷ1, Ŷ2, ..., ŶK

)
= MTL (X1,X2, ...,XK)

≈ E (Y1,Y2, ...,YK |X1,X2, ...,XK) ,
(2)

where MTL(·) is the multi-task learning method, Xi,Yi, Ŷi are respectively the
inputs, labels and predictions of each task. In some real-world scenarios, the
inputs of different tasks can be the same, i.e., X1,X2, ...,XK = Xs.

3.2 Task Relation Attention Networks

We apply attention networks to model the task relationships to help shared
feature learning, called Task Relation Attention Networks (TRAN). Given K
tasks, the inputs are a set of task features, X = {X1,X2, ...,XK},Xi ∈ Rn, n
is the dimensionality of features.

Given task i and j, there is a shared attention network at measuring the
attention correlations eij between two tasks, processed as follows:

eij = at(WiXi||WjXj), i, j = 1, 2, ...,K, (3)

where Wi ∈ Rn×d and Wj ∈ Rn×d represent the encoding networks, modeling
the original inputs into high-level latent representations with the dimensionality
of d, and || is the concatenation operation.

The attention weights for task i are normalized by softmax function to obtain
the associated relationships between other tasks and task i, (αi1,αi2, ...,αiK),
processed as:

αij = softmaxi(eij) =
exp(eij)∑K
k=1 exp(eik)

, j = 1, 2, ...,K. (4)

The attention networks at are implemented with fully-connected neural net-
works with the activation function of LeakyReLU. And the learning process of
attention networks can be described as:

αij =
exp [at(WiXi||WjXj)]∑K

k=1 exp [at(WiXi||WkXk)]
. (5)
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The learned attention weights for target task i reflect the correlations between
other tasks and task i. And all attention weights compose the task correlation
matrix A.

Ai = (αi1,αi2, . . . ,αiK) , i = 1, 2, . . . ,K,

A = (A1,A2, . . . ,AK)T .
(6)

The task-specific representations for task i is si, the combination of all task
latent representations with their attention weights for task i, as follows:

si = Ai (W1X1,W2X2, . . . ,WKXK)T

=
K∑
j=1

αijWjXj , i = 1, 2, . . . ,K.
(7)

We perform multi-head attention mechanism on TRAN, which allows H
independent attention networks to learn the attention weights in parallel and
applies linear transformation WH = (w1, . . . ,wH) to combine them. The final
task-specific representation for task i is processed as follows:

si = WH(A1
i , . . . ,A

H
i )T (W1X1, . . . ,WKXK)T

=
H∑

h=1

K∑
j=1

whαh
ijWjXj , i = 1, 2, . . . ,K.

(8)

The illustration of feature learning is presented in Fig. 1.

Fig. 1. Illustration of the feature learning with Task Relation Attention Networks.

3.3 Prediction Layer

For multi-task prediction, each task is equipped with a feed-forward sub-layer to
convert the final task-specific representations to the predicted values. Each feed-
forward sub-layer consists of two layers: the first one W e

i is a fully-connected
neural network with ReLU activation and skip-connection for embedding the
final representations; the second one W p

i is a linear transformation for prediction.
The formal equation is described as:
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– For regression tasks,
Ŷi = W p

i (W e
i si + si) . (9)

– For classification tasks,

Ŷi = softmax (W p
i (W e

i si + si)) . (10)

3.4 Objective Function

For multi-task learning, all tasks are jointly trained by optimizing a joint
loss function Ljoint. Given the inputs X = {X1,X2, . . . ,XK} and labels
Y = {Y1,Y2, . . . ,YK}, the joint loss function is defined as:

Ljoint(X,Y ) =
K∑
i=1

λiLi(Xi,Yi) + βW ||W ||2F + βA||A − I||2F , (11)

where the first item is the combination of the task-specific losses Lj with their
loss weights λj ; the second item is the regularization for all the trainable param-
eters W ; the third item is the regularization for the learned attention correlation
matrix A to ensure the auto-correlations of tasks. For each task, the task-specific
loss is defined as:

– Mean squared error (MSE) for regression tasks,

Li(Xi,Yi) = MSE(Ŷi,Yi). (12)

– Cross entropy for classification tasks,

Li(Xi,Yi) = CrossEntropy(Ŷi,Yi). (13)

4 Experiments

4.1 Dataset

The performance of the proposed method is evaluated on three datasets: Census-
income dataset, FashionMnist dataset and Sarcos dataset.

– Census-income dataset: The Census-income dataset is from UCI Machine
Learning Repository [2]. It is extracted from the 1994 Census database, which
contains 299,285 instances of demographic information for American adults.
We construct two multi-task learning problems based on 40 features.

• Task 1: predict whether the income exceeds $50K;
Task 2: predict whether this person is never married.

• Task 1: predict whether the education level of this person is at least
college;
Task 2: predict whether this person is never married.
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– FashionMnist dataset: The samples in FashionMnist are 28 × 28 grayscale
images with 10-class labels [19], similar to Mnist. We construct a multi-task
learning problem: Task 1 is the original 10-class classification task; Task 2 is
predict if the objects are shoes, or female products, or another type. All task
shares the same inputs.

– Sarcos dataset: This is a regression dataset [4] where the goal is to predict
the torque measured at each joint of a 7 degrees-of-freedom robotic arm,
given the current state, velocity, and acceleration measured at each joint (7
torques for 21-dimensional inputs). Following the procedure of [4], we have 7
regression tasks, where each task is to predict one torque.

4.2 Baselines

The baseline methods to be compared with are as follows:

– LASSO: This is the classic linear method, learning each task independently
with L1-norm regularization.

– Bayesian: Another linear method, learning each task independently with
Bayesian inference.

– Neural Networks (NN): For regression tasks and general classification
tasks, we apply fully-connected neural networks with one hidden layer. For
image classification, we apply single-layer convolutional neural networks.

– Shared-bottom MTL: This is a typical MTL method, where all tasks
share the bottom hidden layers and have top sub-layers for prediction. In
this method, the task relationships are predefined and fixed.

– L2-Constrained MTL: This is a classical MTL method [6], where the
parameters of different tasks are shared softly by an L2-constraint. Given
two tasks, the prediction of each task can be described as:

Ŷ1 = f(X1, θ1), Ŷ2 = f(X2, θ2), (14)

where θ1, θ2 are the parameters of each task. And the objective function of
multi-task learning is:

L1

(
Y1, Ŷ1

)
+ L2

(
Y2, Ŷ2

)
+ α||θ1 − θ2||22, (15)

where α is a hyper-parameter. This method models the task relationships
with the magnitude of α.

– Cross-stitch Networks (CSN): This is a deep learning based MTL method
[14]. The knowledge is shared between tasks by a linear units, call cross-stitch.
Given two tasks, h1 and h2 are the outputs of previous hidden layers of each
task, and the outputs of cross-stitch are described as:

[
h̃1

h̃2

]
=

[
α11 α12

α21 α22

] [
h1

h2

]
, (16)

where αij , i, j = 1, 2 are trainable linear parameters representing the knowl-
edge transfer.
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– Multi-gate Mixture-of-Experts (MMoE): It adopts the multi-gate
mixture-of-experts structure to MTL [13]. In this method, there is a group
of expert networks as the bottom layers, and the top task-specific layers can
utilize the experts differently with gating mechanism.

– Multiple Relational Attention Networks (MRAN): It was recently
proposed [21], applying attention networks to model multiple types of rela-
tionships in MTL. However, the task relationships in this method are stati-
cally modeled. The relationships are determined in the training phase, and in
the testing phase, the relationships are fixed. Our method is able to dynami-
cally capture the task relationships, and we will discuss about the differences
between this method and ours.

4.3 Performance Comparison

The proposed method is Task Relation Attention Networks (TRAN), and MH-
TRAN means it is equipped with multi-head mechanism. Note that, because the
code and some datasets of baseline MRAN are not released yet, we only compare
its performance in the available Sarcos dataset, which is reported in their paper.

Overall Comparison. The performance comparison on Census-income, Fash-
ionMnist and Sarcos datasets are presented in Table 1, 2 and 3 respectively.
From all the tables, we can observe that both TRAN and MH-TRAN outper-
form other methods on all tasks, and MH-TRAN outperforms TRAN on most
tasks. The average relative improvements of MH-TRAN in all tasks are 4.68%
(L2-Norm), 5.78% (CSN) and 2.45% (MMoE) for Census-income dataset, 2.94%
(L2-Norm), 1.68% (CSN) and 2.85% (MMoE) for FashionMnist dataset and
67.95% (L2-Norm), 55.09% (CSN), 40.50% (MMoE) and 25.29% (MRAN) for
Sarcos dataset.

ComparisonBetweenDifferentMTLMethods. Compare with TRAN, both
CSN and MMoE are based on linear models, and MMoE model task relationships
implicitly, while our method is based on attention networks to explicitly model
task relationships. The fact that TRAN outperforms CSN and MMoE, indicating
the advantages of our method. Besides, compared with statically modeling task
relationships (MRAN), TRAN is able to dynamically control the knowledge trans-
fer, and the fact that TRAN outperforms MRAN demonstrates the effectiveness
of this key component. Although MRAN includes different types of relationships,
our method still outperforms it with the relative improvements of 25.29%.

4.4 Analysis for Key Components

Task Relationships and Knowledge Transfer. We illustrate the task cor-
relations learned by TRAN in Fig. 2.

In overall, all tasks are strongly correlated to themselves. And for different
target tasks, the contributions of the other tasks vary a lot, e.g., the relationships
in Sarcos dataset in Fig. 2(c). We can observe the differences between traditional
methods and TRAN. In traditional methods, the task correlations are predefined
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and equal for each task, however, TRAN captures their differences. In Sarcos
dataset, for task 7, the contribution of task 1 is apparently less than the others. If
the method relies on the pre-definition of equal task correlations, there may exist
negative knowledge transfer hurting the performance. From the performance
comparison, we can observe that TRAN outperforms the traditional methods
with pre-definition, which demonstrates the effectiveness of adaptively capturing
the task correlations.

Table 1. Performance comparison on the Census-income dataset in terms of AUC.

Method AUC/Census-income dataset

Income Marital Education Marital

LASSO 0.8849 0.9367 0.7695 0.9367

Bayesian 0.9267 0.8604 0.8209 0.8718

NN 0.8904 0.9387 0.8179 0.8841

Shared-bottom 0.8997 0.9379 0.8201 0.8973

L2-Norm 0.8967 0.9398 0.8174 0.9366

CSN 0.8913 0.9401 0.8219 0.8996

MMoE 0.9298 0.9523 0.8444 0.9422

TRAN 0.9412 0.9693 0.8566 0.9792

MH-TRAN 0.9501 0.9721 0.8613 0.9789

Table 2. Performance comparison on the FashionMnist dataset in terms of accuracy.

Method Accuracy/FashionMnist

10-class 3-class

LASSO 0.8691 0.8879

Bayesian 0.8698 0.8981

NN 0.9032 0.9103

Shared-bottom 0.9044 0.9182

L2-Norm 0.9031 0.9173

CSN 0.9107 0.9324

MMoE 0.9079 0.9142

TRAN 0.9180 0.9497

MH-TRAN 0.9207 0.9533

For Census-income dataset, we have two multi-task learning problems, and
marital task appears in both group I and II accompanied with different tasks.
As the performance comparison in Table 1, marital task of TRAN in group II
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performs better than the one in group I. And from the illustration, we can
observe that the task correlations in group II are stronger than the correlations
in group I. This indicates there are more positive knowledge transfer in group
II, which contributes to the improved performance.

In order to verify our observation, we assess the practical strengths of task
relationships in group I and II, because in general, stronger task correlations
imply that there are more positive knowledge transfer. According to the works
of [13], the Pearson correlations of the labels of different tasks can be used as the
quantitative indicator of task relationships, because the Pearson correlations of
labels are positively correlated to the strength of task relationships. The Pearson
correlation in group I is 0.1784, and the one in group II is 0.2396. This indicates
that there is supposed to be more positive knowledge transfer in group II, cor-
responding to our observation. This demonstrates that TRAN does capture the
practical task correlations and control the positive knowledge transfer to help
improve the performance.

Dynamically Control the Knowledge Transfer. The task relationships
are not fixed, but vary slightly from different samples. We aim to dynamically
capture the task relationships from different samples using TRAN.

We randomly select 8 samples from the testing samples of Sacros dataset, and
provide an illustration of their dynamically learned task correlations in Fig. 3.
From the correlations, we can observe that there is a slight variety in the task
relationships in different samples. This demonstrate that TRAN does capture the
dynamic task relationships, and the performance comparison in Table 1, 2 and
3 indicates TRAN controls the knowledge transfer to improve the performance
using the dynamically learned relationships.

Table 3. Performance comparison on the Sarcos dataset in terms of RMSE.

Method RMSE/Sarcos dataset

T1 T2 T3 T4 T5 T6 T7

LASSO 5.848 5.159 3.153 3.501 0.410 0.952 0.733

Bayesian 5.576 4.763 3.014 3.119 0.366 0.910 0.661

NN 5.534 4.936 3.002 3.375 0.393 0.919 0.704

S-bottom 4.476 4.396 2.172 3.184 0.396 0.873 0.724

L2-Norm 4.773 4.507 2.255 3.254 0.382 1.110 0.721

CSN 3.774 3.456 1.749 1.885 0.315 0.553 0.403

MMoE 3.094 2.329 1.328 1.335 0.284 0.431 0.358

MRAN 2.879 1.895 1.041 0.829 0.154 0.261 0.236

TRAN 1.955 1.388 0.833 0.798 0.132 0.242 0.214

MH-TRAN 1.937 1.371 0.793 0.771 0.122 0.245 0.212
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(a) Census-income (two groups). (b) FashionMnist.

(c) Sarcos dataset.

Fig. 2. Illustration of the task correlations learned by TRAN.

Fig. 3. Illustration of the dynamic task relationships on the Sarcos dataset. We ran-
domly select 8 samples from the testing dataset and visualize their attention correlation
matrices.

5 Conclusion

In this paper, we propose Task Relation Attention Networks to adaptively cap-
ture the task relationships, replacing the pre-defined ones in traditional MTL
methods. Based on the learned relationships, the positive and negative knowl-
edge transfer can be dynamically balanced in different samples. As a result,
a better task-specific representation is obtained and leads to improved perfor-
mance. In addition, the learned correlation matrix presents the dynamic transfer
pattern, making the MTL method more explicable. To evaluate its performance,
we conduct experiments on various datasets, including regression and classifi-
cation tasks. Both classical and state-of-the-art MTL methods are employed to
provide benchmarks. The experimental results and analyses demonstrate the
effectiveness of our method, and its advantages over other methods.
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