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Abstract—Fireworks Algorithm (FWA) is a special swarm
intelligent optimization algorithm, which controls multiple sub-
groups of the population to search collaboratively. Instead of
assigning fireworks to different local areas, we propose the multi-
scale collaborative firework algorithm (MSCFWA) which helps
fireworks to search at coordinated scales. Since the collaboration
of search scales is accomplished by restarting or adjusting
fireworks whose local search are not making meaningful progress,
fireworks in MSCFWA are able to exploit different local areas
independently or cooperate in the same local area with different
search scales. Experimental results show that the proposed
strategy stably improved the overall optimization performance of
fireworks algorithm on the benchmark functions of the CEC’13
competition significantly. It also shows outstanding efficiency
compared with typical swarm intelligence optimization algo-
rithms and evolutionary algorithms.

Index Terms—Fireworks Algorithm, Multi-modal Optimiza-
tion, Swarm Intelligence, Evolutionary Algorithm, Multi-Scale
Optimization

I. INTRODUCTION

The black-box optimization problem is an important and dif-
ficult research direction. Mathematical methods (like Gradient-
Descent and Bayes Optimization [1]) can solve problems with
convex or simple objective function with extra information
(gradient or objective prior). But they usually failed to be
adapted for multi-modal problems with high dimensions.
Based on inspiration from natural phenomenons, many evo-
lutionary algorithms (EAs, like GA [2], ES [3]) and swarm
intelligent optimization algorithms (SIOAs, like PSO [4], ACO
[5]) are proposed. They are able to obtain a relatively good
result by controlling a group of agents searching in the feasible
space with balanced exploitation and exploration.

The fireworks algorithm (FWA) is a new SIOA proposed in
2010 [6], inspired by the phenomenon of fireworks’ explosion.
Its efficiency has been proven in numerous real-world applica-
tions and has been continuously improved in recent years. The
core features of fireworks algorithm compared with other EAs
and SIOAs are the grouped local searches and their interaction.
During the optimization, each firework maintains a basic
independent local search by simply generating concentrated
sparks around itself. While the global optimization efficiency
is guaranteed by suitable coordination methods and resource
(sparks) allocation strategies. For example, the original FWA
was built on an intuitive idea that fireworks with better fitness

generate more sparks in a closer range for exploitation, while
fireworks with worse fitness generate sparks in a boarder range
for exploration.

However, collaboration strategies have not achieved yet
ideal optimization efficiency. Instead, some variants of FWA
with more independent fireworks showed more significant
performance because they have better exploitation ability in
local search. An important reason is that almost all the
implementations of FWA consider fireworks to be searching in
different areas, which caused difficulties in their collaboration.
On the one hand, the effect of collaboration must compensate
for the loss of efficiency caused by resource dispersion. Be-
cause only a small part of individuals in each generation can be
directly used for searching near the current optimal location.
On the other hand, there is little information that fireworks
could share, because different regions can have completely
different characteristics in complex objective functions.

Therefore, we propose the multi-scale collaborative firework
algorithm. Instead of assigning each firework to search a local
area independently, we accurately restart or adjust fireworks
with insufficient potential and make different fireworks tends
to collaborate on searches at different scales. In this way,
fireworks can explore different local areas by themselves or ex-
ploit the same one cooperatively. Both the global optimization
ability and the local optimization efficiency can be enhanced.

In the following sections, we first introduce the background
of fireworks algorithm in Section II including the principle
of FWA, LoTFWA which is the foundation of the proposed
algorithm and some other related works. The proposed strategy
of multi-scale collaborative fireworks algorithm is described in
Section III, we also provide a detailed analysis and discussion
of the proposed strategy. Then, the proposed algorithm is
compared with other optimization algorithms on benchmark
functions from CEC 2013 test suite in Section IV. Finally, we
discuss and analyze the proposed method in Section V and
conclude the work in Section VI.

II. BACKGROUND

A. Principle of Fireworks Algorithm

Fireworks algorithms (FWA) are inspired by the explosion
phenomenon of real-world fireworks. In the night sky, each
firework explodes and emits a group of sparks to illuminate

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Peking University. Downloaded on November 03,2020 at 09:33:50 UTC from IEEE Xplore.  Restrictions apply. 



a local area. Then the whole sky can be lit up with sufficient
fireworks. Based on the observation of this phenomenon,
fireworks algorithm is designed based on the following two
main ideas:

• Local Search by Explosion. The optimization of FWA
is divided into several local searches, each centered on
a firework. The local areas are explored by a simple
operator called explosion, in which a certain number
of individuals called sparks are generated around the
firework.

• Global Coordination of Local Searches. The specific
parameters of local searches are determined by global
coordination. Usually, the range size of local search
and the number of allocated sparks are the core of
collaboration.

Algorithm 1 gives a basic description of FWA’s framework.

Algorithm 1 Framework of Fireworks Algorithm
Initialize N fireworks XN randomly in the search space.
while termination conditions are not satisfied do

decide spark number λi and explosion amplitude Ai for
each firework
for each firework Xi do

generate λi spark around it within amplitude Ai

end for
select N fireworks for next generation from current
population

end while

The essential feature of FWA is the collaboration method
among several isomorphic subgroups that are able to search
independently, which is rarely considered in other swarm in-
telligence optimization algorithms or evolutionary algorithms.
The local optimization method in FWA is extremely simple
compared with most swarm-based optimization algorithm. In
most variants of FWA, the explosion operator simply generates
sparks uniformly within a certain range around the firework.

B. Loser-out Tournament based Fireworks Algorithm

Loser-out Fireworks Algorithm is proposed in 2017 [7].
Compared with other variants of FWA, it has extremely out-
standing global optimization performance while maintaining
high simplicity. During the optimization of LoTFWA, each
firework conducts dynamic local search independently and
the communication only happens in the competition strategy
called loser-out tournament, in which some bad fireworks are
restarted in time so the overall optimization efficiency can be
improved.

For each firework, the explosion amplitude Ai is decided
by the dynamic amplitude strategy from dynFWA [8], which
expand or shrink the explosion ranges according to whether
the firework is improved or not. A guiding spark Gi is also
generated in the direction improving the firework with a
high probability according to the strategy from GFWA [9].
Both methods have been analyzed and proved to be effective
for local optimization. The spark number of each firework

λi is decided by the rank of their fitness values. However,
according to experimental results, when all the fireworks get
the same number of sparks, the algorithm achieved the best
overall performance. The local search process is described in
Algorithm 2.

Algorithm 2 Local Search in LoTFWA
for j = 0→ λi do

compute random bias η ∼ U([−1, 1]dim)
get one explosion spark Sij = Xg

i +Ai × η
end for
evaluate f(Sij)
compute guiding spark Gi and f(Gi)
Xg+1

i = argmin{f(Xg
i ), f(Sij), f(Gi)}

The global coordination strategy stops and randomly restarts
local searches with insufficient potential. In this way, LoTFWA
avoids wasting excessive resources on some fireworks and
improves the overall efficiency. The loser-out tournament
strategy estimates the potential of an improved firework as
if it would have the same amount of improvement in every
subsequent generation, which is quite tolerant so valuable
local areas will hardly be abandoned mistakenly. The loser-
out tournament strategy is described in Algorithm 3.

Algorithm 3 Loser-out Tournament Strategy
for each firework Xi do

if f(Xg
i ) < f(Xg−1

i ) then
compute improvement Ii = f(Xg−1

i )− f(Xg
i )

if Ii × (gmax − g) < f(Xg
i )−minj f(X

g
j ) then

restart Xi at random location
re-initialize Ai

end if
end if

end for

Here, gmax is the max number of generations. f is the
objective function. LoTFWA has been proved to be highly
effective and fundamental, so it is used as the basis of the
proposed algorithm.

C. Related Works

The idea of letting different fireworks search on different
scales was reflected in the principle idea of the original fire-
works algorithm [6], in which fireworks’ optimization scales
(amplitudes) are linearly related to their fitness values. All the
classic variants of FWA like the enhanced fireworks algorithm
(EFWA [10]), the dynamic fireworks algorithm (dynFWA
[8]) and dynFWA with exponentially decreased dimension
(eddynFWA [11]) applied similar strategies but they are later
proved not effective by the bare-bone fireworks algorithm
(BBFWA [12]).

In the adaptive fireworks algorithm (AFWA [13]), ampli-
tudes are decided by the information of the local sparks’
location. Some recent variants of FWA like [14] and [15]
proposed more complex but flexible explosion mechanisms,
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which are also able to adapt the search scale according to the
local characteristics of the objective function. However, they
did not study the collaboration on search scales.

A cooperative framework of fireworks algorithm (CoFFWA
[16]) and the loser-out tournament fireworks algorithm (LoT-
FWA [7]) are specially designed to enhance the collaboration
between fireworks. A few algorithms based on LoTFWA like
[17] are also published recently. However, all those variants
focus on avoiding multiple fireworks searching in the same
local area, which is quite different from the idea of the
proposed method.

The multi-scale method in general optimization algorithms
usually refers to methods making different levels of smooth
approximation of the objective functions (A better term for it
would be multi-fidelity method). A great number of algorithms
are built or improved based on this idea. FWA can be explained
as a more flexible way of multi-scale optimization because
each local optimization has its own search scale, that is, the
explosion amplitude. To our knowledge, there is no published
algorithm that groups the population and decides their search
scales collaboratively as our proposed method does.

III. PROPOSED METHOD

A. Multi-Scale Collaborative Fireworks Algorithm

The loser-out tournament strategy greatly strengthens FWA’s
global exploration ability, but the local search of each fire-
work is completely independent so it can’t help with its
local exploitation ability. In order to make different fireworks
collaborate, we borrow the idea of multi-scale optimization to
introduce more possible relationships between local searches
compared with LoTFWA. During the optimization, fireworks
could be exploring different local areas, or they can be
searching the same area with different scales.

The basic principle is that a firework should be searching
efficiently and independently when it’s possible, otherwise it
will be adjusted to help another firework’s search on a larger
scale. To diversify the scales, the fireworks are organized
according to their fitness values. And when the local search of
a firework is not making good progress, it would be adjusted
with reference to the better firework.

The independent local optimization in the proposed al-
gorithm is the same with LoTFWA and it should proceed
undisturbed if possible. We apply the dynamic amplitude
strategy to maximize the local exploitation efficiency. In other
words, the firework’s amplitude in the next generation is
amplified by Ca or reduced by Cr when it is improved or not
respectively (0 < Cr < 1 < Ca). The guiding spark is also
generated in the direction from bad sparks to good sparks.

In each iteration, the fireworks generate sparks and adjust
themselves according to the local optimization strategy de-
scribed above. According to the fitness values of sparks, the
progress of the local search can be evaluated. The fireworks
are sorted according to their current fitness values and visited
from best to worst. In the following two cases, independent
local searches of non-optimal fireworks will be coordinated.

One case where the local optimization should be stopped
is consistent with the restart mechanism of LoTFWA, that is,
the improving rate of local optimization is not fast enough
to exceed the current best individual. In order to restart the
firework, we sample a random location from the search space
and set the explosion amplitude as α times the distance to the
previous firework, where α > 1. This explosion amplitude will
not be too large as in LoTFWA, and also help the restarted
firework cooperates with the local optimization of the previous
firework better.

Another case when the local optimization should be adjusted
is when the firework has not improved for many iterations
and also does not match the search progress of the previous
firework severely. When a firework is so lucky to be located in
a very good position, it might be hard to improve for several
iterations. Then its explosion amplitude reduces rapidly and its
search scale becomes so small that it would affect its progress
rate of later iterations. And since the firework is not improved,
we are not able to restart it by the former strategy.

So when a fireworks Xg
i is not improved for certain

iterations (the new firework after the local search would be
Xg+1

i , but since it is not improved, we know Xg
i = Xg+1

i ),
we examine whether it is better than the worst spark of the
former firework. Iff(Xg+1

i ) < maxj{f(Si−1,j)}, we adjust
the amplitude and location towards the former firework as
equation 1 and 2.

Ag+1
i = (1− β)×Ag

i + β × d(Xg
i , X

g
i−1) (1)

Xg+1
i = Xg

i + β × (Xg+1
i−1 −X

g+1
i ) (2)

The parameter ψ ∈ [0, 1] decide how fast the firework should
adjust towards the previous one.

The proposed fireworks algorithm with multi-scale collab-
orative strategy is described in Algorithm 4. Here, g is the
iteration number, which is limited to gmax. The subscript
i = 0, 1, ..., n − 1 indicate n fireworks. During the local
search, e sparkij and e fitij are explosion sparks and their
fitness values. Here, we allocate the same number of sparks
for each firework. g sparki and g fiti are guiding spark
and its fitness value. Xt+1

i is selected as the best one of the
firework’s explosion sparks, guiding spark and itself. After
explosion and mutation in each iteration, each firework is
checked by the loser-out tournament strategy and multi-scale
collaborative strategy. If they are not applied, the firework’s
explosion amplitude is updated according to the dynamic
amplitude method.

B. Analysis of Multi-scale Collaborative Strategy

When the strategy is activated for firework X2 and X1

is the better firework, consider the relationship between the
explosion area of X2 and the location of X1, there are two
possible situations.

If X1 is within the explosion area of X2, then there is a
huge probability that the scale of X2 is too large compared
with X1. Because otherwise there is very likely a spark of X2

will fall into the explosion area of X1 and it is better than the
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Algorithm 4 Multi-Scale Collaborative Fireworks Algorithm
initialize g = 0, Ai = 0, λi =M
randomly sample X0

i , evaluate f(X0
i )

while termination conditions are not satisfied do
//Local Search by Explosion, Mutation and Selection
for each firework Xg

i do
obtain Sij and f(Sij), j = 1, ..., λi
obtain Mi and f(Mi)
select Xg+1

i = argmin{f(Xg
i ), f(Sij), f(Mi)}

end for
sort Xg

i according to fitness f(Xg
i )

for each firework Xg
i do

if f(Xg+1
i ) < f(Xg

i ) then
//Loser-out Tournament Strategy
Ii = f(Xg

i )− f(X
g+1
i )

if i = 0 or Ii × (gmax − g − 1) > f(Xg+1
i ) −

minj{f(Xg+1
j )} then

Ag+1
i = Ca ×Ag

i

else
randomly sample firework Xg+1

i , compute
f(Xg+1

i )
Ag+1

i = α× d(Xg+1
i , Xg+1

i−1 )
end if

else
//Multi-Scale Collaborative Strategy
if i = 0 or f(Xg+1

i ) < maxj{f(Si−1,j)} or Xi

improved in K recent iterations then
Ag+1

i = Cr ×Ag
i

else
compute Ag+1

i according to equation (1)
compute Xg+1

i according to equation (2)
end if

end if
end for
g = g + 1

end while

worst spark of X1. In such a situation, the proposed strategy
shrinks the explosion amplitude of X2 and lead it to search
near X1. This situation is shown on the left side of Fig. 1.

If X1 is not within the explosion area of X2, through the
same analysis as above we know that the overlapped explosion
area of X1 and X2 could only take a limited proportion
of them. In most situations, X1 and X2 are searching in
different local areas but the optimization of X2 is not progress
effectively compared with X1. The proposed strategy will
enlarge the search scale of X2 and force it to explore around
X1. This situation is shown on the right side of Fig. 1. Only
with a small probability, the explosion area of X2 takes a very
small part within the explosion area of X1, our strategy also
enlarges the scale of X2 so it can assist the local search of
X1. Such a firework will most likely be stopped by our restart
strategy since it is really hard for X2 to catch up with X1

with both worse fitness and smaller search scale.

Fig. 1. The multi-scale collaborative strategy in different situations. In both
subplots, firework X2 is adjusted according to the better firework X1.

C. Discussion

The proposed strategy is helpful for optimization in several
ways.

First, the local exploitation ability of fireworks would not be
hurt by the proposed algorithm. In most cases, each firework
conducts efficient local optimization adapted to its local infor-
mation. The loser-out tournament has been proven not able to
cause little damage to local searches in [7]. The multi-scale
collaborative strategy is only applied when the firework has not
improved in K iterations, which means the firework seems not
possible to improve at the current scale. The second condition
f(Xg+1

i ) < maxj{f(Si−1,j)} also implies the firework is
not possible to exceed the previous firework because it has
both worse fitness and smaller search scale. So, the adjusted
fireworks have very limited potential.

Second, the new strategy makes the firework tends to spread
closer with different scales. This is because when a firework
is restarted or adjusted, it is ensured to cover the previous
firework into its explosion area. And the adjusted firework
moves towards the previous one. Although we did not force
the worse spark to have a larger explosion amplitude, these
strategies still help the explosion amplitudes to correlate with
the fitness values because the amplitude of each firework
is adjusted with reference to the better one. The moderate
converge ability is very helpful for functions with objective
functions with sufficient global landscape, which is more likely
to be found in real optimization problems.

Finally, the proposed method can improve efficiency sig-
nificantly when fireworks are located in the same area of a
local optimal. When fireworks are too close to each other,
the efficiency of algorithms with independent local search is
hurt because they are searching in the same area while the
information obtained can not be exchanged sufficiently to each
other. However, with the proposed algorithm, fireworks usually
have different optimization scales so they won’t duplicate the
local search even when they are located at the same position.
If fireworks are in the same local area but could not cooperate,
the worse one is very likely to trigger the restart strategy or
multi-scale collaborative strategy. Then their search scale will
be adjusted reasonably.
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IV. EXPERIMENTAL RESULTS

A. Benchmark Functions

The proposed multi-scale collaborative fireworks algorithm
(MSCFWA) is tested on the benchmark functions from the
CEC’13 competition. The details of the objective functions are
available in [18]. We choose the CEC’13 competition test suite
because LoTFWA is proposed and tuned on these functions.
So it can be used as a competitive comparison for our method.

B. Parameter Settings

Since it is designed based on LoTFWA and mainly com-
pared with LoTFWA, we set the main parameters which appear
in both algorithms according to [7]. In this situation, the
efficiency of LoTFWA is maximized, thus the improvement
effect of the new algorithm can be shown by comparison.
The parameters introduced in the proposed algorithm are
determined by analysis and experiments.

Basic parameters from LoTFWA are kept in the proposed
algorithm. It controls 5 fireworks and generates 300 sparks in
explosion. The coefficient of dynamic amplitude are Cr = 0.9
and Ca = 1.2. The parameter in guiding spark mutation is
also the same as in LoTFWA, that is, σ = 0.2.

There are three new parameters introduced in the proposed
strategy, that is, K, α, and β.

Parameter K is the maximum number of consecutive fail-
ures for a stable local search. Due to the nature of the dynamic
explosion amplitude, fireworks tend to repeat improving and
non-improving during stable optimization. So K can not be
too small. Larger K means better tolerance for local search’s
instability. We choose K = 10 to obtain a better performance
according to experiments.

Parameter α decides the amplitudes of the restarted fire-
works. When α ≥ 1, the restarted firework’s explosion covers
the referenced better firework. When α is larger, the global
exploration ability is stronger. When α is closer to 1, the
restarted searches are more focused on the previous firework,
so the exploitation ability is stronger. We choose α = 1.2 for
better performance.

Parameter β ∈ [0, 1] is the most important parameter for
the proposed strategy, which controls the speed of firework
collaborating towards the better firework. With a large β, the
fireworks’ optimization areas overlap quickly and exploitation
ability is enhanced. While with a small β, fireworks could
continue on its local optimization for more generations, thus
the global exploration ability is ensured. We choose β = 0.1.
On the one hand, this value corresponds to a better optimiza-
tion performance in experiments. On the other hand, it is
also consistent with the shrinking speed of amplitude when
a firework fails to improve.

C. Experimental Results

The experiments are run on a Ubuntu 18.04 operating sys-
tem with Intel(R) Xeon(R) CPU E5-2675 v3 @ 1.80GHz. The
algorithm is implemented by Python 3.7 and Numpy package.
The C files of benchmark functions from the competition are
compiled for Python. Due to the limitation on the length of the

article, here we only show the results on the 30-dimensional
problems of the CEC’13 benchmark. Each function is tested
for 50 repetitions and each run stops after 300000 times
of evaluations. Since individual evaluation is considered to
be the main time-consuming part in dealing with black-box
optimization problems, the evaluation cost of each algorithm
can be considered consistent. In actual computation, the time
consumption of each algorithm is basically similar.

The Wilcoxon rank-sum tests are conducted to compare
the performance of LoTFWA and the proposed multi-scale
collaborative fireworks algorithm (MSCFWA). The results are
listed in table I. The significant better results are highlighted
(with confidence level at 95%).

Compared with LoTFWA, the proposed MSCFWA obtained
significantly better results on 10 objective functions, includ-
ing 3 uni-modal functions, 5 multi-modal functions, and 2
composition functions. Only on one test function, MSCFWA
performed significantly worse than LoTFWA. This shows that
the proposed algorithm stably and effectively improved the
efficiency of fireworks algorithm on all types of objective
functions.

We also provide comparison data with some classic swarm
intelligent optimization algorithms and evolutionary algo-
rithms, including ABC [19], SPSO2011 [20], DE [21] and
CMA-ES [22]. In table II, we can see that MSCFWA has
average rank of 2.42, which is the best in all five algorithms.

A box plot of the results of all those algorithms is provided
at the end of the article.

V. CONCLUSION

We proposed a multi-scale collaborative fireworks algorithm
to enhance the collaboration between fireworks by assigning
different fireworks to different scales of optimization. We give
a clear description of the proposed algorithm, with detailed
analysis and discussion on how it works in different situa-
tions. Experimental results on the CEC‘2013 single objective
benchmark suite indicate that the proposed algorithm improves
LoTFWA steadily on both uni-modal functions and multi-
modal functions. It also has significant performance compared
with typical evolutionary algorithms and swarm intelligent
optimization algorithms.
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TABLE I
COMPARISON BETWEEN LOTFWA AND MSCFWA

LoTFWA MSCFWA

F. Mean Min Median Max Std. Mean Min Median Max Std. p

1 1.137E-12 2.274E-13 4.547E-13 1.387E-11 8.40E-13 6.821E-13 2.274E-13 4.547E-13 1.387E-11 6.07E-13 0
2 1.038E+06 2.920E+05 9.164E+05 1.950E+06 4.29E+05 9.756E+05 2.920E+05 9.164E+05 1.950E+06 4.93E+05 0.14
3 2.512E+07 7.258E+05 1.147E+07 1.283E+08 2.48E+07 1.803E+07 7.258E+05 1.147E+07 1.283E+08 2.03E+07 0.05
4 2.033E+03 7.013E+02 1.791E+03 4.744E+03 8.18E+02 1.888E+03 7.013E+02 1.791E+03 4.744E+03 7.09E+02 0.26
5 4.243E-03 3.133E-03 4.005E-03 6.226E-03 6.18E-04 4.004E-03 3.133E-03 4.005E-03 6.226E-03 6.19E-04 0.02
6 1.479E+01 5.614E+00 1.523E+01 4.384E+01 5.81E+00 1.515E+01 5.614E+00 1.523E+01 4.384E+01 5.89E+00 0.15
7 5.186E+01 1.695E+01 4.294E+01 6.988E+01 1.22E+01 4.078E+01 1.695E+01 4.294E+01 6.988E+01 1.27E+01 0
8 2.085E+01 2.069E+01 2.088E+01 2.099E+01 5.93E-02 2.088E+01 2.069E+01 2.088E+01 2.099E+01 5.14E-02 0.02
9 1.733E+01 1.237E+01 1.792E+01 2.210E+01 1.94E+00 1.695E+01 1.237E+01 1.792E+01 2.210E+01 1.82E+00 0.17

10 3.355E-02 2.389E-07 2.464E-02 8.381E-02 2.47E-02 3.494E-02 2.389E-07 2.464E-02 8.381E-02 2.31E-02 0.26
11 9.287E+01 4.996E+01 8.557E+01 1.254E+02 1.57E+01 8.228E+01 4.996E+01 8.557E+01 1.254E+02 1.62E+01 0
12 8.787E+01 4.179E+01 8.209E+01 1.244E+02 1.47E+01 7.840E+01 4.179E+01 8.209E+01 1.244E+02 1.52E+01 0
13 1.585E+02 8.731E+01 1.484E+02 1.887E+02 2.25E+01 1.461E+02 8.731E+01 1.484E+02 1.887E+02 2.79E+01 0.01
14 2.709E+03 2.076E+03 2.887E+03 3.476E+03 3.19E+02 2.761E+03 2.076E+03 2.887E+03 3.476E+03 3.24E+02 0.19
15 2.716E+03 2.046E+03 2.812E+03 3.433E+03 3.08E+02 2.749E+03 2.046E+03 2.812E+03 3.433E+03 3.22E+02 0.27
16 1.740E-01 6.079E-02 1.889E-01 2.824E-01 5.98E-02 1.870E-01 6.079E-02 1.889E-01 2.824E-01 7.19E-02 0.24
17 1.367E+02 8.973E+01 1.316E+02 1.771E+02 1.62E+01 1.344E+02 8.973E+01 1.316E+02 1.771E+02 2.01E+01 0.12
18 1.398E+02 8.926E+01 1.202E+02 1.805E+02 2.04E+01 1.366E+02 8.926E+01 1.202E+02 1.805E+02 1.78E+01 0.17
19 4.632E+00 2.742E+00 4.807E+00 6.991E+00 1.08E+00 5.028E+00 2.742E+00 4.807E+00 6.991E+00 1.14E+00 0.11
20 1.307E+01 1.105E+01 1.253E+01 1.451E+01 1.02E+00 1.268E+01 1.105E+01 1.253E+01 1.451E+01 1.03E+00 0.05
21 2.076E+02 1.001E+02 2.000E+02 3.000E+02 5.19E+01 2.184E+02 1.001E+02 2.000E+02 3.000E+02 3.83E+01 0.09
22 3.296E+03 1.948E+03 3.358E+03 4.545E+03 3.93E+02 3.396E+03 1.948E+03 3.358E+03 4.545E+03 4.62E+02 0.21
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TABLE II
COMPARISON WITH CLASSIC ALGORITHMS

ABC SPSO2011 DE CMA-ES MSCFWA
F. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.89E-03 4.65E-04 0.00E+00 0.00E+00 6.82E-13 6.07E-13
2 6.20E+06 1.62E+06 3.38E+05 1.67E+05 5.52E+04 2.70E+04 0.00E+00 0.00E+00 9.76E+05 4.93E+05
3 5.74E+08 3.89E+08 2.88E+08 5.24E+08 2.16E+06 5.19E+06 1.41E+01 9.96E+01 1.80E+07 2.03E+07
4 8.75E+04 1.17E+04 3.86E+04 6.70E+03 1.32E-01 1.02E-01 0.00E+00 0.00E+00 1.89E+03 7.09E+02
5 0.00E+00 0.00E+00 5.42E-04 4.91E-05 2.48E-03 8.16E-04 0.00E+00 0.00E+00 4.00E-03 6.19E-04
6 1.46E+01 4.39E+00 3.79E+01 2.83E+01 7.82E+00 1.65E+01 7.82E-02 5.58E-01 1.52E+01 5.89E+00
7 1.25E+02 1.15E+01 8.79E+01 2.11E+01 4.89E+01 2.37E+01 1.91E+01 1.18E+01 4.08E+01 1.27E+01
8 2.09E+01 4.97E-02 2.09E+01 5.89E-02 2.09E+01 5.65E-02 2.14E+01 1.35E-01 2.09E+01 5.14E-02
9 3.01E+01 2.02E+00 2.88E+01 4.43E+00 1.59E+01 2.69E+00 4.81E+01 2.48E+00 1.70E+01 1.82E+00
10 2.27E-01 6.75E-02 3.40E-01 1.48E-01 3.24E-02 1.97E-02 1.78E-02 1.11E-02 3.49E-02 2.31E-02
11 0.00E+00 0.00E+00 1.05E+02 2.74E+01 7.88E+01 2.51E+01 4.00E+02 2.49E+02 8.23E+01 1.62E+01
12 3.19E+02 5.23E+01 1.04E+02 3.54E+01 8.14E+01 3.00E+01 9.42E+02 2.33E+01 7.84E+01 1.52E+01
13 3.29E+02 3.91E+01 1.94E+02 3.86E+01 1.61E+02 3.50E+01 1.08E+03 6.28E+01 1.46E+02 2.78E+01
14 3.58E-01 3.91E-01 3.99E+03 6.19E+02 2.38E+03 1.42E+03 4.94E+03 3.66E+02 2.76E+03 3.24E+02
15 3.88E+03 3.41E+02 3.81E+03 6.94E+02 5.19E+03 5.16E+02 5.02E+03 2.61E+02 2.75E+03 3.22E+02
16 1.07E+00 1.96E-01 1.31E+00 3.59E-01 1.97E+00 2.59E-01 5.42E-02 2.81E-02 1.87E-01 7.19E-02
17 3.04E+01 5.15E-03 1.16E+02 2.02E+01 9.29E+01 1.57E+01 7.44E+02 1.96E+02 1.34E+02 2.01E+01
18 3.04E+02 3.52E+01 1.21E+02 2.46E+01 2.34E+02 2.56E+01 5.17E+02 3.52E+02 1.37E+02 1.78E+01
19 2.62E-01 5.99E-02 9.51E+00 4.42E+00 4.51E+00 1.30E+00 3.54E+00 9.12E-01 5.03E+00 1.14E+00
20 1.44E+01 4.60E-01 1.35E+01 1.11E+00 1.43E+01 1.19E+00 1.49E+01 3.96E-01 1.27E+01 1.03E+00
21 1.65E+02 3.97E+01 3.09E+02 6.80E+01 3.20E+02 8.55E+01 3.44E+02 7.64E+01 2.18E+02 3.83E+01
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27 4.16E+02 1.07E+02 1.00E+03 1.12E+02 7.64E+02 1.00E+02 5.39E+02 7.64E+01 7.95E+02 5.23E+01
28 2.58E+02 7.78E+01 4.01E+02 4.76E+02 4.02E+02 3.90E+02 4.78E+03 3.79E+02 2.80E+02 5.99E+01

Average Rank 2.88 3.36 2.80 3.54 2.42
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Fig. 2. Box-plots of the algorithms’ results tested on CEC’13 benchmarks. (From left to right: ABC, SPSO2011, CMA-ES, LoTFWA and MSCFWA.)
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