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Abstract— Particle swarm optimization (PSO) is a stochastic
global optimization algorithm inspired by social behavior of
bird flocking in search for food, which is a simple but powerful,
and widely used as a problem-solving technique to a variety
of complex problems in science and engineering. A novel
particle swarm optimization algorithm based on immunity-
clonal strategies, called as clonal particle swarm optimiza-
tion (CPSO), is proposed at first in this paper. By cloning
the best individual of ten succeeding generations, CPSO has
better optimization solving capability and faster convergence
performance than the conventional standard particle swarm
optimization (SPSO) based on a number of simulations. A
detailed description and explanation of the CPSO algorithm
are given in the paper. Several experiments on six benchmark
test functions are conducted to demonstrate that the proposed
CPSO algorithm is able to speedup the evolution process and
improve the performance of global optimizer greatly, while
avoiding the premature convergence on the multidimensional
variable space.

I. INTRODUCTION

The particle swarm optimization (PSO) developed by
Eberhart and Kennedy in 1995 is a stochastic global op-
timization technique inspired by social behavior of bird
flocking or fish schooling [1]. It simulates the behaviors
of bird flocking involving the scenario of a group of birds
randomly looking for food in an area. All the birds don’t
know where the food is located, but they just know how far
from the food location. So an effective strategy for the birds
to find food is to follow the bird which is nearest to the food.
PSO is motivated from this scenario and developed to solve
complex optimization problems.

In the original form of PSO, each particle in a swarm
population adjusts its position in the search space based on
the best position it has found so far, and the position of the
known best-fit particle in the entire population. The essence
of PSO is to use these particles with best known positions to
guide the swarm population to converge to a single optimum
in the search space. Unlike other population-based evolution-
ary algorithms, i.e., genetic algorithms, PSO does not need
genetic operators such as crossover and mutation. Thus it
has advantages of easy implementation, fewer parameters to
be adjusted, strong capability to escape from local optima
as well as rapid convergence. In addition, because the PSO
comprises a very simple concept and paradigms can be
implemented more easily with it, it has been demonstrated
in certain instances that PSO outperforms other population
based evolutionary computing algorithms in many practical
engineering domains.
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In recent years, PSO has been used increasingly as an
effective technique for solving complex and difficult op-
timization problems. PSO has been successfully applied
to function optimization, artificial neural network training,
fuzzy system control, blind source separation as well as
machine learning, just to name a few. Furthermore, the PSO
has also been found to be robust and fast in solving non-
linear, non-differentiable and multi-modal problems [5]. So,
it is very important and necessary to exploit some new
mechanisms and principles from other domains or fields to
improve and promote the performance of the conventional
standard PSO. In this paper, the clonal mechanism found in
the natural immune system of creatures are introduced into
the PSO, resulting in building a novel clonal PSO (CPSO,
for short).

The remainder of this paper is organized as follows.
Section 2 describes the conventional standard PSO algorithm
and its related modified versions. Section 3 introduces the
proposed CPSO by introducing clonal mechanism in NIS
into standard PSO and its implementation. In Section 4,
extensive experimental results are presented to illustrate
the effectiveness and efficiency of the proposed CPSO in
comparing to SPSO. Finally, concluding remarks are drawn
in Section 5.

II. RELATED WORKS
A. Conventional Standard PSO

In conventional PSO algorithm, each single solution to an
optimization problem is considered as a particle in the search
space. The exploration of a problem space was done in PSO
by a population of particles called a swarm. All particles in
the swarm have fitness values which are evaluated by the
fitness function related to the optimization problem to be
solved. So, the PSO algorithm is originally initialized with a
swarm of particles placed on the search space randomly and
is used to search for optimal solution by evolving generation
by generation. In each iteration, the position and the velocity
of each particle are updated according to its own previous
best position (P;p4(t)) and the best position of all particles
(Pypa(t)) in the swarm so far. The updating formula for each
particle’s velocity and position in conventional standard PSO
is written as

Via(t + 1) = wViq(t) + cir1 (Pipa(t) — Xia(t))
+core(Pypa(t) — Xia(t)) (1)
Xia(t+1) = Xq(t) + Via(t + 1) 2
where i = 1,2,--- ,n, n is the number of particles in the

swarm, d = 1,2,--- , D, and D is the dimension of solution
space.
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In Egs. (1) and (2), the learning factors c¢; and cy are
nonnegative constants, r; and 79 are random numbers uni-
formly distributed in the interval [0,1], Viq € [—Vinaz, Vinaz)»
where V)4, is a designated maximum velocity which is a
constant preset by users according to the objective optimiza-
tion function. If the velocity on one dimension exceeds the
maximum, it will be set to V.. This parameter controls
the convergence rate of the PSO and can prevent the method
from growing too fast. The parameter w is the inertia weight
used to balance the global and local search abilities, which
is a constant in the interval [0, 1]. Since a large inertia
weight is more appropriate for global search, and a small
inertia weight facilitates local search. A linearly decreasing
inertia weight over the course of search was proposed and
analyzed in details by Shi and Eberhart [3] and gave a good
performance.

The termination criterion for iterations is determined ac-
cording to whether the presetting maximum generation or a
designated value of the fitness is reached.

For the purpose of convenience, we call the PSO expressed
in Egs. (1) and (2) as standard PSO (abbreviated as SPSO)
in the remainder of this paper.

B. Variants of the PSO

Since its invent, PSO has attracted an extensive attentions
and interests of researchers from different scientific domains.
Many researchers have worked on improving its performance
in various ways, thereby deriving many interesting variants
of PSO.

One of the variants introduces a parameter called iner-
tia weight into the original PSO algorithms [3]. A clever
technique for creating a discrete binary version of the PSO
introduced by Kennedy and Eberhart [2] in 1997 uses the
concept of velocity as a probability that a bit takes on one
or zero. By analyzing the convergence behavior of the PSO, a
variant of the PSO with a constriction factor was introduced
by Clerc and Kennedy [4], which guarantees the conver-
gence and at the same time improves the convergence speed
sharply. Parsopoulos and Vrahatis proposed a unified particle
swarm optimizer (UPSO) which combined both the global
version and local version together [8]. A cooperative particle
swarm optimizer was also proposed in [9]. Furthermore, El-
Abd and Kamel proposed a Hierarchal Cooperative Particle
Swarm Optimizer [11]. In [10], Peram et al. proposed
the fitness-distance-ratio based particle swarm optimization
(FDR-PSO),by defining the “neighborhood” of a particle as
the n closest particles of all particles in the population. Very
recently, a comprehensive learning particle swarm optimizer
(CLPSO) was proposed to improve the performance of the
original PSO on multi-modal problems greatly by a novel
learning strategy [12]. Although there are numerous variants
of the PSO, they need much time to finish evaluations of
fitness function, and give similar results in the early parts of
convergence. Hence, we here choose a variant of PSO with
the inertia weight as a foundation of our standard PSO and
use it as our basic and standard algorithm for comparisons.
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III. CLONAL PARTICLE SWARM OPTIMIZATION

A. Clonal Expansion Process in Natural Immune System

Artificial immune systems (AIS) is a novel computational
intelligence paradigm inspired by the natural immune system
(NIS). Like artificial neural networks and genetic algorithm,
AIS are highly abstract models of their biological coun-
terparts applied to solve a number of complex problems
in different domains. Some work processes of NIS are
used as metaphors to develop novel computing models in
computational intelligence, such as negative selection, clonal
selection, to name a few, to solve many complex problems
in science and engineering [6], [7], [13].

Originally, according the theory of clonal selection, when
the B and T lymphocytes in NIS recognize an antigen
as nonself, NIS will start to proliferate by cloning upon
recognition of such antigen. When a B cell is activated by
binding an antigen, many clones are produced in response,
via a process called clonal expansion. The resulting cells can
undergo somatic hypermutation, creating offspring B cells
with mutated receptors. The higher the affinity of a B cell
to the available antigens, the more likely it will clone. This
is called as a Darwinian process of variation and selection,
i.e., affinity maturation [6], [7].

The essence of the conventional PSO is to use these
particles with best known positions to guide the swarm or
the population to converge to a single optimum in the search
space. However, how to choose the best-fit particle to guide
each particle in the swarm is a critical issue. This becomes
even more acute when the problem to be solved has multiple
optima since the entire swarm or population could potentially
be misled to local optima. In order to deal with this case, a
clonal expansion in NIS is probably a good way to guide or
direct the SPSO escaping from local optima whilst searching
for the global optima efficiently. Therefore, here we want to
introduce the clonal expansion process in NIS into the SPSO
to strength the interaction between particles in a swarm and
improve the convergent performances of the SPSO greatly.

B. Clonal Particle Swarm Optimization (CPSO) Algorithm

According to the clonal expansion process in natural im-
mune system discussed above, we propose a clonal operator
for the SPSO. The clonal operator is to clone one particle as
N same particles in the solution space according to its fitness
function at first, then generate N new particles via clonal
mutation and selection processes which are related to the
concentration mechanisms used for antigens and antibodies
in NIS. Here we call the SPSO with such clonal operator
as clonal particle swarm optimization (abbreviated as CPSO)
algorithm. For simplification of our presentation, we will use
the abbreviated CPSO algorithm directly later on.

As indicated in [12], CLPSO’s learning strategy abandons
the global best information, the past best information of other
particles is used to update the particles’ velocity instead.
In such a way, the CLPSO can significantly improve the
performance of the original PSO on multi-modal problems.
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Here in order to present our CPSO clearly and efficiently,
we adopt the similar definitions used in AIS paradigms.
Antigen, antibody, and the affinity between antigen and an-
tibody are corresponding to objective optimization function,
solution candidate, and the fitness value of the solution on
the objective optimization function, respectively. The clonal
operator is used to copy one point as N same points according
to its fitness function, and then generate N new particles by
undergoing mutation and selection processes. In general, the
state transition process of a swarm of particles in the CPSO
can be schematically expressed as follows.

P(t) _)cla'n,e C(t) _}'m,utu.tion ]\/f(t) _)SEZ P(T + 1) (3)

Where the arrow represents the transition process between
two states while symbols over the arrows show the operations
needed for the transition processes.

Note that the population of particles P(t) at time ¢ can
be transited as C'(t) via clone process, then next generation
population P(¢+ 1) can be generated by using mutation and
selection processes for the cloned population C/(¢).

Briefly, the CPSO algorithm can be summarized as fol-
lows.

Step 1: initialization. Assume a =1, ¢; = 2, ¢ = 2, and
w be from 0.9 to 0.4 linearly.

Step 2: the state evolution of particles is iteratively updated
according to Eqgs. (1) and (2).

Step 3: memory the global best-fit particle of each gen-
eration, Pyp, as a mother particle of the clonal operator in
Step 4.

Step 4: after M §eneratlons clone the memorized M global
best particles, P =1, M.

Step 5: Mutatlon Process: all of the cloned particles are
mutated to some extents to differentiate with original or
mother particle. Here, the mutation process is implemented
by using some random disturbances such as Gaussian noise.
Assume Fyp, be the k-th entry of the vector Pyp and p
is an Gaussian random variable with zero mean and unity
variance, then one can have the following random mutation
process,

= (1= nPys, S

Step 6: Selection Process: we store the current Pyp in
memory, but the other particles are selected according to
a strategy of the diversity keeping of the concentration
mechanism so that in next generation of particles, a certain
concentration of particles will be maintained for each fitness
layer. Here the concentration of ¢-th particle are defined as
follows.

PQBk

N+M

= (> If(@i) = flap))~
j=1

where x; and f(z;) in Eq.( 5) denote the i-th particle and
its fitness value, respectively.

Li=1,2,--- ,N+ M.
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According to above Eq.( 5), one can derive a selection
probability in terms of the concentration of particles as
_1
D(=:)
ZN +M 1
j=1 D(=z;)

p(xi) = 0=1,2,--- N+ M, Q]

It can be seen from Eqs.( 5) and ( 6) that the more the
particles are similar to the antibody 4, the less the probability
the particle ¢ can be chosen, and vice verse. In such a way,
the particle with low fitness value also has an opportunity to
evolve. Therefore, this kind of probability selection mech-
anism in terms of the concentration of particles is able to
guarantee the diversity of the antibodies theoretically and
endows the method with the ability of escaping from local
minima.

Step 7: Termination. The algorithm can be terminated by
some common stop criteria such as a given maximum number
of generations or a presetting accuracy of the solution. In our
experiments in the paper, we adopt the former stop criterion,
i.e. a maximum number of generations.

Through keeping current global optima, the proposed
improved algorithm can guarantee to maintain the good
performance of original standard PSO. In the meantime, the
essence of the clonal operator is to generate a new particle
swarm near the promising candidate solution according to the
value of the fitness function such that the search space are
enlarged greatly and the diversity of clones is increased to
avoid trapping in local minima. On the other hand, the speed
of convergence and performance could be raised rapidly.

IV. EXPERIMENTS
A. Benchmark Functions for Simulation

In order to test and verify the performance of our proposed
CPSO, and make a comparison with SPSO, eleven bench-
mark functions listed in Table I are used for our following
simulations.

TABLE 1
LIST OF ELEVEN BENCHMARK TEST FUNCTIONS AND THEIR
PARAMETERS FOR OUR FOLLOWING SIMULATIONS

Functions Expression | Dim D Search Space Vinaz
Shaffer 6 F 10,30 | (—100,100)P | 100
Sphere I 10 (—100,100)P | 100
Rosenbrock F3 10 (—100,100)P 100
Griewank Fy 10 (—600,600)7 | 600
Rastrigrin Fs 10 (—10,10)P 10
Ackley 2 Fs 10 (—100,100)P | 100
Ellipse Fr 30 (—100,100)P | 100
Cigar Fy 30 (—100,100)P | 100
Tablet Fy 30 (—100,100)P 100
Sumcan Fio 30 (—100, 100)P 100
Schwefel Fi1 30 (—32,32)P 32

Due to limited space for the above table, we list the
formula of some benchmark functions as follows.
sin?(y/2? — 3
B = R 0.5, 7
! (1.0+0.001(;c1 — 3)) + 27 @
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D
F=>) a7, ®)
i=1
D—-1
Fy =Y (1001 —2:)” + (w; — 1)%), ©)
=1
Fy=1+ ; 000+ 2, cos(x; Vi), (10)
D
Fs =) (27 — 10cos(2ma;) + 10), (11)
i=1
Fs = 20 4 € — 20exp(—0.2 (12)
(13)
D i
Fr=> 10"1a3, (14)
=1
D
Fy=a}+ ) 10%3, (15)
=2
D
Fy =107+ a7, (16)
1=2
F. ! (17)
10 = - 3 )
1075+ 3522, 1325 2
D
Fiy=Y ((z1—2})* + (z; — 1)?), (18)

i=1
For more complex and compound benchmark test func-
tions, interested readers refer to [12], [14], etc.

B. Generations of Clones versus Performance

For the number of generations of clones, denoted by
symbol iter_no, being 1, 2, 4, and 10, respectively, the
performances of the CPSO on Sphere function are illustrated
in Figure 1.

It can be seen from Figure 1 that ‘iterno’ has little
effect on the performance of the proposed CPSO on Sphere
function. So in the following experiments, we let ‘iter_no’
be 10 for simplification and convenience.

In addition, for the six test functions chosen in our
experiments, we fixed the number of particles in a swarm
to be 40 for convenient comparisons later on.
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Fig. 1. Convergent Performances of the CPSO on Sphere Function with
Different Generations of Clones.

C. Performance Comparison Between CPSO and SPSO

The performance comparisons between the proposed
CPSO algorithm and original SPSO algorithm are shown in
Figures 2- 4.

The convergent curves of the performances on eleven
typical benchmark test functions shown in Figures 2- 7 are
drawn from the averaged values of independent 20 runs. In
such a way, these curves can give the stable performances
of the CPSO and SPSO algorithms completely and reliably.
Beside the global optimum of Shaffer f6 function is 1, the
global optimum of the other five benchmark test functions
are 0. As we can seen from these figures that our proposed
CPSO algorithm has much more speed of convergence and
more accurate solution than that of the SPSO algorithm on
all eleven benchmark test functions.

Furthermore, in order to verify the validation and effi-
ciency of our CPSO, we have conducted a little more test
experiments again. We use eleven benchmark test functions
to test our CPSO and SPSO by using a swarm of 40.
In Table II, we give the statistical means and standard
deviations of our obtained solutions of the eleven benchmark
test functions, some of which are listed in Table I, by using
the CPSO and SPSO, over 50 independent runs, respectively.
It has been seen from the averaged solutions in Table II that
our proposed CPSO outperforms SPSO dramatically.

It turns out from the comparisons of performances be-
tween CPSO and SPSO that the CPSO not only has a
faster convergence speed than the SPSO, but also has more
accurate optimal solution than the SPSO on all of eleven
benchmark functions used in the experiments. Therefore,
It is concluded that the proposed CPSO speeds up the
convergence tremendously, while keeping a good search
capability of global solution with much more accuracy. All
of the simulation results in our experiments show that the
introduction of clonal mechanism in natural immune system
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Fig. 2. Performances of the CPSO and SPSO on Shaffer F6 and Sphere

Benchmark Functions on 20 Independent Runs with 40 Particles in a Swarm.

to the PSO achieves a complete success and give out a
promising performance in all of our conducted experiments.

V. CONCLUSIONS

A clonal particle swarm optimization (CPSO) is proposed
and implemented in this paper according to immunity-
clonal strategies. By cloning the best individual of every ten
succeeding generations, the CPSO has better optimization
solving capability and convergence performance than the
conventional SPSO. Compared to the SPSO algorithm, the
experimental results on eleven benchmark test functions have
demonstrated that the proposed CPSO algorithm is able to
speedup the evolution process and improve the performance
of global optimizer greatly, while avoiding the premature
convergence on the multidimensional variable space. Its
advantages will make the CPSO find more and more ap-
plications in a variety of practical scientific and engineering
domains and fields in near future.
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TABLE I
STATISTICAL MEANS AND STANDARD DEVIATIONS OF THE SOLUTIONS
OF ELEVEN BENCHMARK TEST FUNCTIONS, LISTED IN TABLE I, GIVEN
BY THE CPSO AND THE SPSO OVER 50 INDEPENDENT RUNS.

Functions Gens CPSO’s Mean + StD SPSO’s Mean + StD
Shaffer f6 1000 0.997432 + 0.004230 0.992357 + 0.003018
Sphere 5000 29.859739 + 53.196925 4804.200195 + 1254.233280
Rosenbrock 10000 66.587219 £ 204.290749 5692076.000000 + 4087432.037220
Griewank 10000 0.003693 £+ 0.011792 1.088648 + 0.042218
Rastrigrin 10000 6.769299 + 7.701368 676.154907 4 197.969455
Ackley 2 6000 0.029793 + 0.067038 11.717416 + 1.226893
Ellipse 10000 0.000000 £ 0.000000 12670.500977 + 6473.115751
Cigar 10000 0.000000 £+ 0.000000 2875340.750000 + 1245908.471350
Tablet 10000 0.000000 £+ 0.000000 381.082153 + 211.210144
SumCan 400 0.000000 £ 0.000001 0.000078 £+ 0.000002
Schwefel 10000 1.701862 + 1.049991 164871.140625 + 106403.972545
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