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Abstract— As viruses become more complex, existing anti-
virus methods are inefficient to detect various forms of viruses,
especially new variants and unknown viruses. Inspired by
immune system, a hierarchical artificial immune system (AIS)
model, which is based on matching in three layers, is proposed
to detect a variety of forms of viruses. In the bottom layer,
a non-stochastic but guided candidate virus gene library is
generated by statistical information of viral key codes. Then
a detecting virus gene library is upgraded from the candidate
virus gene library using negative selection. In the middle layer,
a novel storage method is used to keep a potential relevance
between different signatures on the individual level, by which
the mutual cooperative information of each instruction in a
virus program can be collected. In the top layer, an overall
matching process can reduce the information loss consider-
ably. Experimental results indicate that the proposed model
can recognize obfuscated viruses efficiently with an averaged
recognition rate of 94%, including new variants of viruses and
unknown viruses.

I. INTRODUCTION

Since the first malicious executable code appeared in 1981,
computer viruses have been evolving with the rapid devel-
opment of computer environments such as operating system,
network, etc. Virus techniques, for instance, junk code in-
sertion and code transposition, have become obfuscated and
traditional scanning detection is less effective and efficient to
detect them [1]. Many researchers proposed various heuristic
detection methods, including artificial immune system, to
improve the effectiveness of virus detection [2].

The natural immune system is a dynamic, adaptive and dis-
tributed learning system. It protects organisms against anti-
gen invasion by distinguishing foreign antigens (pathogens
and tumor cells) from organisms’ own healthy cells and
tissues and eliminating foreign antigens. Similarly, the func-
tionality of computer security systems is to recognize and
eliminate virus, so that the natural immune system has
provided with an inspiration to develop such kind of anti-
viral systems [3].

In this paper, we analyzed the advantage and disadvantage
of some approaches that are based on negative selection
mechanism in the artificial immune system (AIS). Further-
more, we proposed an improved approach which is char-
acterized of the generation of detectors under supervision.
Different from previous approaches, the main contribution
of this work is to collect correlation of instructions within
a virus program. This AIS-based model uses training set
as a guide to generate a candidate virus gene library. This
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candidate gene library is then upgraded to a detecting virus
gene library by deleting all the non-viral information with
negative selection in artificial immunity. This allows legal
programs in the training set to be memorized. Because the
detecting gene library stores virus samples at individual level
and makes use of the relevance of different genes in a sample,
it enables this model to compare genes on gene level, analyze
suspicious program on individual level and ultimately to
make the classification decision by detecting the entire gene
library.

We firstly discuss the related work in Section 2 briefly,
then propose an efficient virus detection AIS model in detail
in Section 3, and finally compare simulation results and give
our conclusion in Section 4 and 5, respectively.

II. RELATED WORK

Based on ideas from immunology, Forrest et al [4] pro-
posed the initial Negative Selection Algorithm (NSA). The
algorithm can recognize self and non-self without reference
to any particular information of the non-self set, especially
suitable for computer fault diagnosis in an unknown time-
varying environment like virus detection. But the model
has a high computational cost. The number of detectors
is exponentially related to the size of self set. D’haeseleer
improved the NSA [5], make the number of detectors linearly
related to the self set. But it still needs too many detectors,
and they are also not guided generated detectors. Due to
above reasons, it is a key problem how to generate effective
detectors in a quick way.

Edge et al [7] developed a retrovirus-inspired algorithm for
virus detection and optimization. The model used a random
antibody initiation and the learning phase is further decom-
posed into two distinct parts that are trained for positive se-
lection and negative selection, respectively. Positive selection
gives antibody the ability to detect a virus while negative
selection ensures that the antibody does not match self.
The antibodies constantly evolve using affinity maturation to
identify new viruses. They can die after a specified period of
time, thus keeping the number of antibodies to a minimum
in order to give a better performance. Although this work
realized self-evolution, random antigen initiation would still
need a long time for training. In addition, the model was only
tested with virtual data and so it needs further validation.

Li has given the same idea of using the concept of affin-
ity maturation in the immune system defined by matching
between bit-strings in different files in his book [8]. The
matching based on hexadecimal continuous matching rules
is well directed to the characters of program files.



III. PROPOSED APPROACH

A. Model Architecture

The model is composed of two modules: virus gene library
generating module and self-nonself classification module.
The first module is used for the training phase, whose
function is to generate a detecting gene library to accomplish
the training of given data. The second module is assigned as
the detecting phase in terms of the results from first module
for detection of the suspicious programs.

In biology, it is well known that genetic information is
mainly stored in DNA, but not all the fragments in DNA
can express useful information. Only gene is a fragment of
DNA with genetic information. Gene is made up of several
deoxyribonucleotides (ODN).

In this paper, our definitions of some notations are given
as follows.

• DNA: The whole bit-string of a procedure.
• Gene: Virus detector, a fragment of virus DNA, the

compared unit for virus detection.
• ODN: Every two bytes of a bit-string.
The relation of DNA, gene and ODN is shown in Fig 1.
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Fig. 1. The relationship among DNA, gene & ODN.

The codes of a virus correspond to the DNA in the
organism. The small quantity of key codes which perform
viral functions are regarded as the genes of a virus. These
virus genes are composed of several virus ODNs which are
the smallest unit to analyze the virus. An ordered series of
ODNs can express one or more program instructions. At this
stage, the most important task of the model is to extract the
genes of a virus.

B. Virus Gene Library Generating Module

Virus gene library generating module works on the training
set consisted of legal and virus programs. The operating
principle is shown in Fig 2.

Firstly, this module is to count the ODNs in a DNA of
legal and virus programs by a sliding window, respectively,
in order to extract ODNs which are regarded as the
representative of the virus. A virus ODN library is built by
the obtained statistical information. Secondly, the DNAs in
virus and legal programs are traversed by the ODNs in the
virus ODN library to generate virus candidate gene library
and legal virus-like gene library. Finally, according to the
negative selection mechanism, we match all the genes in
the candidate virus gene library with the genes in the legal
virus-like gene library, and delete those genes which appear
in both libraries. In such a way, the candidate library is
upgraded as the detecting virus gene library.
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Fig. 2. Virus gene library generating process.

1) Virus ODN library: A sliding window is used to count
ODNs in the DNAs to generate this ODN library.

• For the following DNA fragment
CD21 C307 1FCD 218C C0B8

• Which includes 9 ODNs in total such that
CD21 21C3 C307 071F 1FCD CD21 218C 8CC0 C0B8

The model can obtain the frequency information of
ODNs appeared in the legal and virus programs. In the
next step, the model can calculate the degree Si of which
each ODN tends to be more representative of the virus
based on the frequency information. When Si exceeds a
chosen threshold, ODN i would be added into the virus
ODN library. Here we set this threshold be S1, called ODN
selection threshold. Apparently S1 is a constant related to
the training set. When the training set is fixed, the value
S1 should be constant, but its choice would be variable on
different training sets. To choose an appropriate S1 to make
ODNs less but more representative is very important.

2) Candidate virus gene library: The basic storage block
in the virus candidate gene library is virus sample. All the
genes in each sample are stored to make different genes
in one virus storage and genes in different virus storage
separately. This kind of storage mode is called signature
storage on individual level in this paper. The gene library
mentioned below would apply this storage mode to keep the
relevance between different extracted genes in a same virus.
Comparison between programs can be made on individual
level with integrated information of virus signatures.

The model uses continuous matching to match the virus
DNA with ODNs in the virus ODN library. It means, from
the first matching position, that a sliding window is employed
to move forward until a mismatching happens. Then the
number, of which ODNs in the virus ODN library take
part in the matching from the beginning to the end, is
recorded. If this number is larger than a presenting threshold



TABLE I

R-CONTINUOUS MATCHING

Byte string Binary string
68C5 0110 1000 1100 0101
B633 1011 0110 0011 0011

T, the fragment of virus DNA is assigned as a virus gene.
Otherwise, the fragment is considered not containing enough
information to be a key code of virus or the genes of a virus.
It is clear that this method has one ODN unit fault tolerance.

If T is too small, the generated gene does not
contain enough information. Too many invalid redundant
genes would cause the loss of system performance and
effectiveness. If T is too big, some important information
would be lost as the matching length is too long. Let T
= 3, the minimum gene is 4 bytes long and normally one
computer instruction is 1 or 2 bytes, at the moment the gene
may contain 1 to 4 instructions which might be regarded as
abundant information.

3) Detecting virus gene library: Using the same method
for generating the candidate virus gene library, this model
can also be used to generate a legal virus-like gene library
by matching the legal programs with ODNs in the virus ODN
library.

Taking the legal virus-like genes as self, and the candidate
virus genes as nonself, the NSA is applied to generate the
detecting virus gene library. In the candidate virus library,
all the genes that match with the gene in the legal virus-
like gene library are deleted. In this way, the gene in the
detecting virus gene library does not match with any legal
virus-like gene library. Therefore these detectors would be
able to distinguish all the legal programs in the training set.

R-continuous matching rules (as shown in Table I) is a
popular matching rule in AIS, where binary string coding is
used. It is a fuzzy matching method, allowing some faults
in matching. We introduce a new T-successive consistency
matching (as shown in Fig 3. Gene 1 is a virus gene; Gene
2 is a legal virus-like gene.) for the byte strings of the same
mechanism. The rule of T-successive consistency matching is
that if there are no less than T successive same ODNs in the
two genes and these ODNs belong to the virus ODN library
above, the two genes are regarded as a successful matching.

When the candidate virus gene library is generated, the
threshold T is set to 3, which means that only 3 or more
ODNs connections are required to have enough information
to form a gene. So only when two genes contain 3 or
more ODNs successive consistency matching, can they be
considered as having strong similarity, and regarded as a
successful matching.

C. Self-Nonself Classification Module

Repeating the method that generates candidate virus gene
library, the ODNs in the detecting virus gene library are
used to generate the suspicious virus-like gene library. Then
we match virus-like genes in the suspicious program with
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Fig. 3. T-successive consistency matching.

TABLE II

SIMILARITY VALUE WITH MATCHING LENGTH

Matching length i 1 2 3 . . . n
Similarity value 1 3 5 . . . 2n − 1

detectors in the detecting virus gene library to get a matching
value. If it is larger than a chosen threshold, the program is
regarded as a virus; otherwise it is a legal program. (as shown
in Fig 4).
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Fig. 4. Self-nonself classification process.

1) Matching degree between two genes: This module
still use T-successive consistency matching for two genes’
matching. A similarity value R is defined to measure the
matching degree between two genes. If two genes are mis-
matched, the value is set to 0; If two genes are matched
successfully, R1 = R2 + R3, where Ri ≥ T (i = 1, 2, · · ·).
We consider that the similarity value R1 of units matching
should be larger than the sum of value of R2 units matching
and R3 units matching. Suppose that xi (i = 1, 2, · · ·) is
the similarity value of a matching of i units, the following
inequalities hold:

xn > xn−i + xi; (1)

The relation between the similarity value and matching
length is shown in Table II.

2) Suspicious program detection: If the suspicious pro-
gram matches with each virus sample in the detecting virus
gene library, the similarity value is calculated. All the values
for this program are added together as the similarity value
between the program and detecting virus gene library. The
pseudocode is shown as follows.

initial similarity[M]=0;
initial similarity_indi=0;
for(i=0;i<M;i++)



for(j=0;j<N;j++)
temp=get_match_value();
if(similarity[i]<temp)
similarity[i]=temp;

end
similarity_indi+=similarity[i];

end

In conclusion, the proposed hierarchical model works
through three layers cooperatively when the model detects an
incoming suspicious program. In the gene layer, T-successive
consistency matching is used to make a fuzzy matching for
a good fault toleration. In the individual layer, virus and
legal program are compared on the individual level. The
interrelated information of instructions is lost as little as
possible, hence the model takes the full advantage of the
potential relevance between different extracted signatures and
recognizes obfuscated viruses effectively and efficiently. Due
to the similarity between viruses, it also can detect new
variants of known viruses and recognize unknown viruses
accurately. Finally classification decision is not a single but
an overall behavior in the decision layer which can give a
more precise result.

IV. SIMULATION RESULTS

A. Data Set

We performed experiments on a virus data set
“cilpku08” which can be get at the web site
http://www.cil.pku.edu.cn/malware. We collected 3547
viruses and the viruses were classified to 685 families,
based on their properties.

In order to determine the performance and possible advan-
tages of the proposed approach, four classes of experiments
are carried on three practical data sets under windows oper-
ating system. The first data set contains 538 programs with
the self set of 284 legal files and the nonself set of 254 virus
files; the second set contains 1815 programs with the self set
of 915 legal files and 900 virus files; The third set consists of
the second set and 2647 extra virus files, having 4462 files
in total.

B. Description of Experiments

In this section, four classes of simulation results are
described in detail.

In Tables, “A” denotes the total number of corresponding
programs in the certain set; “P ” denotes the number of
corresponding programs that are correctly recognized; “PR”
denotes the correct recognition rate of the corresponding
programs, PR = P/A; “APR” denotes the average correct
recognition rate of the corresponding programs.

APR =
Plegal + Pvirus

Alegal + Avirus
(2)

1) Experiments of class 1: The experiments of class 1
including several tests are carried on the set of 538 files.
The set is divided equally and randomly into the training
set and the detecting set. The numbers are both 269, but the

TABLE III

EXPERIMENTAL RESULTS OF CLASS 1.

The training set
Exp. NO. Legal files Virus files

A P PR A P PR APR
Test 1 142 142 100% 127 124 97.6% 98.9%
Test 2 142 142 100% 127 124 97.6% 98.9%

The detecting set
Exp. NO. Legal files Virus files

A P PR A P PR APR
Test 1 142 140 98.6% 127 119 93.7% 96.3%
Test 2 142 140 98.6% 127 122 96.1% 97.4%

TABLE IV

EXPERIMENTAL RESULTS OF CLASS 2.

The training set
Exp. NO. Legal files Virus files

A P PR A P PR APR
Test 3 227 227 100% 203 194 95.60% 97.90%
Test 4 190 190 100% 170 162 95.30% 97.80%
Test 5 94 94 100% 84 82 97.60% 98.90%
Test 6 57 57 100% 51 49 96.10% 98.10%

The detecting set
Exp. NO. Legal files Virus files

A P PR A P PR APR
Test 3 57 56 98.20% 51 47 92.20% 95.40%
Test 4 94 93 98.90% 84 82 97.60% 98.30%
Test 5 190 187 98.40% 170 162 95.30% 96.90%
Test 6 227 224 98.70% 203 193 95.10% 97.00%

particular programs in these sets are different. We pitch upon
test 1 and test 2 to perform the simulation results in Table III.

It can be seen in Table III that two tests have a good
correct recognition rate in both testing (98.9%) and detecting
set (around 97%). In the training set, the model can perfectly
recognize the legal files, with a recognition rate of around
97% for virus files. The trained model can recognize more
than 98% unknown legal files and have a recognition rate
of around 95% for unknown virus files in the suspicious
program set. It is noted that for the experiments time after
time, the model have a stable performance independent of
any particular program in these sets.

2) Experiments of class 2: The experiments of class 2 is
still based on the first data set. Four divisions of training and
detecting set were made with ratios of 4:1, 2:1, 1:2 and 1:4,
respectively. The results are shown in Table IV.

The recognition rate of the model does not decrease with
the reduction of the training set. In the test 6, the number
of files in the training set is much less than that of files in
the detecting set. However the correct recognition rate are at
98.7% of the legal files and at 95.1% of suspicious virus files
in the detecting set. This indicates that the proposed model
can learn enough information in a small data set to get a
good results in detecting a much bigger corresponding data
set. So, the model has a very strong generalization.

3) Experiments of class 3: The experiments of class 3 is
carried on the second set, a bigger data set. The ratios of the
training set and the detecting set are 2 to 1, 1 to 1, 1 to 2,
respectively. The results are shown in Table V.

The correct recognition rates in this class of experiments



TABLE V

EXPERIMENTAL RESULTS OF CLASS 3.

The training set
Exp. NO. Legal files Virus files

A P PR A P PR APR
Test 7 610 610 100% 600 538 89.70% 94.90%
Test 8 457 457 100% 450 399 88.70% 94.40%
Test 9 305 305 100% 300 279 93.00% 96.50%

The detecting set
Exp. NO. Legal files Virus files

A P PR A P PR APR
Test 7 1305 303 99.30% 300 270 90.00% 94.70%
Test 8 458 450 98.30% 450 400 88.90% 93.60%
Test 9 610 601 98.50% 600 543 90.50% 94.50%

are a little lower than that in the class 1 and 2 , but are still
at high levels, with 95% in the training set and around 94%
in the detecting set.

All the above results have shown that the proposed model
have an excellent stability and generalization.

4) Experiments of class 4: The experiments of class 4
used the third set - the biggest data set with 4462 programs to
confirm the model’s expansibility. The training set is covered
by and much smaller than the detecting set, so that the
expansibility and comprehensive ability of the model can be
tested.

A outline of the relation between the detecting results
and the training set is shown in Figure 5. “◦” denotes the
correct recognition rate of all the programs on the detecting
set; “�” denotes the correct recognition rate of the virus
programs; “�” denotes the correct recognition rate of the
legal programs.
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Fig. 5. The correct recognition rates in the class 4.

V. CONCLUSIONS

We have described a novel AIS-based method to overcome
three specific shortcomings in traditional AIS models.

• Randomly generating the detectors leading to the bad
efficiency;

• poor generalization, poor performance with a big data
set;

• Ignoring the relevance between different extracted sig-
natures in one virus.

In our approach, a guided candidate library is made by a
priori knowledge. Then a fuzzy matching method is used
to dig the similarity between genes. We store different
genes in one virus together to keep all the information on
the individual level by taking the advantage of relevance
between different extracted signatures in the individual. Fi-
nally, classification decision is an overall behavior which
reduces the information loss to a great extent. The model can
effectively and efficiently recognize obfuscated virus, detect
new variants of known virus and some unknown viruses.
Although these modifications have been made, the model still
have its own vulnerabilities. It can not maintain or increase
the diversity of the genes in the virus library. Some artificial
intelligent algorithms like immune network model or clonal
selection algorithm could be used against it in future.
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