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A Local-Concentration-Based Feature Extraction
Approach for Spam Filtering
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Abstract—Inspired from the biological immune system, we
propose a local concentration (LC)-based feature extraction
approach for anti-spam. The LC approach is considered to be
able to effectively extract position-correlated information from
messages by transforming each area of a message to a corre-
sponding LC feature. Two implementation strategies of the LC
approach are designed using a fixed-length sliding window and a
variable-length sliding window. To incorporate the LC approach
into the whole process of spam filtering, a generic LC model is
designed. In the LC model, two types of detector sets are at first
generated by using term selection methods and a well-defined
tendency threshold. Then a sliding window is adopted to divide
the message into individual areas. After segmentation of the
message, the concentration of detectors is calculated and taken
as the feature for each local area. Finally, all the features of local
areas are combined as a feature vector of the message. To evaluate
the proposed LC model, several experiments are conducted on five
benchmark corpora using the cross-validation method. It is shown
that the LC approach cooperates well with three term selection
methods, which endows it with flexible applicability in the real
world. Compared to the global-concentration-based approach and
the prevalent bag-of-words approach, the LC approach has better
performance in terms of both accuracy and F; measure. It is also
demonstrated that the LC approach is robust against messages
with variable message length.

Index Terms—Artificial immune system (AIS), bag-of-words
(BoW), feature extraction, global concentration (GC), local con-
centration (LC), spam filtering.

[. INTRODUCTION

PAM, also referred to as unsolicited commercial e-mail
(UCE) or unsolicited bulk e-mail (UBE), has caused quite
a few problems to our daily-communications life. Specifically, it
occupies great resources (including network bandwidth, storage
space, etc.), wastes users’ time on removing spam from e-box,
and costs much money for a loss of productivity. According to
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the statistics from Commtouch [1], spam made up 72% of the
total e-mail traffic on average throughout the fourth quarter in
2008, and peaked at 94% in October. Ferris Research revealed
its 2009 estimates for the cost of spam in [2]: spam would cost
$130 billion worldwide, which was a 30% raise over the 2007
estimates. It also pointed out that three components constituted
the total cost: user productivity cost, help desk cost, and spam
control cost. Among them, user productivity cost took up the
major portion, which contributed to 85% of the total cost.

To address the problem of spam filtering, many approaches
have been proposed to filter spam from e-mail traffic. There are
three main related research fields for anti-spam, namely term
selection, feature extraction, and classifier design. In the field of
classifier design, many machine learning (ML) methods are de-
signed and applied to automatically filter spam. Some prevalent
ML methods for spam filtering are naive bayes (NB) [3]-[5],
support vector machine (SVM) [6]-[9], k-nearest neighbor
(k-NN) [10], [11], artificial neural network (ANN) [12], [13],
boosting [14], [15], and artificial immune system (AIS) [7],
[16]-[20]. As the performance of an ML method depends on
the extraction of discriminative feature vectors, feature extrac-
tion methods are crucial to the process of spam filtering. The
researches of term selection and feature extraction have also
attracted much attention from researchers all over the world. A
description and analysis of current term selection methods and
feature extraction approaches are given in Section II.

In this paper, we propose a local concentration (LC)-based
feature extraction approach for anti-spam by taking inspiration
from the biological immune system (BIS). The LC approach
is considered to be able to effectively extract position-corre-
lated information from messages by transforming each area of
a message to a corresponding LC feature. Two implementation
strategies of the LC approach are designed using a fixed-length
sliding window and a variable-length sliding window. To incor-
porate the LC approach into the whole process of spam filtering,
a generic LC model is designed and presented. The performance
of the LC approach is investigated on five benchmark corpora
PUI, PU2, PU3, PUA, and Enron-Spam. Meanwhile, accuracy
and F measure are utilized as evaluation criteria in analyzing
and discussing the results.

The remainder of the paper is organized as follows. In
Section II, we introduce the current term selection methods
and feature extraction approaches. The LC-based model and
the LC-based feature extraction approach are presented in
Sections III and IV, respectively. In Section V, we give the
descriptions of the copra and experimental setup, and analyze
the results of the validation experiments in detail. Finally, the
conclusions are given in Section VI.
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II. RELATED WORKS

This section gives a brief overview of current term selection
methods and prevalent feature extraction approaches, both of
which have close relationship with our work.

A. Term Selection Methods

1) Information Gain (IG): In information theory, IG, also
referred to as Kullback—Leibler distance [21], measures the dis-
tance between two probability distributions P(x) and Q(z). In
the study of spam filtering, it is utilized to measure the goodness
of a given term, i.e., the acquired information for e-mail classi-
fication by knowing the presence or absence of a given term ¢;.
The IG of a term ¢; is defined as
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where C' denotes an e-mail’s class (¢ and ¢; are the spam class
and the legitimate e-mail class, respectively), and 7' denotes
whether the term #; appears in the e-mail (¢; and {; means the
presence and the absence of the term ¢;, respectively). All the
probabilities are estimated from the entire training set of mes-
sages.

2) Term Frequency Variance (TFV): Koprinska et al. [22]
developed a TFV method to select the terms with high variance
which were considered to be more informative. For terms oc-
curring in training corpus, the ones occurring predominantly in
one category (spam or legitimate e-mail) would be retained. In
contrast, the ones occurring in both categories with comparable
term frequencies would be removed. In the field of spam fil-
tering, TFV can be defined as follows:
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where Tf(t;, C) is the term frequency of ¢; calculated with re-
spect to category ', and TJ’C" (t;) is the average term frequencies
calculated with respect to both categories.

It was shown in [22] that TFV outperformed IG in most
cases. However, the comparison between the top 100 terms
with highest IG scores and the top 100 terms with highest TFV
scores showed that those terms had the same characteristics
as follows: 1) occurring frequently in legitimate, linguistic
oriented e-mail, and 2) occurring frequently in spam e-mail but
not in legitimate e-mail.

3) Document Frequency (DF): Calculated as the number of
documents in which a certain term occurs, DF is a simple but
effective way for term selection. According to the DF method,
the terms whose DF is below a predefined threshold are removed
from the set of terms. The DF of a term ¢; is defined as follows:

)

where M denotes the entire training set of messages, and m; is
a message in M.

The essence of DF is to remove rare terms. According to its
assumption, rare terms provide little information for classifica-
tion, so the elimination of them does not affect overall perfor-
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mance. As shown in [23], the performance of DF was compa-
rable to that of IG and x? statistic (CHI) with up to 90% term
elimination. One major advantage of DF is that its computa-
tional complexity increases linearly with the number of training
messages.

4) Other Term Selection Methods: Term selection methods
play quite important roles in spam filtering. Besides 1G, TFV,
and DF, there are many other methods to measure term im-
portance. For better understanding and comparison, three other
common ones [23]-[25] are also listed in Table I, where ¢ €
{s,1} is a given category, and ¢ = {s,{}\c. In the term strength
method, 2 and y are an arbitrary pair of distinct but related mes-
sages (falling in the same category) in the training corpus. All
other variables have the same definitions as those in previous
equations.

B. Feature Extraction Approaches

1) Bag-of-Words (BoW): BoW, also referred to as the vector
space model, is one of the most popular feature extraction
methods in spam filtering applications [24]. It transforms a
message to a d-dimensional vector {x1,%s9,...,24) by con-
sidering the occurrence of preselected terms, which have been
selected by utilizing a term selection method. In the vector,
x; can be viewed as a function of the term ¢;’s occurrence
in the message. There are mainly two types of representation
about x;: Boolean type and frequency type [26]. In the case of
Boolean type, z; is assigned to 1 if #; occurs in the message,
otherwise it is assigned to 0. While in the case of frequency
type, the value of z; is calculated as the term frequency of #;
in the message. Schneider [27] showed that the two types of
representation performed comparably in his experiments.

2) Sparse Binary Polynomial Hashing (SBPH): SBPH is a
method to extract a large amount of different features in e-mail
feature extraction [28], [29]. An N -term-length sliding window
is shifted over the incoming message with a step of one term. At
each movement, 27V ! features are extracted from the window
of terms in the following ways. The newest term of the window
is always retained, and the other terms in the window are re-
moved or retained so that the whole window is mapped to dif-
ferent features. SBPH performed quite promisingly in terms of
classification accuracy as it could extract enough discriminative
features. However, so many features would lead to a heavy com-
putational burden and limit its usability.

3) Orthogonal Sparse Bigrams (OSB): To reduce the redun-
dancy and complexity of SBPH, Siefkes et al. [29] proposed
OSB for extracting a smaller set of features. The OSB method
also utilizes a sliding window of N -term-length to extract fea-
tures. However, different from the SBPH, only term-pairs with
a common term in a window are considered. For each window
of terms, the newest term is retained, then one of other terms is
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selected to be retained while the rest of terms are removed. After
that, the remaining term-pair is mapped to a feature. There-
fore, N — 1 features would be extracted from a window of
N-term-length, which greatly reduce the number of features
compared to SBPH. The experiments in [29] showed that OSB
slightly outperformed SBPH in terms of error rate.

4) AIS Approaches: Oda et al. [16] designed an immunity
model for spam filtering. In their work, antibodies, which rep-
resented features in the model, were created by utilizing regular
expressions. As a result, each antibody could match a mass of
antigens (spam) which minimized the antibodies (features) set.
To mimic the functions of BIS, different weights were assigned
to antibodies. At the beginning of the approach, all the anti-
bodies’ weights were initialized to a default value. After a period
of running, the weights of the antibodies that had matched more
spam than legitimate e-mail, would increase. In contrast, other
ones would decrease for the antibodies that had matched more
legitimate e-mail. When weights fell below a predefined value,
the corresponding antibodies would be culled from the model.

Tan and Ruan [18], [19] proposed a concentration-based
feature construction (CFC) method, in which self-concentra-
tion and non-self-concentration were calculated by considering
terms in self and non-self libraries. The terms in the two
libraries were simply selected according to the tendencies of
terms. If a term tended to occur in legitimate e-mail, it would be
added to the self library. On the contrary, the terms tending to
occur in spam would be added to the non-self library. After the
construction of the two libraries, each message was transformed
to a two-element feature by calculating the self and non-self
concentrations of the message.

III. LC-BASED MODEL

A. Background

BIS is an adaptive distributed system with the capability of
discriminating “self cells” from “non-self cells.” It protects our
body from attacks of pathogens. Antibodies, produced by lym-
phocytes to detect pathogens, play core roles in the BIS. On the
surfaces of them, there are specific receptors which can bind
corresponding specific pathogens. Thus, antibodies can detect
and destroy pathogens by binding them. All the time, antibodies
circulate in our body and kill pathogens near them without any
central controlling node. In the BIS, two types of immune re-
sponse may happen: a primary response and a secondary re-
sponse. The primary response happens when a pathogen appears
for the first time. In this case, the antibodies with affinity to
the pathogen are produced slowly. After that, a corresponding
long-lived B memory cell (a type of lymphocyte) is created.
Then when the same pathogen appears again, a secondary re-
sponse is triggered, and a large amount of antibodies with high
affinity to that pathogen are proliferated.

Inspired by the functions and principles of BIS, AIS was
proposed in the 1990s as a novel computational intelligence
model [20]. In recent years, numerous AIS models have been
designed for spam filtering [7], [16]-[20]. One main purpose of
both BIS and AIS is to discriminate “self” from “non-self.” In
the anti-spam field, detectors (antibodies) are designed and cre-
ated to discriminate spam from legitimate e-mail, and the ways
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Fig. 1. Training and classification phases of the LC model. (a) Training phase
of the model. (b) Classification phase of the model.

of creation and manipulation of detectors are quite essential in
these AIS models.

In this paper, taking some inspiration from BIS and CFC [18],
[19], we propose an LC model, give a way of generating LC fea-
tures of messages, and apply different term selection methods
to the model. To mimic the functions of BIS, one key step is
to define corresponding antibodies in an application. In the LC
model for spam filtering, antibodies (spam genes and legitimate
e-mail genes) are extracted from messages through term selec-
tion methods and tendency decisions. In addition, the difference
between a primary response and a secondary response shows
that the local concentrations of antibodies play important roles
in immune behavior. Accordingly, we design two strategies of
calculating local concentrations for messages. As local concen-
trations of antibodies help detect antigens in BIS, it is reasonable
to believe that the proposed LC approach will provide discrim-
inative features for spam filtering.

B. Structure of LC Model

To incorporate the LC feature extraction approach into the
whole process of spam filtering, a generic structure of the LC
model is designed, as is shown in Fig. 1. The tokenization is a
simple step, where messages are tokenized into words (terms)
by examining the existence of blank spaces and delimiters,
while term selection, LC calculation and classification are quite
essential to the model:

1) Term selection: In the tokenization step of the training
phase, messages in the training corpus are transformed
into a huge number of terms, which would cause high
computational complexity. To reduce computational
complexity, term selection methods should be utilized
to remove less informative terms. Three term selection
methods—IG, TFV, and DF were, respectively, applied to
the LC model in our experiments. The experiments were
conducted to compare their performances, aiming to show
that the proposed model is compatible with various term
selection methods. In addition, the experiments could re-
flect the effectiveness of the three methods. For a detailed
introduction of term selection methods, please refer to
Section II-A.

2) LC calculation: In BIS, antibodies distribute and circu-
late in bodies. Meanwhile, they detect and destroy specific
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pathogens nearby. In a small area of a body, if the con-
centration of the antibodies with high affinity to a specific
pathogen increases above some threshold, the pathogen
would be destroyed. Thus, the local concentrations of an-
tibodies determine whether the corresponding pathogens
could be culled from the body. Inspired from this phe-
nomenon, we propose an LC-based feature extraction ap-
proach. A detail description and analysis of it can be found
in Section IV.

3) Classification: In the training phase, messages in the
training corpus are at first transformed into feature vectors
through the steps of tokenization, term selection, and
LC calculation. Then the feature vectors are taken as
the inputs of a certain classifier, after which a specific
classifier model is acquired. Finally, the classifier model
is applied to messages for classification. At this stage,
our main focus is on the proposal of the LC-based feature
extraction approach, so only SVM is adopted in the step of
classification. We will investigate the effects of different
classifiers on the performance of the model in the future.

IV. LC-BASED FEATURE EXTRACTION APPROACH

A. Motivation

Feature extraction approaches play quite important roles and
attract much attention from researchers in spam filtering. How-
ever, there exist two main problems in most current feature ex-
traction approaches, which are the high dimensionality of fea-
ture vectors and lack of consideration on the position related in-
formation. To address these two problems, we propose an LC
approach, by taking inspirations from BIS, where local con-
centrations of antibodies determine whether the corresponding
pathogens can be culled from the body. Mimicking BIS, mes-
sages are transformed into feature vectors of local concentra-
tions with respect to “antibodies.” Our LC approach consists of
two stages—detector sets (DS) generation and LC features con-
struction, which are elaborated in Sections IV-B and IV-C.

B. Term Selection and DS Generation

Algorithm 1 shows the process of term selection and DS
generation. The terms, generated by the step of tokenization,
are at first selected by utilizing one certain term selection
method, which can be any one of the approaches introduced
in Section II-A. In term selection, importance of terms is
measured by the criterion defined in the term selection method.
Then unimportant (uninformative) terms are removed, and
important terms are added to the preselected set which should
be initialized as an empty set at the beginning. The purposes of
term selection are to reduce the computational complexity of
the LC calculation step and reduce possible noises brought by
uninformative terms. The noises may occur when the uninfor-
mative terms are taken as discriminative features.

Algorithm 1 Term selection and DS generation

Initialize preselected set and DS as empty sets;

for each term in the terms set (generated by tokenization)
do

Calculate importance of the term according to a
certain term selection methods;
end for

Sort the terms in descending order of the importance;
Add the front m% terms to the preselected set;

for each term #; in the preselected set do
Calculate Tendency(t;) of the term ¢; according to (4);

if || P(t; | ci) — P(ti | ¢5) ||> 6. 6 = 0 then
ifP(?L, | Cl) — P(f, ‘ Cs) < 0 then
Add the term to D.S;;
else
Add the term to D Sy;
end if
else
Discard the term;
end if

end for

Taking the preselected set as a source, the DS are built based
on tendencies of terms. The tendency of a term ¢; is defined as
follows:

Tendency (¢;) = P(t; | 1) — Pt | ¢s) 4)
where P(#; | ¢) is the probability of #;’s occurrence, given
messages are legitimate e-mail, and P(¢; | ¢;) is defined simi-
larly, i.e., the probability of ¢;’s occurrence estimated in spam.
Tendency (£;) measures the difference between the term’s oc-
currence frequency in legitimate e-mail and that in spam. Ac-
cording to Algorithm 1, the terms, which occur more frequently
in spam than in legitimate e-mail, are added to the spam detector
set (DS;), in which the terms represent spam genes. On the con-
trary, the terms, tending to occur in legitimate e-mail, are added
to legitimate e-mail detector set (DS;), in which the terms rep-
resent legitimate genes. The two DS (DS, and DS;) are then
utilized to construct the LC-based feature vector of a message.

C. Construction of LC-Based Feature Vectors

To construct an LC-based feature vector for each message,
a sliding window of w,,-term length is utilized to slide over
the message with a step of w,,-term, which means that there
is neither gap nor overlap between any two adjacent windows.
At each movement of the window, a spam genes concentration
SC; and a legitimate genes concentration L.C; are calculated ac-
cording to the two DS and the terms in the window as follows:

N,
SC; = ==
v 5)
N
LC, = —
N (©)

where N; is the number of distinct terms in the window, NV,
is the number of the distinct terms in the window which have
been matched by detectors in DS, and N; is the number of
the distinct terms in the window which have been matched by
detectors in DS;.
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Algorithm 2 shows the construction process of a feature
vector. For the purpose of better understanding, we give an
example as follows.

Algorithm 2 Construction of an LC-based feature vector

Move a sliding window of w,,-term length over a given
message with a step of w,,-term;

for each position ¢ of the sliding window do
Calculate the spam genes concentration SC; of the
window according to (5);
Calculate the legitimate genes concentration LC; of the
window according to (6);

end for

Construct the feature vector likes:
((SC1,LC1), (8Cq, LCy), ..., (SC,,LC,)).

Suppose one message is “If you have any questions,
please feel free to contact us ...,” DSy = {free,any},
DS; = {If,you, questions, feel, to, contact}, and the pa-
rameter w, = 5. Then according to Algorithm 2, the first
window would be “If you have any questions”, SCy = 0.2, and
LC; = 0.6. Similarly, the second window would be “please
feel free to contact”, SCy = 0.2, and LCy = 0.6. The rest of
SC; and LC; can be calculated in the same way by continuing
to slide the window and do similar calculation. Finally, a feature
vector {(0.2,0.6), (0.2,0.6), ...) can be acquired.

D. Two Strategies of Defining Local Areas

In this section, we present two strategies for defining local
areas in messages—using a sliding window with fixed-length
(FL) and using a sliding window with variable-length (VL).

1) Using a Sliding Window With Fixed-Length: When a
fixed-length sliding window is utilized, messages may have
different numbers of local areas (corresponding to different
numbers of feature dimensionality), as messages vary in length.
To handle this problem, we design two specific processes for
dealing with the feature dimensionality of messages.

* Implementation for short messages: Suppose a short
message has a dimensionality of six, and its dimension-
ality should be expanded to ten. Two methods could be
utilized with linear time computational complexity. One
is to insert zeros into the end of the feature vector. For
example, a feature vector

((SC1,LCY), (SCs, LCy), (SCs, LC3))

can be expanded as
{(SC1,LCy), (8C2, LCs), (SC3,LC3), (0,0),(0,0)) .

The other is to reproduce the front features. For example,
the feature vector would be expanded as

((SC1,LCy), (SC2, LCy), (8C3, LC3), (SCy, LGy ),
(SCy, LCa)).

In our preliminary experiments, the latter one performed
slightly better. As we see, the reason is that the front fea-
tures contain more information than simple zeros. There-
fore, the second method is utilized in the LC model.

* Implementation for long messages: For long messages,
we reduce their dimensionality by discarding terms at the
end of the messages (truncation). The reason for choosing
this method is that we will not do much reduction of fea-
tures, but just do small adjustment so that all messages can
have the same feature dimensionality. One advantage of
it is that no further computational complexity would be
added to the model. Preliminary experiments showed that
the truncation performed well with no loss of accuracy for
the remaining features could provide quite enough infor-
mation for discrimination. It is shown in [30] and [31] that
truncation of long messages can both reduce the computa-
tional complexity and improve the overall performance of
algorithms.

In the model, we utilize both the two specific processes—im-
plementation for short messages and implementation for long
messages. We at first conduct parameter tuning experiments to
determine a fixed value for the feature dimensionality. Then, if
the dimensionality of a feature vector is greater than the value,
the first kind of process will be utilized. Otherwise, the second
one will be done. The parameter tuning experiments can ensure
that the two specific processes do not affect the overall perfor-
mance, and the LC model performs best with respect to the pa-
rameter of feature dimensionality.

2) Using a Sliding Window With Variable-Length: In this
strategy, the length of a sliding window is designed to be propor-
tional to the length of a message. Suppose we want to construct
a 2N -dimensional feature vector for each message. Then for an
M -term length message, the length of the sliding window would
be set to M/N-term for the message. In this way, all the mes-
sages can be transformed into 2/V-dimensional feature vectors
without loss of information.

E. Analysis of the LC Model

For the purpose of better understanding, we now analyze the
LC model from a statistical point of view. According to Algo-
rithm 1, each term ¢; in the DS, satisfies

Pt | a) > P(t; | ¢s). @)

Thus, the terms in legitimate e-mail are more likely to fall into
the DS;, compared to those in spam, i.c.,

P(tj € DS; | (31) > P(tj € DS; ‘ CS). (8)

According to Algrithm 2, the L.C; of a sliding window de-
pends on the number of terms (V;) falling into the DS;. From
a statistical point of view, the probable number of terms (V)

falling into the DS can be regarded as a good approximation of
binomial distribution, i.e.,

P(N, =)~ By(n,p),
Bi(n,p) = Crp"(1 —p)" 77,

)]
r=20,1,2,...,n (10)
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where p = P(t; € DS;) and n is the length of the sliding
window.

Then we can obtain the expectation value of N; for legitimate
e-mail as follows:
> rCrpr(1—p)t "
r=0
=np
TLP(tj € DS, | Cl).

E(N; | a)

(11)

Similarly, we can obtain the expectation value of N; for spam
as follows:

n

E(Ni | ) =) rCrpi(l = p)""

r=0
= nps
=nP(t; € DS; | cs). (12)
From (8), (11), and (12), we can obtain
E(IV[ | (31) > E(Nl | (35) (13)

which indicates that a sliding window in a legitimate e-mail
tends to contain more legitimate genes than a sliding window in
spam from a statistical point of view. Similarly, we can obtain
E(Ns | ¢1) < E(Ns | ¢;). Thus, an LC; of a legitimate e-mail
tends to be larger than that of spam, and an SC; of a legitimate
e-mail tends to be smaller than that of spam. In conclusion, the
LC model can extract discriminative features for classification
between spam and legitimate e-mail.

F. Evaluation Criteria

In spam filtering, many evaluation methods or criteria have
been designed for comparing performance of different filters
[24], [25]. We adopted four evaluation criteria, which were
spam recall, spam precision, accuracy, and [y measure, in all
our experiments to evaluate the goodness of different parameter
values and do a comparison between the LC approach and
some prevalent approaches. Among the criteria, accuracy and
I'4 measure are more important, for accuracy measures the
total number of messages correctly classified, and Fs is a
combination of spam recall and spam precision.

1) Spam recall: It measures the percentage of spam that can
be filtered by an algorithm or model. High spam recall en-
sures that the filter can protect the users from spam effec-
tively. It is defined as follows:

Ng—s
RS B Ny T Nt (14)
where ns_,s is the number of spam correctly classified,
and n;_,; is the number of spam mistakenly classified as
legitimate e-mail.

2) Spam precision: It measures how many messages, classi-
fied as spam, are truly spam. This also reflects the amount
of legitimate e-mail mistakenly classified as spam. The
higher the spam precision is, the fewer legitimate e-mail
have been mistakenly filtered. It is defined as follows:

MNs—s

Py=—"" (15)

Ng—s T Ny

where n;_, 5 is the number of legitimate e-mail mistakenly
classified as spam, and ns—. s has the same definition as in
(14).

3) Accuracy: To some extent, it can reflect the overall per-
formance of filters. It measures the percentage of messages
(including both spam and legitimate e-mail) correctly clas-
sified. It is defined as follows:

-1 + Ns—s
n; + Ny

A= (16)
where n;_,; is the number of legitimate e-mail correctly
classified, 15,5 has the same definition as in (14), and n;
and 7, are, respectively, the number of legitimate e-mail
and the number of spam in the corpus.

4) F'g measure: It is a combination of R, and FP;, assigning
a weight § to P,. It reflects the overall performance in
another aspect. Fg measure is defined as follows:

R, P,

FB:(1+’82)[£72P.+R,'

(17)
In our experiments, we adopted 5 = 1 as done in most
approaches [24]. In this case, it is referred to as /' measure.

In the experiments, the values of the four measures were all
calculated. However, only accuracy and F measure are used
for parameter selection and comparison of different approaches.

Because they can reflect overall performance of different ap-

proaches, and £} combines both R, and P. In addition, R and

P, respectively, reflect different aspects of the performance,

and they cannot reflect the overall performances of approaches,

separately. That is also the reason why the F}3 is proposed. We
calculated them just to show the components of F} in detail.

V. EXPERIMENTS

A. Experimental Corpora

We conducted experiments on five benchmark corpora PUI,
PU2, PU3, PUA [26], and Enron-Spam! [32], using cross vali-
dation. The corpora have been preprocessed with removal of at-
tachments, HTML tags, and header fields except for the subject.
In the four PU corpora, the duplicates were removed from the
corpora for duplicates may lead to over-optimistic conclusions
in experiments. In PU1 and PU2, only the duplicate spam, which
arrived on the same day, are deleted. While in PU3 and PUA, all
duplicates (both spam and legitimate e-mail) are removed, even
if they arrived on different days. In the Enron-Spam corpus, the
legitimate messages sent by the owners of the mailbox and du-
plicate messages have been removed to avoid over-optimistic
conclusions. Different from the former PU1 corpus (the one re-
leased in 2000) and Ling corpus, the corpora are not processed
with removal of stop words, and no lemmatization method is
adopted. The details of the corpora are given as follows.

1) PU1: The corpus includes 1099 messages, 481 messages
of which are spam. The ratio of legitimate e-mail to spam is
1.28. The preprocessed legitimate messages and spam are
all English messages, received by the first author of [26]
over 36 months and 22 months, respectively.

IThe five corpora are available from the web site: http://www.aueb.gr/users/
ion/publications.html.
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2) PU2: The corpus includes 721 messages, 142 messages of
which are spam. The ratio of legitimate e-mail to spam is
4.01. Similar to PU1, the preprocessed legitimate messages
and spam are all English messages, received by a colleague
of the authors of [26] over 22 months.

3) PU3: The corpus includes 4139 messages, 1826 messages
of which are spam. The ratio of legitimate e-mail to spam is
1.27. Unlike PU1 and PU2, the legitimate messages con-
tain both English and non-English ones, received by the
second author of [26]. While spam are derived from PU1,
SpamAssassin corpus and other sources.

4) PUA: The corpus includes 1142 messages, 572 messages
of which are spam. The ratio of legitimate e-mail to spam
is 1. Similar to PU3, the legitimate e-mail contain both
English and non-English messages, received by another
colleague of the authors of [26], and spam is also derived
from the same sources.

5) Enron-Spam: The corpus includes 33716 messages,
17 171 messages of which are spam. The overall ratio of
legitimate e-mail to spam is 0.96. It consists of six parts.
In the first three parts, the ratio of legitimate e-mail to
spam is about 3. While in the last three parts, the ratio
of legitimate e-mail to spam is about 0.33. Experiments
conducted on the whole Enron-Spam corpus using six-fold
cross validation can help investigate the generalization
performance of the model.

B. Experimental Setup

We conducted all the experiments on a PC with Intel E2140
CPU and 2G RAM. The SVM library LIBSVM is applied for
the implementation of the SVM [33].

C. Experiments of Parameter Selection

Experiments have been conducted to tune the parameters of
the LC model. In this section, we show and analyze the results of
experiments on tuning important parameters of the LC model.
All these experiments were conducted on PU1 corpus by uti-
lizing ten-fold cross-validation, and IG was used as the term
selection method of the models.

1) Selection of a Proper Tendency Threshold: Experiments
were conducted with varied tendency threshold # to investigate
the effects of @ on the performance of the LC model. As shown
in Fig. 2, the LC model performs well with small §. However,
with the increase of 6, the performance of the LC model de-
grades in terms of both accuracy and £} measure. As we see,
the term selection methods have already filtered the uninforma-
tive terms, thus the threshold is not quite necessary. In addition,
a great ¢ would result in loss of information. It is recommended
that 6 should be set to zero or a small value.

2) Selection of Proper Feature Dimensionality: For the LC
model using a fixed-length sliding window (LC-FL), short mes-
sages and long messages need to be processed specifically so
that all the messages can have the same feature dimensionality.
Before that, the feature dimensionality needs to be determined.
Therefore, we conducted experiments to determine the optimal
number of utmost front sliding windows for discrimination.
Fig. 3 depicts the results, from which we can see that the
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Fig. 2. Performance of the model with varied tendency threshold.
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Fig. 3. Performance of the LC-FL model with different window numbers.

model performed best when ten utmost front sliding windows
of each message were utilized for discrimination. In this case,
all the messages would be transformed into 20-dimensional
feature vectors through the specific process introduced in
Section IV-D1.

For the LC model using a variable-length sliding window
(LC-VL), all the messages are directly transformed into feature
vectors with the same dimensionality. However, there is still the
necessity for determining the feature dimensionality, which cor-
responds to the number of local areas in a message. We con-
ducted some preliminary experiments on PU1 and found that
the LC-VL model performed optimally when the feature dimen-
sionality was set to six or ten.

3) Selection of a Proper Sliding Window Size: For the LC-FL
model, the sliding window size is quite essential as it defines the
size of local area in a message. Only when the size of local area
is properly defined can we calculate discriminative LC vectors
for messages. Fig. 4 shows the performance of the LC-FL model
under different values of sliding window size. When the size
was set to 150 terms per window, the model performed best in
terms of both accuracy and £} measure. It also can be seen that
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the model performed acceptably when the parameter was set to
other values.

4) Selection of Optimal Terms Percentage: The phase of
term selection plays an important role in the LC model. The re-
moval of less informative terms can reduce computational com-
plexity and improve the overall performance of the model. We
conducted experiments to determine the percentage of terms re-
served after the phase of term selection. Therefore, the removal
of uninformative terms can be maximized while avoiding re-
moving informative ones.

Fig. 5 gives the results of the LC-FL model. When 50% terms
were reserved after term selection, the model performed best in
terms of both accuracy and £} measure. In the following exper-
iments, we set the parameter to 50% for both the LC-FL model
and the LC-VL model. We should pay attention to the fact that
the model performed quite well when only 10% terms were re-
served. This configuration can be applied to cost-sensitive situ-
ations.

D. Experiments of the Model With Three Term Selection
Methods

To construct discriminative feature vectors for messages,
both a term selection method and a feature extraction approach
play quite essential roles. To some extent, a feature extraction
approach depends on a proper term selection method. There-
fore, it is necessary to verify whether the proposed LC approach
can be incorporated with prevalent term selection methods.

We conducted comparison experiments of the model with
three term selection methods IG, TFV, and DF. All these exper-
iments were conducted on corpora PU1, PU2, PU3, and PUA
using ten-fold cross-validation, and on corpus Enron-Spam
using six-fold cross-validation. The performances of the LC-FL
strategy and the LC-VL strategy are listed in Tables II and III,
respectively. The two strategies performed quite well incorpo-
rated with any of these term selection methods. On one hand,
the experiments showed that the proposed LC strategies could
be incorporated with different term selection methods. On the
other hand, the experiments had also reflected the effectiveness
of the three term selection methods.

E. Comparison Between the LC Model and Current
Approaches

In this section, we compared the two LC strategies with some
prevalent approaches through the experiments on four PU cor-
pora using ten-fold cross-validation and on corpus Enron-Spam
using six-fold cross-validation. The approaches utilized in com-
parison are Naive Bayes-BoW, SVM-BoW [26], SVM-Global
Concentration (SVM-GC), SVM-LC-FL, and SVM-LC-VL.

In Naive Bayes-BoW and SVM-BoW, Naive Bayes and SVM
are utilized as their classifiers, respectively, BoW is utilized as
the feature extraction approach, and IG is used as the term selec-
tion method [26]. In both SVM-LC-FL and SVM-LC-VL, SVM
is utilized as their classifier. SVM-GC is a specific configuration
of SVM-LC, in which the sliding window size is set to infinite.
In such a case, each message is recognized as a whole window,
and a two-dimensional feature (including a spam genes concen-
tration and a legitimate genes concentration) is constructed for
each message. In this way, it is similar to the CFC approach [18],
[19]. The results of these experiments are shown in Table IV.

The comparison with Naive Bayes-BoW and SVM-BoW is
mainly to compare the two LC strategies with the prevalent
BoW approach. The results show that both of the two LC strate-
gies outperformed the BoW approach in accuracy and F; mea-
sure. As mentioned before, we take accuracy and F; measure
as comparison criteria without focusing on precision and recall.
Because they are incorporated into the calculation of F; mea-
sure, and can be reflected by the value of #; measure.

The comparison between the two LC strategies and SVM-GC
is to verify whether the two LC strategies can extract useful po-
sition-correlated information from messages. Both the two LC
strategies correspond different parts of a message to different
dimensions of the feature vector, while SVM-GC extracts po-
sition independent feature vectors from messages. As shown in
Table IV, both the two LC strategies outperformed SVM-GC
in accuracy and I measure, which verified that the proposed
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TABLE II

UTILIZING CROSS VALIDATION

EXPERIMENTS OF THE LC-VL MODEL WITH THREE DIFFERENT TERM SELECTION METHODS ON CORPORA PU1, PU2, PU3, PUA, AND ENRON-SPAM,

UTILIZING CROSS VALIDATION

Corpus Feature sel. Precision(%) Recall(%) Accuracy(%) F1(%) Feature dim.

IG 96.04 95.42 96.24 95.73 20

PU1 TFV 95.12 96.88 96.42 95.99 20
DF 94.38 96.67 95.96 95.51 20

1G 95.74 75.71 94.37 84.55 20

PU2 TFV 93.37 74.29 93.80 82.74 20
DF 90.86 82.86 94.79 86.67 20

1G 95.99 95.33 96.13 95.66 20

PU3 TFV 95.80 95.05 95.91 95.43 20
DF 95.15 95.99 96.00 95.57 20

IG 96.01 94.74 95.26 95.37 20

PUA TFV 95.83 94.39 9491 95.10 20
DF 95.25 94.56 94.74 94.90 20

1G 94.07 98.00 96.79 95.94 20

Enron-Spam TFV 93.73 98.10 96.80 95.79 20
DF 93.67 98.10 96.68 95.77 20

TABLE 111

Corpus Feature sel. Precision(%) Recall(%) Accuracy(%) F1(%) Feature dim.

1G 94.85 95.63 95.78 95.21 6

PUI TFV 95.48 96.04 96.24 95.72 6
DF 95.07 96.25 96.15 95.63 6

IG 95.74 77.86 94.79 85.16 6

PU2 TFV 94.43 79.29 94.79 85.47 6
DF 92.06 86.43 95.63 88.65 6

IG 96.68 94.34 96.03 95.45 6

PU3 TFV 96.46 94.29 95.91 95.32 6
DF 95.64 95.77 96.15 95.67 6

IG 95.60 94.56 94.91 94.94 6

PUA TFV 95.22 94.39 94.65 94.67 6
DF 95.95 93.33 94.56 94.52 6

1G 92.44 97.81 96.02 94.94 6

Enron-Spam TFV 92.07 97.88 95.90 94.77 6
DF 92.11 97.93 95.95 94.82 6

LC approach (including the LC-FL strategy and the LC-VL
strategy) could effectively extract position-correlated informa-
tion from messages.

Compared to BoW, the proposed LC strategies can greatly re-
duce feature vector dimensionality, and have advantages in pro-
cessing speed. As shown in Table V, the two LC strategies out-
performed the BoW approach significantly in terms of feature
dimensionality and processing speed. However, BoW obtained
poor performance when feature dimensionality was greatly re-
duced [26], while LC strategies performed quite promisingly
with a feature dimensionality of 20.

F. Discussion

In Section V-E, it is shown that both the LC-FL strategy and
the LC-VL strategy outperform the GC approach on all the cor-
pora. The success of the LC strategies is considered to lie in
two aspects. First, the LC strategies can extract position-corre-
lated information from a message by transforming each area of a
message to a corresponding feature dimension. Second, the LC

strategies can extract more information from messages, com-
pared to the GC approach. As the window size can be acquired
when the parameter of the LC strategies are determined, the
Global Concentration can be approximately expressed by the
weighted sum of Local Concentration, and the weights are cor-
related with the window size. However, the Local Concentration
cannot be deduced from Global Concentration. Thus, the Local
Concentration contains more information than the Global con-
centration does.

The essence of the LC strategies is the definition of local
areas for a message. As the local areas may vary with mes-
sage length, we conducted experimental analysis to see whether
drift of message length would affect the performance of the LC
strategies. The average message length of corpora PU1, PU2,
PU3, PUA, and Enron-Spam are 776 terms, 669 terms, 624
terms, 697 terms, and 311 terms, respectively. It can be seen
that the average message length of Enron-Spam is quite shorter
than the other four PU corpora. To further demonstrate the dif-
ference between Enron-Spam corpus and the PU corpora, the
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Corpus Approach Precision(%) Recall(%) Accuracy(%) F1(%) Feature dim.

Naive Bayes-BoW 89.58 99.38 94.59 94.23 600
SVM-BoW 93.96 95.63 95.32 94.79 600

PU1 SVM-GC 94.97 95.00 95.60 94.99 2
SVM-LC-FL 95.12 96.88 96.42 95.99 20

SVM-LC-VL 95.48 96.04 96.24 95.72 6
Naive Bayes-BoW 80.77 90.00 93.66 85.14 600
SVM-BoW 88.71 79.29 93.66 83.74 600

PU2 SVM-GC 95.12 76.43 94.37 84.76 2
SVM-LC-FL 90.86 82.86 94.79 86.67 20

SVM-LC-VL 92.06 86.43 95.63 88.65 6
Naive Bayes-BoW 93.59 94.84 94.79 94.21 600
SVM-BoW 96.48 94.67 96.08 95.57 600

PU3 SVM-GC 96.24 94.95 96.05 95.59 2
SVM-LC-FL 95.99 95.33 96.13 95.66 20

SVM-LC-VL 95.64 95.77 96.15 95.67 6
Naive Bayes-BoW 95.11 94.04 94.47 94.57 600
SVM-BoW 92.83 93.33 92.89 93.08 600

PUA SVM-GC 96.03 93.86 94.82 94.93 2
SVM-LC-FL 96.01 94.74 95.26 95.37 20

SVM-LC-VL 95.60 94.56 94.91 94.94 6
Naive Bayes-BoW 79.34 99.17 88.41 87.32 600
SVM-BoW 90.88 98.87 95.13 94.62 600

Enron-Spam SVM-GC 91.48 97.81 95.62 94.39 2
SVM-LC-FL 94.07 98.00 96.79 95.94 20

SVM-LC-VL 92.44 97.81 96.02 94.94 6

TABLE V
PROCESSING SPEED OF THE APPROACHES
Approach Naive Bayes-BoW | SVM-BoW | Naive Bayes-BoW | SVM-BoW | SVM-GC | SVM-LC-FL | SVM-LC-VL
Seconds/email 0.2 0.5 3 5 0.06 0.07 0.06
Feature dim. 120 120 600 600 2 20 6

Cumulative Distribution Function (CDF) of the message length
in PU1 corpus and Enron-Spam corpus are depicted in Fig. 6.

Even though the message length distribution in Enron-Spam
corpus is quite different from that of PU corpora, it is shown in
Section V-E that the LC strategies perform well on both Enron-
Spam corpus and PU corpora. Thus, a preliminary conclusion
can be drawn that the LC strategies are robust against variable
message length, and the coexistence of short messages and long
messages does not decrease the performance of the LC strate-
gies. As long as the average message length is larger than the
size of a window, the LC strategies can extract Local Concen-
tration from messages. When almost all the messages become
shorter than a window, the performance of the LC strategies
would decay and become equivalent to that of the GC approach.
However, the window size could be tuned accordingly when the
message length changes too much. In that way, the LC strategies
can still extract Local Concentration from messages with vari-
able length. In future, we intend to focus on developing adaptive
LC approaches, so that the definition of local area can be auto-
matically adapted to the change of message length.

VI. CONCLUSION

We have proposed an LC approach for extracting local-con-
centration-features for messages. Two implementation strate-

gies of the approach, namely the LC-FL strategy and the
LC-VL strategy, have been designed. Extensive experiments
have shown that the proposed LC strategies have quite
promising performance and advantage in the following aspects.

1) Utilizing sliding windows, both the two LC strategies can
effectively extract the position-correlated information for
messages.

2) The LC strategies cooperate well with three term selection
methods, which endows the LC strategies with flexible ap-
plicability in real world.

3) Compared to the prevalent BoW approach and the GC ap-
proach, the two LC strategies perform better in terms of
both accuracy and F measure.

4) The LC strategies can greatly reduce feature dimension-
ality and have much faster speed, compared to the Bow
approach.

5) The LC strategies are robust against messages with vari-
able message length.

In future work, we intend to incorporate other classifiers into
the LC model and investigate their performance under these
configurations. In addition, we hope the model can be devel-
oped as an adaptive anti-spam system, by taking into account
the drift of spam content and the changing interests of users.
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Fig. 6. CDF curves of message length in PU1 corpus and Enron-Spam corpus.
(a) CDF curve of message length in PU1 corpus. (b) CDF curve of message
length in Enron-Spam corpus.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and
anonymous reviewers for providing insightful comments and
constructive suggestions that greatly helped improving the
quality of this paper.

REFERENCES

[1] Commtouch, Q4 2008 Internet Threats Trend Report Jan. 2009
[Online].  Available:  http://www.pallas.com/fileadmin/img/con-
tent/publikationen/Commtouch-Pallas_2008_ Q4 In-
ternet_Threats Trend Report.pdf

[2] R.Jennings, Cost of Spam is Flattening—Our 2009 Predictions Ferris
Research, Jan. 2009 [Online]. Available: http://www.ferris.com/
2009/01/28/cost-of-spam-is-flattening-our-2009-predictions/

[3] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, A Baysian Ap-
proach to Filtering Junk e-mail AAAI Tech. Rep. WS-98-05, 1998, pp.
55-62.

[4] R.Segal, “Combining global and personal anti-spam filtering,” in Proc.
4th Conf. Email and Anti-spam (CEAS”07),2007] Please pro-
vide ;mge range or location of confer-

enceyf.

[5] A. Ciltik and T. Gungor, “Time-efficient spam e-mail filtering using
n-gram models,” Pattern Recognit. Lett., vol. 29, no. 1, pp. 19-33,
2008.

[6] H. Drucker, D. Wu, and V. Vapnik, “Support vector machines for
spam categorization,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp.
1048-1054, Sep. 1999.

[7] G. Ruan and Y. Tan, “Intelligent detection approaches for spam,” in
Proc. Third Int. Conf. Natural Computation (ICNC07), Haikou, China,
2007, pp. 1-7.

[8] S. Bickel and T. Scheffer, “Dirichlet-enhanced spam filtering based on
biased samples,” Adv. Neural Inf. Process. Syst., vol. 19, pp. 161-168,
2007.

[9] 1. Kanaris, K. Kanaris, I. Houvardas, and E. Stamatatos, “Words versus
character N-grams for anti-spam filtering,” Int. J. Artif. Intell. T., vol.
16, no. 6, pp. 1047-1067, 2007.

[10] I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C. D. Spy-
ropoulos, and P. Stamatopoulos, “Learning to filter spam e-mail: A
comparison of a naive bayesian and a memory-based approach,” in
Proc. Workshop “Machine Learning and Textual Information Access,”
4th Eur. Conf. Principles and Practice of Knowledge Discovery in
Databases (PKDD’ 00), 2000, pp. 1-13.

[11] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. D. Spy-
ropoulos, and P. Stamatopoulos, “A memory-based approach to anti-
spam filtering for mailing lists,” Inform. Retrieval, vol. 6, no. 1, pp.
49-73, 2003.

[12] J. Clark, I. Koprinska, and J. Poon, “A neural network based approach
to automated e-mail classification,” in Proc. IEEE Int. Conf. Web In-
telligence (WI’ 03), Halifax, Canada, 2003, pp. 702-705.

[13] C.-H. Wu, “Behavior-based spam detection using a hybrid method of
rule-based techniques and neural networks,” Expert Syst. Appl., vol.
36, no. 3, pp. 4321-4330, Apr. 2009.

[14] X. Carreras and L. Marquez, “Boosting trees for anti-spam email fil-
tering,” in Proc. 4th Int. Conf. Recent Advances in Natural Language
Processing (RANLP’ 01), 2001, pp. 58—64.

[15] J. R. He and B. Thiesson, “Asymmetric gradient boosting with ap-
plication to spam filtering,” in Proc. 4th Conf. Email and Anti-spam

(ce4s07), 2001 Please provide page range or

location of conference].

[16] T. Oda and T. White, “Developing an immunity to spam,” Lecture
Notes Comput. Sci. (LNCS), pp. 231-242, 2003.

[17] T. S. Guzella, T. A. Mota-Santos, J. Q. Uchda, and W. M. Caminhas,
“Identification of spam messages using an approach inspired on the
immune system,” Biosystems, vol. 92, no. 3, pp. 215-225, Jun. 2008.

[18] Y. Tan, C. Deng, and G. Ruan, “Concentration based feature con-
struction approach for spam detection,” in Proc. IEEE Int. Joint Conf.
Neural Networks (IJCNN2009), Atlanta, GA, Jun. 14-19, 2009, pp.
3088-3093.

[19] G. Ruan and Y. Tan, “A three-layer back-propagation neural net-
work for spam detection using artificial immune concentration,” Soft
Comput., vol. 14, pp. 139-150, 2010.

[20] D. Dasgupta, “Advances in artificial immune systems,” IEEE Comput.
Intell. Mag., vol. 1, no. 4, pp. 40-49, Nov. 2006.

[21] Wikipedia [Online]. Available: http://en.wikipedia.org/wiki/Informa-
tion_gain

[22] 1. Koprinska, J. Poon, J. Clark, and J. Chan, “Learning to classify
e-mail,” Inform. Sci., vol. 177, pp. 2167-2187, 2007.

[23] Y. Yang and J. O. Pedersen, “A comparative study on feature selec-
tion in text categorization,” in Proc. Int. Conf. Machine Learning
(ICML’97), 1997, pp. 412-420.

[24] T. S. Guzella and M. Caminhas, “A review of machine learning
approaches to spam filtering,” Expert Syst. Appl., vol. 36, pp.
10206-10222, 2009.

[25] E. Blanzieri and A. Bryl, A Survey of Learning-Based Techniques of
e-mail Spam Filtering University of Trento, Information Engineering
and Computer Science Department, Trento, Italy, Tech. Rep. DIT-06-
065, Jan. 2008.

[26] 1. Androutsopoulos, G. Paliouras, and E. Michelakis, Learning to
Filter Unsolicited Commercial E-mail NCSR “Demokritos” Tech.
Rep. 2004/2, Oct. 2006, minor corrections.



12 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 2, JUNE 2011

[27] K.-M. Schneider, “A comparison of event models for naive bayes anti-
spam e-mail filtering,” in Proc. 10th Conf. Eur. Chapter of the Associ-
ation for Computational Linguistics, 2003, pp. 307-314.

[28] W.S. Yerazunis, “Sparse binary polynomial hashing and the CRM114
discriminator,” in Proc. 2003 Spam Conf., Cambrige, MA, 2003.

[29] C. Siefkes, F. Assis, S. Chhabra, and W. S. Yerazunis, “Combining
winnow and orthogonal sparse bigrams for incremental spam filtering,”
Lecture Notes Comput. Sci., vol. 3202/2004, pp. 410-421, 2004.

[30] G. V. Cormack, “Content-based web spam detection,” in Proc. 3rd Int.
Workshop Adversarial Inforr.nation Retrieval on the Web (AIRWeb’07),

2007/ Please provide page range or loca-

tion of conferencef

[31] D. Sculley, “Advances in Online Learning-Based Spam Filtering,”
Ph.D. dissertation, Tufts Univ., Somerville, MA, 2008.

[32] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam filtering with
naive bayes—Which naive bayes?,” in Proc. 3rd Conf. Email and Anti-
Spam (CEAS’06), Mountain View, CA, 2006, pp. 125-134.

[33] C.-C. Changand C.-J. Lin, LIBSVM: a Library for Support Vector Ma-
chines [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm

>

Yuanchun Zhu received the B.S. degree in com-
puter science and the B.A. degree in English from
Jilin University, Jilin, China, in 2007. He is currently
majoring in computer science and working towards
the Ph.D. degree at Key Laboratory of Machine
Perception (Ministry of Education) and Department
of Machine Intelligence, EECS, Peking University,
Beijing.

His research interests include machine learning,
swarm intelligence, AIS, bioinformatics, informa-
tion processing, and pattern recognition.

Ying Tan (M’98-SM’02) received the B.S., M.S.,
and Ph.D. degrees in signal and information pro-
cessing from Southeast University, Nanjing, China,
in 1985, 1988, and 1997, respectively.

Since then, he became a Postdoctoral Fellow and
then an Associate Professor at the University of Sci-

e ence and Technology of China. He was a Full Pro-
fessor, advisor of Ph.D. candidates, and Director of
the Institute of Intelligent Information Science of his

\ ~  university. He worked with the Chinese University

of Hong Kong in 1999 and in 2004-2005. He was an
electee of 100 talent program of the Chinese Academy of Science in 2005. Now,
he is a Full Professor, advisor of Ph.D. candidates at the Key Laboratory of Ma-
chine Perception (Ministry of Education), Peking University, and Department
of Machine Intelligence, EECS, Peking University, and he is also the head of
Computational Intelligence Laboratory (CIL) of Peking University. He has au-
thored or coauthored more than 200 academic papers in refereed journals and
conferences and several books and book chapters. His current research inter-
ests include computational intelligence, artificial immune system, swarm intel-
ligence and data mining, signal and information processing, pattern recognition,
and their applications.

Dr. Tan is Associate Editor of the International Journal of Swarm Intelli-
gence Research and the IES Journal B, Intelligent Devices and Systems, and
Associate Editor-in-Chief of the International Journal of Intelligent Informa-
tion Processing. He is a member of the Advisory Board of the International
Journal on Knowledge Based Intelligent Engineering System and the Editorial
Board of the Journal of Computer Science and Systems Biology and Applied
Mathematical and Computational Sciences. He is also the Editor of Springer
Lecture Notes on Computer Science, LNCS 5263, 5264, 6145, and 6146, and
Guest Editor of special issues of several journals including /nformation Science,
Soft Computing, International Journal of Artificial Intelligence, etc. He was the
general chair of the International Journal on Swarm Intelligence (ICSI 2010,
ICSI 2011) and the program committee chair of ISNN2008. He was honored
the second-class National Natural Science Award of China in 2009.




IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 2, JUNE 2011 1

A Local-Concentration-Based Feature Extraction
Approach for Spam Filtering

Yuanchun Zhu and Ying Tan, Senior Member, IEEE

Abstract—Inspired from the biological immune system, we
propose a local concentration (LC)-based feature extraction
approach for anti-spam. The LC approach is considered to be
able to effectively extract position-correlated information from
messages by transforming each area of a message to a corre-
sponding LC feature. Two implementation strategies of the LC
approach are designed using a fixed-length sliding window and a
variable-length sliding window. To incorporate the L.C approach
into the whole process of spam filtering, a generic LC model is
designed. In the LC model, two types of detector sets are at first
generated by using term selection methods and a well-defined
tendency threshold. Then a sliding window is adopted to divide
the message into individual areas. After segmentation of the
message, the concentration of detectors is calculated and taken
as the feature for each local area. Finally, all the features of local
areas are combined as a feature vector of the message. To evaluate
the proposed LC model, several experiments are conducted on five
benchmark corpora using the cross-validation method. It is shown
that the LC approach cooperates well with three term selection
methods, which endows it with flexible applicability in the real
world. Compared to the global-concentration-based approach and
the prevalent bag-of-words approach, the LC approach has better
performance in terms of both accuracy and F, measure. It is also
demonstrated that the LC approach is robust against messages
with variable message length.

Index Terms—Artificial immune system (AIS), bag-of-words
(BoW), feature extraction, global concentration (GC), local con-
centration (LC), spam filtering.

I. INTRODUCTION

PAM, also referred to as unsolicited commercial e-mail
(UCE) or unsolicited bulk e-mail (UBE), has caused quite
a few problems to our daily-communications life. Specifically, it
occupies great resources (including network bandwidth, storage
space, etc.), wastes users’ time on removing spam from e-box,
and costs much money for a loss of productivity. According to
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the statistics from Commtouch [1], spam made up 72% of the
total e-mail traffic on average throughout the fourth quarter in
2008, and peaked at 94% in October. Ferris Research revealed
its 2009 estimates for the cost of spam in [2]: spam would cost
$130 billion worldwide, which was a 30% raise over the 2007
estimates. It also pointed out that three components constituted
the total cost: user productivity cost, help desk cost, and spam
control cost. Among them, user productivity cost took up the
major portion, which contributed to 85% of the total cost.

To address the problem of spam filtering, many approaches
have been proposed to filter spam from e-mail traffic. There are
three main related research fields for anti-spam, namely term
selection, feature extraction, and classifier design. In the field of
classifier design, many machine learning (ML) methods are de-
signed and applied to automatically filter spam. Some prevalent
ML methods for spam filtering are naive bayes (NB) [3]-[5],
support vector machine (SVM) [6]-[9], k-nearest neighbor
(k-NN) [10], [11], artificial neural network (ANN) [12], [13],
boosting [14], [15], and artificial immune system (AIS) [7],
[16]-[20]. As the performance of an ML method depends on
the extraction of discriminative feature vectors, feature extrac-
tion methods are crucial to the process of spam filtering. The
researches of term selection and feature extraction have also
attracted much attention from researchers all over the world. A
description and analysis of current term selection methods and
feature extraction approaches are given in Section II.

In this paper, we propose a local concentration (LC)-based
feature extraction approach for anti-spam by taking inspiration
from the biological immune system (BIS). The LC approach
is considered to be able to effectively extract position-corre-
lated information from messages by transforming each area of
a message to a corresponding LC feature. Two implementation
strategies of the LC approach are designed using a fixed-length
sliding window and a variable-length sliding window. To incor-
porate the LC approach into the whole process of spam filtering,
a generic LC model is designed and presented. The performance
of the LC approach is investigated on five benchmark corpora
PU1, PU2, PU3, PUA, and Enron-Spam. Meanwhile, accuracy
and F| measure are utilized as evaluation criteria in analyzing
and discussing the results.

The remainder of the paper is organized as follows. In
Section II, we introduce the current term selection methods
and feature extraction approaches. The LC-based model and
the LC-based feature extraction approach are presented in
Sections IIT and IV, respectively. In Section V, we give the
descriptions of the copra and experimental setup, and analyze
the results of the validation experiments in detail. Finally, the
conclusions are given in Section VI.

1556-6013/$26.00 © 2010 IEEE
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II. RELATED WORKS

This section gives a brief overview of current term selection
methods and prevalent feature extraction approaches, both of
which have close relationship with our work.

A. Term Selection Methods

1) Information Gain (IG): In information theory, IG, also
referred to as Kullback—Leibler distance [21], measures the dis-
tance between two probability distributions P(x) and Q(x). In
the study of spam filtering, it is utilized to measure the goodness
of a given term, i.e., the acquired information for e-mail classi-
fication by knowing the presence or absence of a given term ?;.
The IG of a term ¢; is defined as

2
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where C' denotes an e-mail’s class (¢; and ¢; are the spam class
and the legitimate e-mail class, respectively), and 7" denotes
whether the term ¢; appears in the e-mail (¢; and {; means the
presence and the absence of the term ¢;, respectively). All the
probabilities are estimated from the entire training set of mes-
sages.

2) Term Frequency Variance (TFV): Koprinska et al. [22]
developed a TFV method to select the terms with high variance
which were considered to be more informative. For terms oc-
curring in training corpus, the ones occurring predominantly in
one category (spam or legitimate e-mail) would be retained. In
contrast, the ones occurring in both categories with comparable
term frequencies would be removed. In the field of spam fil-
tering, TFV can be defined as follows:

Y (Tt ) = T (2)
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where T (t;, C') is the term frequency of ¢; calculated with re-
spect to category C', and Tf“ (t;) is the average term frequencies
calculated with respect to both categories.

It was shown in [22] that TFV outperformed IG in most
cases. However, the comparison between the top 100 terms
with highest IG scores and the top 100 terms with highest TFV
scores showed that those terms had the same characteristics
as follows: 1) occurring frequently in legitimate, linguistic
oriented e-mail, and 2) occurring frequently in spam e-mail but
not in legitimate e-mail.

3) Document Frequency (DF): Calculated as the number of
documents in which a certain term occurs, DF is a simple but
effective way for term selection. According to the DF method,
the terms whose DF is below a predefined threshold are removed
from the set of terms. The DF of a term ¢; is defined as follows:

D(t;) = {m; | m; € M,and t; € m; }| (3

where M denotes the entire training set of messages, and m; is
a message in M.

The essence of DF is to remove rare terms. According to its
assumption, rare terms provide little information for classifica-
tion, so the elimination of them does not affect overall perfor-

TABLE I
THREE OTHER TERM SELECTION METHODS
Method Expression
2 atiert 20, o — IM[(P(t;.c)P(t;,0)—P(t;,0) P(t;,0)°
X" statistic X (tis ) = o 'Pl(t%?t‘lgp(c)#(a) '
gl DN Li e — tilc
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Term strength S(t;) = P(t; € y|t; € x)

mance. As shown in [23], the performance of DF was compa-
rable to that of IG and y? statistic (CHI) with up to 90% term
elimination. One major advantage of DF is that its computa-
tional complexity increases linearly with the number of training
messages.

4) Other Term Selection Methods: Term selection methods
play quite important roles in spam filtering. Besides IG, TFV,
and DF, there are many other methods to measure term im-
portance. For better understanding and comparison, three other
common ones [23]-[25] are also listed in Table I, where ¢ €
{s,1} is a given category, and ¢ = {s,{}\c. In the term strength
method, 2 and y are an arbitrary pair of distinct but related mes-
sages (falling in the same category) in the training corpus. All
other variables have the same definitions as those in previous
equations.

B. Feature Extraction Approaches

1) Bag-of-Words (BoW): BoW, also referred to as the vector
space model, is one of the most popular feature extraction
methods in spam filtering applications [24]. It transforms a
message to a d-dimensional vector (&, x>, ...,x,) by con-
sidering the occurrence of preselected terms, which have been
selected by utilizing a term selection method. In the vector,
x; can be viewed as a function of the term #;’s occurrence
in the message. There are mainly two types of representation
about z;: Boolean type and frequency type [26]. In the case of
Boolean type, x; is assigned to 1 if ¢; occurs in the message,
otherwise ‘it is assigned to 0. While in the case of frequency
type, the value of z; is calculated as the term frequency of ¢;
in the message. Schneider [27] showed that the two types of
representation performed comparably in his experiments.

2) Sparse Binary Polynomial Hashing (SBPH): SBPH is a
method to extract a large amount of different features in e-mail
feature extraction [28], [29]. An /N -term-length sliding window
is shifted over the incoming message with a step of one term. At
each movement, 2V ~! features are extracted from the window
of terms in the following ways. The newest term of the window
is always retained, and the other terms in the window are re-
moved or retained so that the whole window is mapped to dif-
ferent features. SBPH performed quite promisingly in terms of
classification accuracy as it could extract enough discriminative
features. However, so many features would lead to a heavy com-
putational burden and limit its usability.

3) Orthogonal Sparse Bigrams (OSB): To reduce the redun-
dancy and complexity of SBPH, Siefkes et al. [29] proposed
OSB for extracting a smaller set of features. The OSB method
also utilizes a sliding window of N -term-length to extract fea-
tures. However, different from the SBPH, only term-pairs with
a common term in a window are considered. For each window
of terms, the newest term is retained, then one of other terms is
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selected to be retained while the rest of terms are removed. After
that, the remaining term-pair is mapped to a feature. There-
fore, N — 1 features would be extracted from a window of
N -term-length, which greatly reduce the number of features
compared to SBPH. The experiments in [29] showed that OSB
slightly outperformed SBPH in terms of error rate.

4) AIS Approaches: Oda et al. [16] designed an immunity
model for spam filtering. In their work, antibodies, which rep-
resented features in the model, were created by utilizing regular
expressions. As a result, each antibody could match a mass of
antigens (spam) which minimized the antibodies (features) set.
To mimic the functions of BIS, different weights were assigned
to antibodies. At the beginning of the approach, all the anti-
bodies’ weights were initialized to a default value. After a period
of running, the weights of the antibodies that had matched more
spam than legitimate e-mail, would increase. In contrast, other
ones would decrease for the antibodies that had matched more
legitimate e-mail. When weights fell below a predefined value,
the corresponding antibodies would be culled from the model.

Tan and Ruan [18], [19] proposed a concentration-based
feature construction (CFC) method, in which self-concentra-
tion and non-self-concentration were calculated by considering
terms in self and non-self libraries. The terms in the two
libraries were simply selected according to the tendencies of
terms. If a term tended to occur in legitimate e-mail, it would be
added to the self library. On the contrary, the terms tending to
occur in spam would be added to the non-self library. After the
construction of the two libraries, each message was transformed
to a two-element feature by calculating the self and non-self
concentrations of the message.

III. LC-BASED MODEL

A. Background

BIS is an adaptive distributed system with the capability of
discriminating “self cells” from “non-self cells.” It protects our
body from attacks of pathogens. Antibodies, produced by lym-
phocytes to detect pathogens, play core roles in the BIS. On the
surfaces of them, there are specific receptors which can bind
corresponding specific pathogens. Thus, antibodies can detect
and destroy pathogens by binding them. All the time, antibodies
circulate in our body and kill pathogens near them without any
central controlling node. In the BIS, two types of immune re-
sponse may happen: a primary response and a secondary re-
sponse. The primary response happens when a pathogen appears
for the first time. In this case, the antibodies with affinity to
the pathogen are produced slowly. After that, a corresponding
long-lived B memory cell (a type of lymphocyte) is created.
Then when the same pathogen appears again, a secondary re-
sponse is triggered, and a large amount of antibodies with high
affinity to that pathogen are proliferated.

Inspired by the functions and principles of BIS, AIS was
proposed in the 1990s as a novel computational intelligence
model [20]. In recent years, numerous AIS models have been
designed for spam filtering [7], [16]-[20]. One main purpose of
both BIS and AIS is to discriminate “self” from “non-self.” In
the anti-spam field, detectors (antibodies) are designed and cre-
ated to discriminate spam from legitimate e-mail, and the ways
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Fig. 1. Training and classification phases of the LC model. (a) Training phase

of the model. (b) Classification phase of the model.

of creation and manipulation of detectors are quite essential in
these AIS models.

In this paper, taking some inspiration from BIS and CFC [18],
[19], we propose an LC model, give a way of generating LC fea-
tures of messages, and apply different term selection methods
to the model. To mimic the functions of BIS, one key step is
to define corresponding antibodies in an application. In the LC
model for spam filtering, antibodies (spam genes and legitimate
e-mail genes) are extracted from messages through term selec-
tion methods and tendency decisions. In addition, the difference
between a primary response and a secondary response shows
that the local concentrations of antibodies play important roles
in immune behavior. Accordingly, we design two strategies of
calculating local concentrations for messages. As local concen-
trations of antibodies help detect antigens in BIS, it is reasonable
to believe that the proposed LC approach will provide discrim-
inative features for spam filtering.

B. Structure of LC Model

To incorporate the L.C feature extraction approach into the
whole process of spam filtering, a generic structure of the LC
model is designed, as is shown in Fig. 1. The tokenization is a
simple step, where messages are tokenized into words (terms)
by examining the existence of blank spaces and delimiters,
while term selection, LC calculation and classification are quite
essential to the model:

1) Term selection: In the tokenization step of the training
phase, messages in the training corpus are transformed
into a huge number of terms, which would cause high
computational complexity. To reduce computational
complexity, term selection methods should be utilized
to remove less informative terms. Three term selection
methods—IG, TFV, and DF were, respectively, applied to
the LC model in our experiments. The experiments were
conducted to compare their performances, aiming to show
that the proposed model is compatible with various term
selection methods. In addition, the experiments could re-
flect the effectiveness of the three methods. For a detailed
introduction of term selection methods, please refer to
Section II-A.

2) LC calculation: In BIS, antibodies distribute and circu-
late in bodies. Meanwhile, they detect and destroy specific
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pathogens nearby. In a small area of a body, if the con-
centration of the antibodies with high affinity to a specific
pathogen increases above some threshold, the pathogen
would be destroyed. Thus, the local concentrations of an-
tibodies determine whether the corresponding pathogens
could be culled from the body. Inspired from this phe-
nomenon, we propose an LC-based feature extraction ap-
proach. A detail description and analysis of it can be found
in Section IV.

3) Classification: In the training phase, messages in the
training corpus are at first transformed into feature vectors
through the steps of tokenization, term selection, and
LC calculation. Then the feature vectors are taken as
the inputs of a certain classifier, after which a specific
classifier model is acquired. Finally, the classifier model
is applied to messages for classification. At this stage,
our main focus is on the proposal of the LC-based feature
extraction approach, so only SVM is adopted in the step of
classification. We will investigate the effects of different
classifiers on the performance of the model in the future.

IV. LC-BASED FEATURE EXTRACTION APPROACH

A. Motivation

Feature extraction approaches play quite important roles and
attract much attention from researchers in spam filtering. How-
ever, there exist two main problems in most current feature ex-
traction approaches, which are the high dimensionality of fea-
ture vectors and lack of consideration on the position related in-
formation. To address these two problems, we propose an LC
approach, by taking inspirations from BIS, where local con-
centrations of antibodies determine whether the corresponding
pathogens can be culled from the body. Mimicking BIS, mes-
sages are transformed into feature vectors of local concentra-
tions with respect to “antibodies.” Our LC approach consists of
two stages—detector sets (DS) generation and LC features con-
struction, which are elaborated in Sections IV-B and IV-C.

B. Term Selection and DS Generation

Algorithm 1 shows the process of term selection and DS
generation. The terms, generated by the step of tokenization,
are at first selected by utilizing one certain term selection
method, which can be any one of the approaches introduced
in Section II-A. In term selection, importance of terms is
measured by the criterion defined in the term selection method.
Then unimportant (uninformative) terms are removed, and
important terms are added to the preselected set which should
be initialized as an empty set at the beginning. The purposes of
term selection are to reduce the computational complexity of
the LC calculation step and reduce possible noises brought by
uninformative terms. The noises may occur when the uninfor-
mative terms are taken as discriminative features.

Algorithm 1 Term selection and DS generation

Initialize preselected set and DS as empty sets;

for each term in the terms set (generated by tokenization)
do

Calculate importance of the term according to a
certain term selection methods;
end for

Sort the terms in descending order of the importance;
Add the front m% terms to the preselected set;

for each term #; in the preselected set do
Calculate Tendency(t;) of the term ¢; according to (4);

if|| P(¢; | 1) — P(t; | ¢5) ||> 0,6 2 0 then
if P(t; | ¢;) — P(t; | ¢s) < 0 then
Add the term to D.S;;
else
Add the term to D.S;;
end if
else
Discard the term;
end if

end for

Taking the preselected set as a source, the DS are built based
on tendencies of terms. The tendency of a term ¢; is defined as
follows:

Tendency(t;) = P(t; | ) — P(t; | ¢5) 4)

where P(t; | ¢;) is the probability of ¢;’s occurrence, given
messages are legitimate e-mail, and P(%; | ¢,) is defined simi-
larly, i.e., the probability of £;’s occurrence estimated in spam.
Tendency(¢;) measures the difference between the term’s oc-
currence frequency in legitimate e-mail and that in spam. Ac-
cording to Algorithm 1, the terms, which occur more frequently
in spam than in legitimate e-mail, are added to the spam detector
set (DS,), in which the terms represent spam genes. On the con-
trary, the terms, tending to occur in legitimate e-mail, are added
to legitimate e-mail detector set (DS;), in which the terms rep-
resent legitimate genes. The two DS (DS, and DS,;) are then
utilized to construct the LC-based feature vector of a message.

C. Construction of LC-Based Feature Vectors

To construct an LC-based feature vector for each message,
a sliding window of w,-term length is utilized to slide over
the message with a step of w,,-term, which means that there
is neither gap nor overlap between any two adjacent windows.
At each movement of the window, a spam genes concentration
SC; and a legitimate genes concentration LC; are calculated ac-
cording to the two DS and the terms in the window as follows:

&)

(6)

where N; is the number of distinct terms in the window, N,
is the number of the distinct terms in the window which have
been matched by detectors in DS,, and N, is the number of
the distinct terms in the window which have been matched by
detectors in DS;.
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Algorithm 2 shows the construction process of a feature
vector. For the purpose of better understanding, we give an
example as follows.

Algorithm 2 Construction of an LC-based feature vector

Move a sliding window of w,, -term length over a given
message with a step of w,, -term;

for each position ¢ of the sliding window do
Calculate the spam genes concentration SC; of the
window according to (5);
Calculate the legitimate genes concentration LC; of the
window according to (6);

end for

Construct the feature vector likes:
((SC1,LCY), (SC2, LCy), ..., (SCp, LCy)).

Suppose one message is “If you have any questions,
please feel free to contact us ...,” DS, = {free,any},
DS; = {If,you, questions, feel, to, contact}, and the pa-
rameter w, = 5. Then according to Algorithm 2, the first
window would be “If you have any questions”,SC; = 0.2, and
LCs = 0.6. Similarly, the second window would be “please
feel free to contact”, SCs = 0.2, and LCy = 0.6. The rest of
SC,; and LC; can be calculated in the same way by continuing
to slide the window and do similar calculation. Finally, a feature
vector {(0.2,0.6),(0.2,0.6),...) can be acquired.

D. Two Strategies of Defining Local Areas

In this section, we present two strategies for defining local
areas in messages—using a sliding window with fixed-length
(FL) and using a sliding window with variable-length (VL).

1) Using a Sliding Window With Fixed-Length: When a
fixed-length sliding window is utilized, messages may have
different numbers of local areas (corresponding to different
numbers of feature dimensionality), as messages vary in length.
To handle this problem, we design two specific processes for
dealing with the feature dimensionality of messages.

* Implementation for short messages: Suppose a short
message has a dimensionality of six, and its dimension-
ality should be expanded to ten. Two methods could be
utilized with linear time computational complexity. One
is to insert zeros into the end of the feature vector. For
example, a feature vector

((SC1,LCY), (SCa, LCy), (SC3, LC3))
can be expanded as
((SC1,LCY), (SC4, LCy), (SC5, LC3), (0,0),(0,0)) .

The other is to reproduce the front features. For example,
the feature vector would be expanded as

((SC1, LCY), (SCy, LCy), (SCs, LCs), (SC1, LCY),
(SCy, LCy)).

In our preliminary experiments, the latter one performed
slightly better. As we see, the reason is that the front fea-
tures contain more information than simple zeros. There-
fore, the second method is utilized in the LC model.

¢ Implementation for long messages: For long messages,

we reduce their dimensionality by discarding terms at the
end of the messages (truncation). The reason for choosing
this method is that we will not do much reduction of fea-
tures, but just do small adjustment so that all messages can
have the same feature dimensionality. One advantage of
it is that no further computational complexity would be
added to the model. Preliminary experiments showed that
the truncation performed well with no loss of accuracy for
the remaining features could provide quite enough infor-
mation for discrimination. It is shown in [30] and [31] that
truncation of long messages can both reduce the computa-
tional complexity and improve the overall performance of
algorithms.

In the model, we utilize both the two specific processes—im-
plementation for short messages and implementation for long
messages. We at first conduct parameter tuning experiments to
determine a fixed value for the feature dimensionality. Then, if
the dimensionality of a feature vector is greater than the value,
the first kind of process will be utilized. Otherwise, the second
one will be done. The parameter tuning experiments can ensure
that the two specific processes do not affect the overall perfor-
mance, and the LC model performs best with respect to the pa-
rameter of feature dimensionality.

2) Using a Sliding Window With Variable-Length: In this
strategy, the length of a sliding window is designed to be propor-
tional to the length of a message. Suppose we want to construct
a 2N -dimensional feature vector for each message. Then for an
M -term length message, the length of the sliding window would
be set to M /N -term for the message. In this way, all the mes-
sages can be transformed into 2V -dimensional feature vectors
without loss of information.

E. Analysis of the LC Model

For the purpose of better understanding, we now analyze the
LC model from a statistical point of view. According to Algo-
rithm 1, each term ¢; in the DS; satisfies

P(t]’ | (t[) > P(t]’ | CS). @)

Thus, the terms in legitimate e-mail are more likely to fall into
the DS;, compared to those in spam, i.e.,

P(t]’ € DS; | (t[) > P(t]’ € DS; | CS). (8)

According to Algrithm 2, the LC; of a sliding window de-
pends on the number of terms (N;) falling into the DS;. From
a statistical point of view, the probable number of terms (N;)
falling into the DS; can be regarded as a good approximation of
binomial distribution, i.e.,

P(N; =r)~ B.(n,p), 9)
B.(n,p)=Crp"(l—p)"™", r=0,1,2,...,n (10)
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where p = P(t; € DS;) and n is the length of the sliding
window.
Then we can obtain the expectation value of N; for legitimate
e-mail as follows:
n
E(N/|e) = Z rChpi(L—p)"™"
r=0
=np;

nP(t; € DS; | ). (1D

Similarly, we can obtain the expectation value of N; for spam
as follows:
n
E(N/|es) = Z rCrpi(L—ps)" ™"
r=0
= np;

=nP(t; € DS/ | cs). (12)
From (8), (11), and (12), we can obtain
E(x\‘"[ | (t[) > E(z\‘"[ | (ts) (13)

which indicates that a sliding window in a legitimate e-mail
tends to contain more legitimate genes than a sliding window in
spam from a statistical point of view. Similarly, we can obtain
E(N;s | e1) < E(N; | ¢). Thus, an LC; of a legitimate e-mail
tends to be larger than that of spam, and an SC; of a legitimate
e-mail tends to be smaller than that of spam. In conclusion, the
LC model can extract discriminative features for classification
between spam and legitimate e-mail.

F. Evaluation Criteria

In spam filtering, many evaluation methods or criteria have
been designed for comparing performance of different filters
[24], [25]. We adopted four evaluation criteria, which were
spam recall, spam precision, accuracy, and Fjs measure, in all
our experiments to evaluate the goodness of different parameter
values and do a comparison between the LC approach and
some prevalent approaches. Among the criteria, accuracy and
Fg measure are more important, for accuracy measures the
total number of messages correctly classified, and Fj is a
combination of spam recall and spam precision.

1) Spam recall: It measures the percentage of spam that can
be filtered by an algorithm or model. High spam recall en-
sures that the filter can protect the users from spam effec-
tively. It is defined as follows:

Ns—s
B = Ng_s + Ns_y (14)
where n,_. is the number of spam correctly classified,
and n;_ is the number of spam mistakenly classified as
legitimate e-mail.

2) Spam precision: It measures how many messages, classi-
fied as spam, are truly spam. This also reflects the amount
of legitimate e-mail mistakenly classified as spam. The
higher the spam precision is, the fewer legitimate e-mail
have been mistakenly filtered. It is defined as follows:

P, = _ Mems (15)

Ngs + Njss

where n;_.; is the number of legitimate e-mail mistakenly
classified as spam, and n;_.; has the same definition as in
(14).

3) Accuracy: To some extent, it can reflect the overall per-
formance of filters. It measures the percentage of messages
(including both spam and legitimate e-mail) correctly clas-
sified. It is defined as follows:

N+ Ns—s
n;+ ng

A= (16)
where n;_; is the number of legitimate e-mail correctly
classified, n;_,; has the same definition as in (14), and n;
and n; are, respectively, the number of legitimate e-mail
and the number of spam in the corpus.

4) F5 measure: It is a combination of R, and F;, assigning
a weight 7 to Ps. It reflects the overall performance in
another aspect. s measure is defined as follows:

. R, P,
Fs =(14 ) —"""—. 17
=R TR, *
In our experiments, we adopted 7 = 1 as done in most

approaches [24]. In this case, it is referred to as F'; measure.
In the experiments, the values of the four measures were all
calculated. However, only accuracy and F', measure are used
for parameter selection and comparison of different approaches.
Because they can reflect overall performance of different ap-
proaches, and /', combines both R, and F;. In addition, R, and
P, respectively, reflect different aspects of the performance,
and they cannot reflect the overall performances of approaches,
separately. That is also the reason why the F'3 is proposed. We
calculated them just to show the components of F) in detail.

V. EXPERIMENTS

A. Experimental Corpora

We conducted experiments on five benchmark corpora PUI,
PU2, PU3, PUA [26], and Enron-Spam! [32], using cross vali-
dation. The corpora have been preprocessed with removal of at-
tachments, HTML tags, and header fields except for the subject.
In the four PU corpora, the duplicates were removed from the
corpora for duplicates may lead to over-optimistic conclusions
inexperiments. In PU1 and PU2, only the duplicate spam, which
arrived on the same day, are deleted. While in PU3 and PUA, all
duplicates (both spam and legitimate e-mail) are removed, even
if they arrived on different days. In the Enron-Spam corpus, the
legitimate messages sent by the owners of the mailbox and du-
plicate messages have been removed to avoid over-optimistic
conclusions. Different from the former PU1 corpus (the one re-
leased in 2000) and Ling corpus, the corpora are not processed
with removal of stop words, and no lemmatization method is
adopted. The details of the corpora are given as follows.

1) PU1: The corpus includes 1099 messages, 481 messages
of which are spam. The ratio of legitimate e-mail to spam is
1.28. The preprocessed legitimate messages and spam are
all English messages, received by the first author of [26]
over 36 months and 22 months, respectively.

IThe five corpora are available from the web site: http://www.aueb.gr/users/
ion/publications.html.
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2) PU2: The corpus includes 721 messages, 142 messages of
which are spam. The ratio of legitimate e-mail to spam is
4.01. Similar to PU1, the preprocessed legitimate messages
and spam are all English messages, received by a colleague
of the authors of [26] over 22 months.

3) PU3: The corpus includes 4139 messages, 1826 messages
of which are spam. The ratio of legitimate e-mail to spam is
1.27. Unlike PU1 and PU2, the legitimate messages con-
tain both English and non-English ones, received by the
second author of [26]. While spam are derived from PU1,
SpamAssassin corpus and other sources.

4) PUA: The corpus includes 1142 messages, 572 messages
of which are spam. The ratio of legitimate e-mail to spam
is 1. Similar to PU3, the legitimate e-mail contain both
English and non-English messages, received by another
colleague of the authors of [26], and spam is also derived
from the same sources.

5) Enron-Spam: The corpus includes 33716 messages,
17 171 messages of which are spam. The overall ratio of
legitimate e-mail to spam is 0.96. It consists of six parts.
In the first three parts, the ratio of legitimate e-mail to
spam is about 3. While in the last three parts, the ratio
of legitimate e-mail to spam is about 0.33. Experiments
conducted on the whole Enron-Spam corpus using six-fold
cross validation can help investigate the generalization
performance of the model.

B. Experimental Setup

We conducted all the experiments on a PC with Intel E2140
CPU and 2G RAM. The SVM library LIBSVM is applied for
the implementation of the SVM [33].

C. Experiments of Parameter Selection

Experiments have been conducted to tune the parameters of
the LC model. In this section, we show and analyze the results of
experiments on tuning important parameters of the LC model.
All these experiments were conducted on PU1 corpus by uti-
lizing ten-fold cross-validation, and IG was used as the term
selection method of the models.

1) Selection of a Proper Tendency Threshold: Experiments
were conducted with varied tendency threshold # to investigate
the effects of # on the performance of the LC model. As shown
in Fig. 2, the LC model performs well with small #. However,
with the increase of ¢, the performance of the LC model de-
grades in terms of both accuracy and F; measure. As we see,
the term selection methods have already filtered the uninforma-
tive terms, thus the threshold is not quite necessary. In addition,
a great # would result in loss of information. It is recommended
that & should be set to zero or a small value.

2) Selection of Proper Feature Dimensionality: For the LC
model using a fixed-length sliding window (LC-FL), short mes-
sages and long messages need to be processed specifically so
that all the messages can have the same feature dimensionality.
Before that, the feature dimensionality needs to be determined.
Therefore, we conducted experiments to determine the optimal
number of utmost front sliding windows for discrimination.
Fig. 3 depicts the results, from which we can see that the
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Fig. 2. Performance of the model with varied tendency threshold.
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Fig. 3. Performance of the LC-FL model with different window numbers.

model performed best when ten utmost front sliding windows
of each message were utilized for discrimination. In this case,
all the messages would be transformed into 20-dimensional
feature vectors through the specific process introduced in
Section IV-D1.

For the LC model using a variable-length sliding window
(LC-VL), all the messages are directly transformed into feature
vectors with the same dimensionality. However, there is still the
necessity for determining the feature dimensionality, which cor-
responds to the number of local areas in a message. We con-
ducted some preliminary experiments on PU1 and found that
the LC-VL model performed optimally when the feature dimen-
sionality was set to six or ten.

3) Selection of a Proper Sliding Window Size: For the LC-FL
model, the sliding window size is quite essential as it defines the
size of local area in a message. Only when the size of local area
is properly defined can we calculate discriminative LC vectors
for messages. Fig. 4 shows the performance of the LC-FL model
under different values of sliding window size. When the size
was set to 150 terms per window, the model performed best in
terms of both accuracy and /| measure. It also can be seen that
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the model performed acceptably when the parameter was set to
other values.

4) Selection of Optimal Terms Percentage: The phase of
term selection plays an important role in the LC model. The re-
moval of less informative terms can reduce computational com-
plexity and improve the overall performance of the model. We
conducted experiments to determine the percentage of terms re-
served after the phase of term selection. Therefore, the removal
of uninformative terms can be maximized while avoiding re-
moving informative ones.

Fig. 5 gives the results of the LC-FL model. When 50% terms
were reserved after term selection, the model performed best in
terms of both accuracy and F'; measure. In the following exper-
iments, we set the parameter to 50% for both the LC-FL model
and the LC-VL model. We should pay attention to the fact that
the model performed quite well when only 10% terms were re-
served. This configuration can be applied to cost-sensitive situ-
ations.

D. Experiments of the Model With Three Term Selection
Methods

To construct discriminative feature vectors for messages,
both a term selection method and a feature extraction approach
play quite essential roles. To some extent, a feature extraction
approach depends on a proper term selection method. There-
fore, it is necessary to verify whether the proposed LC approach
can be incorporated with prevalent term selection methods.

We conducted comparison experiments of the model with
three term selection methods IG, TFV, and DF. All these exper-
iments were conducted on corpora PU1, PU2, PU3, and PUA
using ten-fold cross-validation, and on corpus Enron-Spam
using six-fold cross-validation. The performances of the LC-FL
strategy and the LC-VL strategy are listed in Tables II and III,
respectively. The two strategies performed quite well incorpo-
rated with any of these term selection methods. On one hand,
the experiments showed that the proposed LC strategies could
be incorporated with different term selection methods. On the
other hand, the experiments had also reflected the effectiveness
of the three term selection methods.

E. Comparison Between the LC Model and Current
Approaches

In this section, we compared the two LC strategies with some
prevalent approaches through the experiments on four PU cor-
pora using ten-fold cross-validation and on corpus Enron-Spam
using six-fold cross-validation. The approaches utilized in com-
parison are Naive Bayes-BoW, SVM-BoW [26], SVM-Global
Concentration (SVM-GC), SVM-LC-FL, and SVM-LC-VL.

In Naive Bayes-BoW and SVM-BoW, Naive Bayes and SVM
are utilized as their classifiers, respectively, BoW is utilized as
the feature extraction approach, and IG is used as the term selec-
tion method [26]. In both SVM-LC-FL and SVM-LC-VL, SVM
is utilized as their classifier. SVM-GC is a specific configuration
of SVM-LC, in which the sliding window size is set to infinite.
In such a case, each message is recognized as a whole window,
and a two-dimensional feature (including a spam genes concen-
tration and a legitimate genes concentration) is constructed for
each message. In this way, it is similar to the CFC approach [18],
[19]. The results of these experiments are shown in Table IV.

The comparison with Naive Bayes-BoW and SVM-BoW is
mainly to compare the two LC strategies with the prevalent
BoW approach. The results show that both of the two LC strate-
gies outperformed the BoW approach in accuracy and '} mea-
sure. As mentioned before, we take accuracy and F; measure
as comparison criteria without focusing on precision and recall.
Because they are incorporated into the calculation of /| mea-
sure, and can be reflected by the value of [, measure.

The comparison between the two LC strategies and SVM-GC
is to verify whether the two LC strategies can extract useful po-
sition-correlated information from messages. Both the two LC
strategies correspond different parts of a message to different
dimensions of the feature vector, while SVM-GC extracts po-
sition independent feature vectors from messages. As shown in
Table IV, both the two LC strategies outperformed SVM-GC
in accuracy and /| measure, which verified that the proposed
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TABLE 11

UTILIZING CROSS VALIDATION

EXPERIMENTS OF THE LC-FL MODEL WITH THREE DIFFERENT TERM SELECTION METHODS ON CORPORA PU1, PU2, PU3, PUA, AND ENRON-SPAM,

Corpus Feature sel. Precision(%) Recall(%) Accuracy(%) F1(%) Feature dim.

(€] 96.04 95.42 96.24 95.73 20

PU1 TFV 95.12 96.88 96.42 95.99 20
DF 94.38 96.67 95.96 95.51 20

1G 95.74 75.71 94.37 84.55 20

PU2 TFV 93.37 74.29 93.80 82.74 20
DF 90.86 82.86 94.79 86.67 20

(€] 95.99 95.33 96.13 95.66 20

PU3 TFV 95.80 95.05 95.91 95.43 20
DF 95.15 95.99 96.00 95.57 20

(€] 96.01 94.74 95.26 95.37 20

PUA TFV 95.83 94.39 9491 95.10 20
DF 95.25 94.56 94.74 94.90 20

(€] 94.07 98.00 96.79 95.94 20

Enron-Spam TFV 93.73 98.10 96.80 95.79 20
DF 93.67 98.10 96.68 95.77 20

TABLE III

UTILIZING CROSS VALIDATION

EXPERIMENTS OF THE LC-VL MODEL WITH THREE DIFFERENT TERM SELECTION METHODS ON CORPORA PUI, PU2, PU3, PUA, AND ENRON-SPAM,

Corpus Feature sel. Precision(%) Recall(%) Accuracy(%) F1(%) Feature dim.

1G 94.85 95.63 95.78 95.21 6

PUI TFV 95.48 96.04 96.24 95.72 6
DF 95.07 96.25 96.15 95.63 6

1G 95.74 77.86 94.79 85.16 6

PU2 TFV 94.43 79.29 94.79 85.47 6
DF 92.06 86.43 95.63 88.65 6

1G 96.68 94.34 96.03 95.45 6

PU3 TFV 96.46 94.29 95.91 95.32 6
DF 95.64 95.77 96.15 95.67 6

1G 95.60 94.56 94.91 94.94 6

PUA TFV 95.22 94.39 94.65 94.67 6
DF 95.95 93.33 94.56 94.52 6

1G 92.44 97.81 96.02 94.94 6

Enron-Spam TFV 92.07 97.88 95.90 94.77 6
DF 92.11 97.93 95.95 94.82 6

LC approach (including the LC-FL strategy and the LC-VL
strategy) could effectively extract position-correlated informa-
tion from messages.

Compared to BoW, the proposed LC strategies can greatly re-
duce feature vector dimensionality, and have advantages in pro-
cessing speed. As shown in Table V, the two LC strategies out-
performed the BoW approach significantly in terms of feature
dimensionality and processing speed. However, BoW obtained
poor performance when feature dimensionality was greatly re-
duced [26], while LC strategies performed quite promisingly
with a feature dimensionality of 20.

F. Discussion

In Section V-E, it is shown that both the LC-FL strategy and
the LC-VL strategy outperform the GC approach on all the cor-
pora. The success of the LC strategies is considered to lie in
two aspects. First, the LC strategies can extract position-corre-
lated information from a message by transforming each area of a
message to a corresponding feature dimension. Second, the LC

strategies can extract more information from messages, com-
pared to the GC approach. As the window size can be acquired
when the parameter of the LC strategies are determined, the
Global Concentration can be approximately expressed by the
weighted sum of Local Concentration, and the weights are cor-
related with the window size. However, the Local Concentration
cannot be deduced from Global Concentration. Thus, the Local
Concentration contains more information than the Global con-
centration does.

The essence of the LC strategies is the definition of local
areas for a message. As the local areas may vary with mes-
sage length, we conducted experimental analysis to see whether
drift of message length would affect the performance of the LC
strategies. The average message length of corpora PU1, PU2,
PU3, PUA, and Enron-Spam are 776 terms, 669 terms, 624
terms, 697 terms, and 311 terms, respectively. It can be seen
that the average message length of Enron-Spam is quite shorter
than the other four PU corpora. To further demonstrate the dif-
ference between Enron-Spam corpus and the PU corpora, the
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TABLE 1V
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Corpus Approach Precision(%) Recall(%) Accuracy(%) F1(%) Feature dim.

Naive Bayes-BoW 89.58 99.38 94.59 94.23 600
SVM-BoW 93.96 95.63 95.32 94.79 600

PUI SVM-GC 94.97 95.00 95.60 94.99 2
SVM-LC-FL 95.12 96.88 96.42 95.99 20

SVM-LC-VL 95.48 96.04 96.24 95.72 6
Naive Bayes-BoW 80.77 90.00 93.66 85.14 600
SVM-BoW 88.71 79.29 93.66 83.74 600

PU2 SVM-GC 95.12 76.43 94.37 84.76 2
SVM-LC-FL 90.86 82.86 94.79 86.67 20

SVM-LC-VL 92.06 86.43 95.63 88.65 6
Naive Bayes-BoW 93.59 94.84 94.79 94.21 600
SVM-BoW 96.48 94.67 96.08 95.57 600

PU3 SVM-GC 96.24 94.95 96.05 95.59 2
SVM-LC-FL 95.99 95.33 96.13 95.66 20

SVM-LC-VL 95.64 95.77 96.15 95.67 6
Naive Bayes-BoW 95.11 94.04 94.47 94.57 600
SVM-BoW 92.83 93.33 92.89 93.08 600

PUA SVM-GC 96.03 93.86 94.82 94.93 2
SVM-LC-FL 96.01 94.74 95.26 95.37 20

SVM-LC-VL 95.60 94.56 94.91 94.94 6
Naive Bayes-BoW 79.34 99.17 88.41 87.32 600
SVM-BoW 90.88 98.87 95.13 94.62 600

Enron-Spam SVM-GC 91.48 97.81 95.62 94.39 2
SVM-LC-FL 94.07 98.00 96.79 95.94 20

SVM-LC-VL 92.44 97.81 96.02 94.94 6

TABLE V
PROCESSING SPEED OF THE APPROACHES
Approach Naive Bayes-BoW | SVM-BoW | Naive Bayes-BoW | SVM-BoW | SVM-GC | SVM-LC-FL | SVM-LC-VL
Seconds/email 0.2 0.5 3 5 0.06 0.07 0.06
Feature dim. 120 120 600 600 2 20 6

Cumulative Distribution Function (CDF) of the message length
in PU1 corpus and Enron-Spam corpus are depicted in Fig. 6.

Even though the message length distribution in Enron-Spam
corpus is quite different from that of PU corpora, it is shown in
Section V-E that the LC strategies perform well on both Enron-
Spam corpus and PU corpora. Thus, a preliminary conclusion
can be drawn that the LC strategies are robust against variable
message length, and the coexistence of short messages and long
messages does not decrease the performance of the LC strate-
gies. As long as the average message length is larger than the
size of a window, the LC strategies can extract Local Concen-
tration from messages. When almost all the messages become
shorter than a window, the performance of the LC strategies
would decay and become equivalent to that of the GC approach.
However, the window size could be tuned accordingly when the
message length changes too much. In that way, the LC strategies
can still extract Local Concentration from messages with vari-
able length. In future, we intend to focus on developing adaptive
LC approaches, so that the definition of local area can be auto-
matically adapted to the change of message length.

VI. CONCLUSION

We have proposed an LC approach for extracting local-con-
centration-features for messages. Two implementation strate-

gies of the approach, namely the LC-FL strategy and the
LC-VL strategy, have been designed. Extensive experiments
have shown that the proposed LC strategies have quite
promising performance and advantage in the following aspects.

1) Utilizing sliding windows, both the two LC strategies can
effectively extract the position-correlated information for
messages.

2) The LC strategies cooperate well with three term selection
methods, which endows the LC strategies with flexible ap-
plicability in real world.

3) Compared to the prevalent BoW approach and the GC ap-
proach, the two LC strategies perform better in terms of
both accuracy and /', measure.

4) The LC strategies can greatly reduce feature dimension-
ality and have much faster speed, compared to the BoW
approach.

5) The LC strategies are robust against messages with vari-
able message length.

In future work, we intend to incorporate other classifiers into
the LC model and investigate their performance under these
configurations. In addition, we hope the model can be devel-
oped as an adaptive anti-spam system, by taking into account
the drift of spam content and the changing interests of users.
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