
Genetic Algorithm for Context-Aware Service
Composition Based on Context Space Model

Zhichao Zhang∗, Shaoqiu Zheng∗†, Weiping Li‡, Ying Tan∗†, Zhonghai Wu‡, Wei Tan§
∗ School of Electronics Engineering and Computer Science, Peking University

† Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
‡ School of Software and Microelectronics, Peking University

§ IBM T. J. Watson Research Center, USA
{z.zc,zhengshaoqiu}@pku.edu.cn, wpli@ss.pku.edu.cn, ytan@pku.edu.cn, wuzh@ss.pku.edu.cn, wtan@us.ibm.com

Abstract—The emergence of Web services has changed the
Internet a lot, and greatly facilitated the development of service
based software systems. How to select appropriate services and
compose them according to given context to satisfy a user’s
requirement is a big challenge. This paper proposes a novel
Genetic Algorithm (GA) method to synthesis web services in
a context-aware environment. We first present a context space
model to illustrate both contexts and services in a formal way; we
utilize GA to compose context-aware services according to users’
preference. We transform the problem of service composition to a
multi-objective optimization problem. To resolve the conflict and
dependencies among services in GA process, we propose a service
similarity tree (SST) model to measure the similarity between
services. Finally, we design a simulation experiment to evaluate
our method. The experiment result shows that our method is a
promising one to solve service composition problem in a context-
aware environment.

Keywords-Web Services; Context aware; Genetic Algorithm;

I. GENETIC ALGORITHM BASED SERVICE COMPOSITION

For the advantage in solving combinational problem [1],
Genetic Algorithm is chosen for context aware service com-
position solution. We model the candidate services as a 2-
tuples of < S,R >, where S represents the services and
R indicates the inter-relationships among the services and
R = Rc

∪
Rd, where Rc(or Rd) represent the confliction(or

dependencies) rules with the form (Si, Sj) meaning that Si

has confliction(dependencies) relationship with Sj .
Given a original situation < c1, c2, ..., cm > and a target

situation < c1g, c2g, ..., cmg > described by Context Space
Model [2], the proposed algorithm is designed to use a GA
approach to automatically produce a sequence of web services,
which can be operated successively on the original situation
to obtain the goal situation.

As the candidate service set may be very large, before
executing the algorithm, we should filtering unrelated services
from the service set that do not affect the context attribute of
the target.

A. Encoding

In our algorithm, each chromosome represents a service se-
lection sequence that can change the context space to the target
situation. In the sequence, each service number N denotes
the N -th service in the service set. Through the invocation

of these services, one context attribute can be changed many
times and eventually gets to the destined value. The length
of the chromosome denotes the number of services that can
help achieve the goal situation. For example, in Figure 1, the
sequence denotes that service 1, 7, 9, ..., 3, 4, 2 are selected to
change current situation to destined situation.

B. Fitness function

For each chromosome, we need to calculate the fitness val-
ue. To provide appropriate service sequence for different users,
we define the fitness as a multiple objective function. Two
objectives are used to measure the fitness of the chromosome.
One is the distance between the result situation caused by
service sequence and the target situation. The other is the
length of service sequence.

Both of them should be as smaller as better. We have a
parameter λ to adjust the weight of the two objectives. The
fitness function is defined as bellow:

F = (1− λ)|m⃗− n⃗|+ λSI (1)

• m⃗, n⃗ represent the initial situation and target situation

respectively. |m⃗ − n⃗| =
N∑
i=1

|mi − ni|. N represents the

number of dimensions of the context space.
• SL represents the length of the service sequence
• λ is a parameter and 0 ≤ λ ≤ 1.

C. Genetic Operators

Crossover operator and mutation operator will be used at
each iteration of the genetic process. As conflicts and depen-
dencies may exist among services [3], we need to deal with
the conflicts and dependencies. For example, after crossover
of parent P1 and P2, we get child C1 and C2. We find that
service 3 and service 5 has conflicts shown in Figure 2. Also
conflicts may happen in mutation as shown in Figure 3.

We design two functions, genectic check() and
conflict resove(), to respectively check whether the
genetic operation is legal and resolve the confliction when
the genetic operation is illegal.

In order to solve the confliction, we need to design a
policy to adjust this genetic operation. As services have
inter-relationship among themselves, we need to find a best

1 7 9 ... 3 4 2

Fig. 1. Chromosome encod-
ing

Conflict

2 4 9 1 3

4 5 8 1 2

P1

P2

C1

C2

4 5 9 3

2 4 8 1 2

1

Fig. 2. Crossover and conflict

2 4 9 1 3

2 4 9 1 7

Conflict

Fig. 3. Mutation and conflict

0 2 4 6
0

2

4

6

8

10

12

fitness

op
er

at
io

n
le

ng
th

λ=0
λ=0.1
λ=0.2
λ=0.3
λ=0.4
λ=0.5
λ=0.6
λ=0.7

Fig. 4. Results with different λ

alternative which has the highest similarity with the conflict
one. We use Si =< i1, i2, ..., im > to express a service which
means the service Si can change the ij-th (1 ≤ j ≤ m) context
attribute of the context space. We use an example to show how
to deal with the confliction.

Given five services, S1 = (1, 2), S2 = (2, 3), S3 = (1, 2, 4),
S4 = (1, 5), S5 = (1, 3, 5). We can build a forest with three
trees according to the context inclusion relationship among the
services . When confliction happens, the most similar service
will be chosen. We design a similarity measurement function
to find out the best alternative to the conflict one.

sim(Si, Sj) =

1

|Sj |−|Si|
Si ⊆ Sj

|common{Si,Sj}|
|Sj |

Si ∩ Sj ̸= ∅
1 Si = Sj

0 other

(2)

In formula(2), sim(Si, Sj) presents the similarity between
the two services. |Si| and |Sj | respectively represents the
number of context attributes that the service can change, while
|common{Si, Sj}| denotes the number of shared context
attributes between Si and Sj . We require that |Sj | ≥ |Si|
when using this formula.

II. EXPERIMENTS AND EVALUATION

In our experiment, four parameters are included in the
simulation, fitness value, number of dimensions in context
space (dim of state), the length of chromosome (CL) and the
number of services (service num).

In the first experiment, shown in Figure 5 with service
number (SN) is set to from 20 to 50, we find that: (1) With
the increase of the service set, the fitness value become better
and better.(2) The best CL should not be too longer or shorter,
the fitness value is better when CL has value between 12 and
16. (3) When the number of dim of state increase, the fitness
become worse.

In the second experiment, we involve λ to evaluate the
effect on these two objectives, fitness value and CL.To balance
the two objectives, we use Pareto Front to find the best λ
value.Here, we present an example, assume that the parameters
are SN=50, CL=14, dim of state=10, then we conducted the
experiments with different λ from 0.1 to 0.7. As shown in
Figure 4, under these parameters, the proposed method with
λ = 0.1 gains the highest performance.

From the first experiment result, when the service set
increase bigger, the fitness value become better which indicates
that the algorithm has more choices to choose services to
achieve the goal context space. The CL of initial population in

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

dim of state

fit
ne

ss

CL=6
CL=8
CL=10
CL=12
CL=14
CL=16
CL=18
CL=20

(a) SN=20

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

dim of state

fit
ne

ss

CL=6
CL=8
CL=10
CL=12
CL=14
CL=16
CL=18
CL=20

(b) SN=30

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

dim of state

fit
ne

ss

CL=6
CL=8
CL=10
CL=12
CL=14
CL=16
CL=18
CL=20

(c) SN=40

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

dim of state

fit
ne

ss

CL=6
CL=8
CL=10
CL=12
CL=14
CL=16
CL=18
CL=20

(d) SN=50

Fig. 5. Experimental results with λ = 0.1.

GA algorithm cannot be too long or short, it looks better when
the length has moderate value. The reason of this phenomenon
is likely lying on that if the CL is too short, obviously, it cannot
satisfy the goal context space with multiple dimensions; if
the CL is too long, the complexity increases a lot to achieve
the goal situation. We have no idea about whether there exist
relationship between the dim of state and CL. With respect to
the dim of state, when it scales up, the fitness value become
larger which means the algorithm cannot achieve the goal well.

ACKNOWLEDGMENT

Research work in this paper is partial supported by the
Danish Strategic Research Council (Grant NO.2106-08-0046)
and is partial supported by the National Natural Science Foun-
dation of China (Grant NO.61033005, Grant NO.61170057,
Grant NO.60875080).

REFERENCES

[1] Y. Vanrompay, P. Rigole, and Y. Berbers, “Genetic algorithm-based
optimization of service composition and deployment,” in The 3rd
International workshop on Services integration in pervasive environments.
ACM, 2008, pp. 13–18.

[2] Z. Zhang, W. Li, Z. Wu, and W. Tan, “Towards an automata-based se-
mantic web services composition method in context-aware environment,”
in SCC 2012. IEEE, 2012, pp. 320–327.

[3] M. Tang and L. Ai, “A hybrid genetic algorithm for the optimal con-
strained web service selection problem in web service composition,” in
CEC 2010. IEEE, 2010, pp. 1–8.

