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Abstract—In this paper, a group explosion strategy (GES) is
proposed for searching multiple targets in obstructive environ-
ments using a swarm of simple robots. Considering the limited
abilities of on-board sensors, fitness values detected by the robots
are considered as discrete in the problem. The strategy introduces
schemes from the explosion phenomenon in nature and the whole
swarm is self-adaptively divided into small groups which search
for targets independently. GES takes the advantages of quick
convergence from intra-group cooperation as well as searching
multiple targets in parallel from inter-group cooperation. The
simulation results demonstrate that GES has great efficiency
in energy consumption and targets collecting benefitting from
cooperation among robots. GES also shows great stability in
obstructive environments and large scale problems.

Keywords—Swarm robotics, target search, explosion inspired,
group search, obstructive environment, scalability.

I. INTRODUCTION

Swarm robotics has achieved significant progress benefiting
from the development of artificial intelligent [1]. Many poten-
tial applications exist for the deployment of a swarm of robot-
s [2], especially those require large amount of agents and time
or dangerous to human being, e.g. foraging [3], surveillance,
monitoring and search and rescue operations [4]. In general,
these applications can be regarded as search-and-explore tasks
in unknown environments. Therefore, searching strategies is
an important challenge for swarm robotics researchers.

In most of the swarm robotics searching problems so far,
some kinds of fitness functions are introduced for guiding
the search of the swarm. These fitness functions are usually
developed to measure the distance between robot and the
target(s), such as adopting Euclidean distance directly [5],
using olfaction measurements [6] or chemical clues [7] and
some type of potential functions [8]. However, these functions
are usually continuous and the robots can easily converge
to the target position with gradient descent methods [9]. In
real applications, on-board sensors of swarm robotics should
be as cheap and simple as possible and may not detect the
fitness values in such high accuracies limited abilities. Instead,
sensors provide a limited number of rounded sensing results.
Therefore, discrete fitness functions, rather than continuous
one, are taken into consideration in this paper.

Controlling a swarm of robots is still a challenge in the
robotic area despite its fast development [10]. Robots in
the swarm should have as limited functions or abilities as
possible, including motion ability, energy storage, sensing,

communication, and computation capability due to their size,
power constraints, cost and maintenance issues. Thus, coop-
eration plays the most important role in the swarm robotics
control strategies to distribute and share resources across the
swarm to complete the task [5]. PSO [11], inspired from birds
flocking, is the most common swarm intelligence algorithm
introduced for motivating swarm robotics for its simplicity
and similarity with real robots [12]. Doctor et al. [13] are
one of the first to use PSO for multi-robot searching though
they mainly focus on optimizing the model parameters. Pugh
and Martinoli [14] and their follow-up work [15] designed
an effective searching algorithm inspired from PSO modified
with various topologies. Hereford et al. [16] developed a
distributed particle swarm optimization algorithm and used
it for real robots in a physically-embedded version. Xue et
al. [17] presented their PSO application for robots in target
searching with a parallel asynchronous control strategy.

However, there still remain many problems when adopting
PSO in swarm robotics searching applications, such as disad-
vantages of PSO as well as differences between optimization
problems and searching applications which cannot be neglect-
ed. These problems can be named: large amount of random
movements, trapping in local minimal, speed limitation [18]
and others. To solve these problems, some researchers divide
the swarm into sub groups for better cooperation to accelerate
the searching progress. Xue et al. [19] introduced a mechanism
for predicating target positions using information from at least
three neighbours. Couceiro et al. [20] proposed a RDPSO
that involves dynamic sub-grouping of the whole swarm.
However, the main problem of this research is that the robots
in the swarm require global communication for arranging sub-
groups, which is normally unavailable for large-scale outdoor
applications. Therefore, new strategies capable of solving these
problems should be proposed.

In recent years, many researches focused on introducing
new schemes into swarm intelligence from the nature, includ-
ing biological such as bacteria colonies [21] and whales [22];
non-biological such as improvisation process of musicians [23]
and firework explosions [24]. Such schemes can also be
adopted into swarm robotics.

Inspired from the explosion phenomenon in nature, a
swarm robotics searching strategy, referred as “group explosion
strategy”, is proposed in this paper. In the proposed method,
the entire swarm is divided into sub groups in a self-organizing
way and each group searches for the targets independently.
Robots maintain the group structure and may split into smaller



groups during the search. The strategy provides both intra-
group cooperation and inter-group cooperation within the
swarm. The sub-grouping strategy can overcome the prob-
lems mentioned above under limited sensing constraints. The
searching problem considered in this paper is introduced in
Section II. Section III describes the proposed method in detail,
the experimental results and discussions are presented in IV.
Finally, Section V concludes work in this paper.

II. PROBLEM STATEMENT

In this paper, a swarm of robots is applied to solve the prob-
lem of searching multiple targets in obstructive environment.
The swarm has no prior information about the environment
and targets. The problem is simulated in a computer program
and time is divided into discrete iterations. Every iteration,
each individual first retrieve information from environment
and their neighbours, then move according to the sensing
results. Maximum speed of robots is restricted so that robots’
movements are guaranteed to complete before next iteration
which is not too long. In real-life applications, all robots in
the swarm are not restricted to share the same iteration cycle.

Fig. 1: A screenshot of the problem at the beginning of the
simulation. Red circles stand for the targets. The background
color illustrates fitness of that position. Robots and obstacles
are not illustrated in this figure.

The problem is quite similar with the searching problems
in other researches, such as [10], [19], [20], except the fitness
values detected by the robots are discrete. The details of the
problem are defined as follows. There exists m targets in the
environment and information of a target can only be sensed as
fitness values, which are discrete values inversely proportional
to the distance from the target, as shown in Figure 1. The
aim of this problem is to search and collect the targets. It
takes 10 iterations for an individual to collect a target and the
cooperation of multiple individuals collecting one target in the
same time can accelerate this progress.

Each target has a randomly generated fitness ranges from
FMax-2 to FMax, where FMax is a predefined constant and
is set to 20 in our experiments. Considering sensitivity and
errors in real-time application, fitness values sensed by the
robots are discrete values ranges from FMax to 0. A target
disappears when it is collected by the swarm and its fitness
can be sensed no more.

Each target is shaped as a circle with a radius of Sizet. The
target is identified as found if a robot overlaps with the ring
and the robot can start collect the target at the position. A ring
with a same radius of Sizet outside the target has the same
fitness as the target. The fitness reduces by 1 when the distance
from the target is increased by 2Sizet until the fitness drops
to 0. This indicates that fitness values are shaped as a ring
with width of 2Sizet with increased radius and reduced fitness
value. When fitness of several targets overlap, the largest value
is adopted. Value of constant Sizet is set to 10 in this paper.

A swarm of n autonomous mobile robots is used to
solve this problem. The robots are designed to be as simple
as possible are modeled as squares able to move freely in
environment. The swarm has no leader or unique IDs and share
no common coordinate systems nor global position systems.
Each robot can sense the fitness of its current position and has
a limited sensing range to detect the relative positions of their
neighbour robots. They have a limited memory of past states
of themselves. Each robot normally does not communicate ex-
plicitly with other robots except when sharing current fitness to
their neighbours. Each individual executes the same algorithm
but acts independently and asynchronously from others.

Each robot has the ability to sense neighbour robots within
the range of 4Sizet. Since no global positioning system is
available, the positions are relative which can be detected with-
out direct communications with the help of an infrared sensor
and angle transducer. If FMax is quite small, the robots can
detect neighbors’ fitness values without direct communication
through colored lights equipped on the robot. Otherwise, just
like the situation in this paper, robots share their fitness values
to all their neighbors through direct communications or other
strategies which is not focused in this paper.

The robots have a maximum speed of 2Sizet per iteration
so that they can past a fitness grade in one iteration at the
maximum speed and react quickly to the fitness changes if
they are searching at the right directions. The individuals also
have the ability to maintain last 10 history states including
past position and the corresponding fitness values. Positions
in the history are relative positions updated according to the
local coordinating system of the robot. Past states cannot be
shared among the swarm since complex communications and
localizations are required for sharing the past states.

Static obstacles are also introduced in the problem. Each
obstacle is regarded as a square with different sizes. Collisions
are detected every iteration in the simulation and any robots
that run into an obstacle are considered as broken and will
be removed from the swarm permanently while the obstacle
remains still in the environment.

III. GROUP EXPLOSION STRATEGY

A. Introducing Explosion Schemes into Swarm Robotics

In this section, the group explosion strategy (GES) de-
signed for searching multiple targets is explained in detail.
In GES model, the whole swarm is divided into several
groups. Robots in a group are spatially adjacent, i.e. within
the sensing range of each other. Different groups do not
intersect directly and their search for targets is parallel and
independent. However, through certain strategies, groups that
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Fig. 2: Introducing explosion schemes into swarm robotics

run into each other will be re-arranged into new groups with
possibly different members and search directions. In this way,
inter-group cooperation can emerge in the swarm.

Explosion schemes are introduced into GES for searching
multiple targets. The comparison of an explosion process and
the corresponding actions in GES is shown in Figure 2 which
has some similarities with the firework algorithm for optimiza-
tion problems in [24], since both algorithms are inspired from
explosion phenomenon. An explosion starts from a point and
generates several fragments with different distances around
the initial point. The center point can be regarded as a robot
and the fragments exploded are the neighbour robots. These
robots as a whole aggregates into a group, randomly distributed
around the center robot just like the fragments. Each iteration,
robots process sensing data and decide their movements. In this
way a new explosion center is selected and the group explodes
again in the next iteration to search near the new center.

B. Overview of Group Explosion Strategy

A group of robots can converge to the target much more
quickly than a single robot with the help of intra-group
cooperation, since the trends of the fitness in the environment
are clearer within the group than a single individual. The more
robots in a group, the quicker the group can converge to a
target yet resulting in fewer targets the swarm is searching
simultaneously since the number of groups is reduced. If the
sizes of groups become too large, searching efficiency of the
entire swarm declines instead. Therefore, a balanced group size
should be adopted and the swarm can thus take the advantage
of quick convergence from intra-group cooperation as well as
searching several targets in parallel as inter-group cooperation.
With a carefully designed strategy, the swarm can search and
collect the targets more efficiently.

In GES model, robots first retrieve information from the
environment and their neighbors, then calculate their new
movements of this iteration (referred as velocity) according to
the sensing data and carry out the move before next iteration.
The state of this iteration is stored in history before robots
actually move towards the new positions. In this way, the
history of each robot contains 10 past states of the robots
excluding their current states.

Velocity of robot i at every iteration consists two compo-
nents: grouping component G(i) and history component H(i).
G(i) controls the robots’ behavior relevant to grouping and is
calculated according to the current fitness of the robot and
states of its neighbour including their relative positions and
fitness values. H(i) is computed from the past history states
stored in the robot.

Fig. 3: Flow chart of GES

The grouping behavior of a robot differs with the size of its
current group, i.e. the number of robots in its neighbourhood.
Group size is controlled by a pre-defined threshold βG. When
the size exceeds the threshold, robots in the group try to
split this group into two smaller ones to balance the search
efficiency. Otherwise, robots try to maintain the group and take
advantage of the information shared in the group to benefit
searching progress.

A brief flow chart of the GES strategy is shown in
Figure 3. Each robot is regarded as a finite state machine
with three states: group search, split groups and collect target.
Expressions of G(i) for these two situations are explained in
Section III-C and III-D respectively, Section III-E gives the
expression of H(i) and the final velocity update equation is
presented in Section III-F. In collect state, robot stays still at
its position until the target is collected and goes back to the
two searching state according to the size of the group. Several
robots collecting same target can accelerate this process as
mentioned in previous section.



C. Group Search

When the size of group is beyond the threshold βG, the
group tries to search for a target through intra-group coopera-
tion. Following the schemes from explosion, searching in next
iteration should take place in the area around the current best
position found in the group. Therefore the searching strategy
of the group is to move the group center towards the best
position within the group. The best position is selected as the
current position of the robot with highest fitness value among
all the robots in the group. Historical positions of any robots
are not taken into account, since the communication overloads
for exchanging historical states is too large. In this way, the
group should steadily converge to a target much quicker than
only one robot.

The group center is calculated as the centroid of all the
robots in the group. The group center C(i) for robot i is
calculated as following:

C(i) =

∑
j∈N(i) P (j) + P (i)

|N(i)|+ 1
(1)

where P (i) is the current position of robot i and N(i) is the
collection consists of all neighbour robots of robot i, i.e. all
other robots within the group.

It can be easily seen from (1) that although robots do
not exchange their positions with each other directly, they
can calculate the same centroid of the group if no noise and
error is considered. Even with little noise and error from the
sensors, the result could be quite similar and should not affect
the cooperative scheme.

Given the group center, the robot can compute the grouping
component G(i) used in the velocity update equation. Before
calculating, the robots in the group should exchange the
fitness information among the group with the help of direct
communication or colored lights due to the hardware design
of the robots. G(i) is computed using (2).

G(i) = (P (b)− C(i)) ∗RS (2)

where robot b is the robot with the best fitness in the group
and RS is a scaling factor randomly selected from three values
with equal possibilities: 1 − βS , 1 and 1 + βS . βS is used to
adjust the shape of the group by controlling the distance of
robots from the group center. Robots with various distances
from the center can provide the group with great diversity
and meaningful feedbacks in different scales for choosing the
searching direction.

It should be noted in GES that, robots do not explicitly
tell their neighbours which robot has the best fitness. Instead,
they exchange their fitness with all their neighbours. Each
robot computes the best robot according to the fitness values
it receives independently. Therefore, robots in the group may
choose different best robot if noise or error occurs. However,
the sensing distance is twice the time of the maximum speed
of the robot, so it could be possible that the robot still remains
in the group. If a robot goes out of the group, it will start
searching the targets itself and rejoin a group if encounters
one. The most possible place for rejoining a group is near a
target, since robots always try to converge into a target even
if a single robot without group.

D. Split Groups

When group size exceeds the threshold βG, the strategy
for the robots in the group is splitting the large group into
two smaller ones. Robots with the best two fitness, denoted as
L1 and L2, are selected as two leaders for the new groups.
Without loss of generality, it is assumed that fitness of L1 is not
worse than L2. To separate the two groups apart, two opposite
directions are selected for the new groups. Two leaders repulse
with each other and try to be as far away as possible. The
repulsive vector is calculated in (3).

R(L1) = (P (L1)− P (L2)) ∗ βR
R(L2) = (P (L2)− P (L1)) ∗ βR (3)

where βR is a pre-defined coefficient for repulsing the two
leaders L1 and L2.

As for other robots in the group, each of them selects a
leader to follow independently and randomly. Each of L1 and
L2 is given a weight for selecting, the higher the weight, the
more change a leader is selected since a leader with higher
fitness is more possible to find a target. Besides, the leaders
are repulse to each other and thus the robot L1 is quite possibly
being repulsed towards a target. The weights of two leaders
are assigned based on their fitness in (4) and the possibility
for selecting leaders are calculated in (5).

w(L1) = F (L1)− F (L2) + βP , w(L2) = βP (4)

PL1 =
w(L1)

w(L1) + w(L2)
, PL2 =

w(L2)

w(L1) + w(L2)
(5)

where function F indicates the current fitness of the robot,
w(L1), w(L2), PL1 and PL2 are the weights and possibilities
of two leaders respectively. βP is a constant to balance the
weights and fixed to 1 in this paper.

Since the sensing range of a robot is double of size of
a fitness value can occupy, so the value of F (L1) − F (L2)
is restricted to be zero or one. This guarantees the difference
between the two weights is not too large that makes the new
group sizes very unbalanced.

The grouping components of the leaders and other robots
can now calculated using (6).

G(i) =

{
R(i) , i = L1, L2

R(i) + (P (l)− P (i)) ∗RS , otherwise (6)

where l is the leader robot i has selected. The leaders just
repulse each other to separate the groups. Other robots use
the same repulse vector with the leader and the new groups
move apart as a whole to separate with each other. Besides
separating, distances between robots and their leaders are also
changed by the factor RS which is the same as mentioned in
previous section.

E. Utilize History States

History component H(i) is independent with the grouping
situations and is computed based only on the stored states in
robot’s history. In GES, only ten latest history states (position
and fitness) are maintained. When robots search in a wrong
direction and depart the targets (fitness observed is decreasing),



they can get back to route if making full use of the history
components as computed in (7).

H(i) = (P (i)− h(i)) ∗ r (7)

where h(i) is the position of the history state with the best
fitness and r is a random number uniformly distributed within
the range [0.4, 0.8].

If several history states share the same fitness, the most
recent position is selected. Note that when counting h(i),
current position is also taken into account to make sure the
robot is not attracted by a worse position. Thus, the history
component is set to be 0 if fitness of current position is better
than all the states in history and will not contribute to the
velocity update of the robot as the history state can provide
no positive information to guide the search.

F. Velocity Update Equation

After calculating the two components G(i) and H(i), the
velocity of robot i at iteration t, denoted as Vt(i), is updated
as following.

Vt(i) =

{
G(i) +H(i), ‖G(i)‖ > 0
H(i) +Rp , ‖G(i)‖ = 0 ∧ ‖H(i)‖ > 0
Vt−1(i) , ‖G(i)‖ = 0 ∧ ‖H(i)‖ = 0

(8)

where RP is a randomly generated unit vector and Vt−1(i) is
the velocity of the last iteration.

In the equation, velocity update strategy is different if
‖G(i)‖ is 0. Since no grouping action is taking place when
‖G(i)‖ = 0, only the history component remains in the
equation. This will lead to a vibration around the history best
position if the robot gets stuck in an area with same fitness
value. A small random vector RP is introduced to avoid such
situation. RP is an unit vector while H(i) is normally quite
large so the movement of the robot is not too stochastic.

The situation that both G(i) and H(i) are 0 usually occurs
when the robot is the best of the group and fitness is improving
in recent iterations, so the robot just remains its searching
direction as the previous iteration.

G. Obstacle Avoidance

Obstacles are also considered in GES. Obstacle avoidance
is computed stand alone after the velocity update and is not
used in the Vt−1(i) in (8). Since obstacle avoidance is not
the main concern of this paper, a simple avoiding scheme
is used for both GES and the baseline algorithm (introduced
in Section IV-A). Each robot checks if it will run into any
obstacles with the velocity Vt(i). If so, it adds a small
repulsive force perpendicular to Vt(i) from the obstacle to
make sure a collision will not happen. This simple scheme can
provide acceptable performance for obstacle avoidance from
the simulation results in Section IV-E.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, comparison between GES and a search-
ing algorithm inspired from standard PSO is presented. We
first introduce the baseline algorithm briefly and present the
simulation results of several experiments. Two methods are
simulated in a self-built simulation platform [25] and tested

under different situations. The first experiment is to validate the
GES to see if it’s capable for solving the problem considered
in this paper. Various population sizes and number of targets
are considered in this experiment. In the second experiment,
the swarms are supposed to collect as much targets as possible
under a time constraint. The third experiment is the scalable
experiment which has the same condition with the first one
except the scales of swarm size, number of target and map sizes
are enlarged. Obstacles are introduced in the last experiment
and results are compared with the same situation without
obstacles.

In most of the experiments, the stop criteria are to collect
a certain percent of the targets and the essential standard
for judging the performance is the total iteration used. For
the problem definition, it can be easily seen that fitness
becomes inadequate as large areas with 0 fitness appear in
the environment as targets are collected or in large maps. This
means the search of a swarm becomes harder as the experiment
goes.

All the experiments in this section use the same environ-
ment setup: 20 randomly generated maps are used and each
method is repeated for 20 times in the map of 500*500 sizes.
Average results of these 400 runs are presented in results.
Parameters of the two methods are tuned in advance with 10
robots and 20 targets.

A. Baseline Algorithms

In the experiment of this paper, the baseline algorithm
uses the same strategy of RPSO in [20]. Each robot acts as
a particle and the spacial-based topology of the robots for
calculating gbest is adopted. However, RPSO requires a large
communication range for the swarm which is restricted in this
paper, thus a little modification is introduced. In case the robot
vibrates in an area, the small random vector RP in GES is
introduced if both pbest and gbest are the current position.
Except the velocity update strategy, baseline algorithm shares
the same scheme with GES for better comparison, such as
obstacle avoiding and history state updating.

B. Validation Experiment

The first experiment validates the GES method and com-
pares the iterations used for two methods to collect half and
all the targets in the environment respectively. The experiment
is simulated in a small scale setup: map size is 500*500,
population n ranges from 5 to 25 and number of targets m
varies from 10 to 40.

The results are shown in Table I. In the table, results
for collecting half targets and all targets are presented in
different columns. “Iteration” stands for the iterations used
to collect the targets and is the most important criterion to
evaluate the performance. “Collect” stands for the targets
collected in the “Half Target” situation as several targets may
be collected in the same iteration. “Distance” stands for the
averaged moving distance for each robot in the entire searching
process and “Time” indicates the average simulation time on
PC in milliseconds which is used to evaluate the computation
overload. The last two columns indicate the ratio of iterations
between GES and RPSO.



TABLE I: Validation Results

m n
GES RPSO GES / RPSO

Half Target All Target Half Target All Target Iteration
Iteration Collect Iteration Distance Time Iteration Collect Iteration Distance Time Half Full

10

5 162.62 5.00 369.660 3285.164 238.24 178.71 5.00 763.670 3184.458 243.58 91.00% 48.41%
10 133.35 5.02 271.088 2414.354 242.39 145.05 5.01 558.915 2456.718 250.85 91.93% 48.50%
15 124.10 5.02 233.105 2066.172 246.37 132.19 5.01 487.398 2200.033 259.21 93.88% 47.83%
20 123.36 5.04 215.855 1905.821 252.74 124.11 5.01 457.593 2094.180 266.80 99.39% 47.17%
25 125.66 5.03 206.813 1819.752 259.88 122.33 5.01 424.483 1973.483 275.49 102.72% 48.72%

20

5 273.80 10.01 574.055 4951.138 992.89 277.13 10.02 826.823 4151.130 997.10 98.80% 69.43%
10 191.51 10.03 388.220 3372.749 1000.11 226.72 10.02 600.575 3335.970 1000.80 84.47% 64.64%
15 159.62 10.05 318.800 2774.251 1001.23 201.78 10.01 529.613 3054.101 1013.95 79.11% 60.19%
20 152.44 10.06 285.258 2481.513 1010.11 190.34 10.01 487.583 2885.941 1024.92 80.09% 58.50%
25 155.09 10.06 273.293 2378.512 1016.96 185.64 10.01 471.033 2822.598 1037.37 83.54% 58.02%

30

5 339.77 15.02 728.570 6167.176 2264.98 336.67 15.03 972.588 5095.470 2256.03 100.92% 74.91%
10 217.53 15.02 457.145 3891.138 2267.21 255.58 15.01 676.360 3934.549 2273.14 85.11% 67.59%
15 188.08 15.04 373.935 3202.253 2268.14 237.07 15.02 595.553 3657.545 2275.55 79.33% 62.79%
20 171.23 15.05 327.325 2811.040 2272.69 221.35 15.02 550.285 3479.020 2293.55 77.36% 59.48%
25 175.31 15.06 315.625 2723.570 2291.36 203.65 15.05 507.245 3260.953 2307.78 86.08% 62.22%

40

5 412.04 20.02 887.593 7417.298 4038.25 381.80 20.02 1132.458 5993.424 4033.30 107.92% 78.38%
10 254.63 20.04 544.280 4571.844 4035.46 299.73 20.03 813.088 4775.093 4054.15 84.95% 66.94%
15 207.65 20.03 430.508 3636.355 4054.05 276.99 20.02 696.380 4378.265 4073.41 74.97% 61.82%
20 195.73 20.06 380.403 3232.400 4061.64 259.55 20.02 667.423 4306.407 4082.21 75.41% 57.00%
25 192.42 20.08 354.113 3021.856 4075.64 245.51 20.03 618.000 4020.028 4088.93 78.37% 57.30%

From the table, it can be easily seen that GES dominates
RPSO in the performance regardless of population and number
of targets, especially when collecting all targets. GES can
complete most of the missions with only 70-90% and 50-
70% of the iterations than that of RPSO in “Half” and “All”
situations respectively. It also shows that GES has a smaller
total moving distance which means GES is more energy
efficient than RPSO. Considering the smaller iterations, GES
utilizes the maximum speed much better than RPSO which is
one of the important reasons why GES has a better efficiency.
In the table, GES also has a shorter time which indicates the
GES strategy requires less computation resources than RPSO.
This is important for swarm robotics applications since the
robots normally do not have powerful computation abilities.

The results also show that GES outperforms RPSO more
when population size is larger. This indicates the strategy
introduced in GES shows great ability in cooperation among
robots and can accelerate the searching process when there
are more robots in the environment. When number of targets
increases, the average iteration GES used to collect one target
decreases quicker than RPSO which also indicates the strategy
is taking full advantage of cooperation among robots.

C. Experiment Under Time Constraint

The second experiment is simulated in this section which
requires the swarm to collect as many targets in a fixed number
of iterations. The purpose of this experiment is to see how fast
the swarm can converge when fitness information is adequate.
Simulation stops after 5m + 100 iterations, where m is the
number of target. This number is set based on the results in
previous section to make sure most of the searching is still in
progress before reaching the predefined iteration. The results
is shown in Table II, “Collect” in the table indicates the total
number of collected targets in the simulation and is the main
concern of this experiment.

Similar with the results of “Half Target” situation in
previous section, GES outperforms RPSO in this test as well

TABLE II: Results Under Time Constraint

m n GES RPSO GES / RPSO
Collect Iterations Collect Iterations Collect

10

5 4.385 150.00 4.823 150.00 90.93%
10 5.540 150.00 5.585 149.98 99.19%
15 6.238 149.94 5.843 149.97 106.76%
20 6.545 149.66 6.175 149.90 105.99%
25 6.650 149.45 6.260 149.94 106.23%

20

5 7.808 200.00 8.378 200.00 93.20%
10 11.043 200.00 10.640 200.00 103.78%
15 12.905 199.90 11.245 200.00 114.76%
20 13.363 199.87 11.835 200.00 112.91%
25 13.630 199.66 12.010 199.97 113.49%

30

5 11.460 250.00 12.448 250.00 92.07%
10 17.538 250.00 15.845 250.00 110.68%
15 21.130 250.00 17.225 250.00 122.67%
20 22.880 249.88 18.303 249.96 125.01%
25 23.603 249.13 19.095 249.69 123.61%

40

5 15.005 300.00 16.250 300.00 92.34%
10 23.988 300.00 21.635 300.00 110.87%
15 29.858 299.99 23.490 300.00 127.11%
20 32.750 299.38 25.145 299.93 130.24%
25 33.225 298.09 26.688 299.59 124.50%

and has the same trends when population and number of targets
change. GES collects at least 10% more targets than RPSO
within the same iterations. The advantage even becomes more
than 20% when number of targets is large.

Comparing the results in this section with the previous
section, it’s obvious that GES shows more advantage in
performance than RPSO especially when there are more targets
or robots in the environment. In such situation, cooperation
between robots is playing a more important role and GES
achieved excellent performance. More detailed comparison
will be shown in next section in the scalable experiment.

D. Scalable Experiment

The main aim of this experiment is to see if the proposed
GES strategy can scale to problems with larger number of
robots, targets or map sizes. In this experiment, environment



(a) Surviving robots of GES (b) Iteration Ratio of GES (c) Distance Ratio of GES

(d) Surviving robots of RPSO (e) Iteration Ratio of RPSO (f) Distance Ratio of RPSO

Fig. 5: The trends of three main criteria under obstructive environments with various setups of targets and populations. In the
last two criteria, the ratio is regarded to the division by the result of the same strategy and setup in non-obstructive environment.
Points with different colors indicate the results of different swarm populations, as shown in the legend.

Fig. 4: Scalability results. The values indicate the iteration
ratio for collecting 75% of the targets of GES and RPSO.
GES outperforms more when the value is smaller.

is setup much bigger than previous experiments: map size is
1000*1000, n ranges from 10 to 50 and m varies from 10 to
100. Both methods use the same parameter with the previous
experiments. The results are shown in Figure 4.

It can be easily seen that the trend of two algorithms are
quite the same than in previous sections in Figure 4. GES
has great advantages when population is large. It can also be
induced that the advantages is not that large when number of
targets is increased. The main reason is that the map size is
not large enough so the environment is full of fitness values
even when only 25% of targets remains. As shown in previous

section, advantage of GES is smaller when fitness is adequate.

E. Obstacle Avoidance Experiment

In this experiment, we test the performance of the pro-
posed algorithm in environments with small static obstacles.
Obstacles are randomly distributed in the environment and
the number ranges from 0 to 100. Performances in obstacle
environments are compared with that of non-obstacle environ-
ment. The results are shown in Figure 5. In this experiment,
the changes of the two numbers: population m and number
of targets n are tested in a more conscientious way, with a
step of 2 instead of 5 and 10 in previous experiments. Three
main criteria are considered in this experiment: number of
surviving robots, “Iteration”, “Distance”. The last one indicates
the remaining robots after the simulation and is used to judge
how many collisions were taking place. The stop criteria are
set as collecting 75% of the targets.

From Figure 5a and 5d, it can be easily deduced that
GES shows advantages in avoiding the obstacles than RPSO
even with the same obstacle avoidance strategy. There are
possibly two reasons for such results. The first one is that
GES takes much less iterations than RPSO and thus has
a lower possibility of encountering obstacles. The second
one may be the cooperation schemes in GES. Although the
strategy does not include a direct cooperation of obstacle
avoidance, the swarm do benefit from the cooperation. The
robots that successfully avoided any obstacles usually have
lower fitness values in the group since they took a longer way



round. Therefore, the groups will possibly move towards other
directions and thus avoid the obstacles indirectly.

In Figure 5, the trends of “Iteration” and “Distance” are
very similar for both GES and RPSO strategy. Robots take
shorter moves per iteration to avoid more obstacles which
leads to larger iterations. However, it’s obvious that GES has a
much better stability than RPSO when the environment setups
change, as the points in the figure of GES are much more
compact. Stability can be also indicated from the trend of the
two algorithms as RPSO is more sloped. If comparing the
mean value of all the results with same number of obstacles,
two strategies are quite the same when few obstacles exist,
but GES becomes better when there are number of obstacles
increases. Considering the big differences of “Iteration” and
“Distance” from the results of previous experiments, GES
definitely outperforms RPSO in environments with obstacles.

V. CONCLUSION

A grouped explosion strategy (GES) for searching multiple
targets is proposed in this paper. GES method is applied to the
multiple targets searching problem on a self-built simulation
platform. The swarm searches and collects targets in the
environment without prior knowledge. Several tests are run
to evaluate how GES performs in various aspects including
stability, robustness and flexibility. Simulation results demon-
strate that GES shows great efficiency when fitness is either
adequate or inadequate in the environment. GES also shows
good stability in obstructive and large-scale environments.
These results indicate that the GES strategy has great ability
in cooperating robots to accomplish the tasks.

As for future work, we plan to improve the strategy through
introducing direct inter-group cooperation. We will also try to
apply GES on more complicated searching problems, such as
dynamic environment with various kinds of targets which have
different values to collect. Through modeling and analyzing
the intra-group behaviors in GES, improved strategy may be
proposed for more complicated problems.
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