A GPU-based Parallel Fireworks Algorithm for Optimization

Ke Ding
Key Laboratory of Machine
Perception (MOE), Peking
University
Department of Machine
Intelligence, School of
Electronics Engineering and
Computer Science, Peking
University
Beijing, China
keding@pku.edu.cn

ABSTRACT

Swarm intelligence algorithms have been widely used to solve
difficult real world problems in both academic and engineer-
ing domains. Thanks to the inherent parallelism, various
parallelized swarm intelligence algorithms have been pro-
posed to speed up the optimization process, especially on
the massively parallel processing architecture GPUs. How-
ever, conventional swarm intelligence algorithms are usually
not designed specifically for the GPU architecture. They
either can not fully exploit the tremendous computational
power of GPUs or can not extend effectively as the problem
scales go large. To address this shortcoming, a novel GPU-
based Fireworks Algorithm (GPU-FWA) is proposed in this
paper. In order to fully leverage GPUs’ high performance,
GPU-FWA modified the original FWA so that it is more
suitable for the GPU architecture. An implementation of
GPU-FWA on the CUDA platform is presented and tested
on a suite of well-known benchmark optimization problem-
s. We extensively evaluated and compared GPU-FWA with
FWA and PSO, in respect with both running time and so-
lution quality, on a state-of-the-art commodity Fermi GPU.
Experimental results demonstrate that GPU-FWA general-
ly outperforms both FWA and PSO, and enjoys a significant
speedup as high as 200x, compared to the sequential version
of FWA and PSO running on an up-to-date CPU. GPU-
FWA also enjoys the advantage of being easy to implement
and scalable.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’13, July 6-10, 2013, Amsterdam, The Netherlands.

Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

Shaoqiu Zheng
Key Laboratory of Machine
Perception (MOE), Peking
University
Department of Machine
Intelligence, School of
Electronics Engineering and
Computer Science, Peking
University
Beijing, China
zhengshaogiu@pku.edu.cn

Ying Tan
Key Laboratory of Machine
Perception (MOE), Peking
University
Department of Machine
Intelligence, School of
Electronics Engineering and
Computer Science, Peking
University
Beijing, China
ytan@pku.edu.cn

General Terms

Algorithms, Performance, Experimentation

Keywords

Swarm Intelligence, Fireworks Algorithm, Parallel Comput-
ing, GPU computing, CUDA

1. INTRODUCTION

Optimization problems are ubiquitous throughout the sci-
entific community and arise in a variety of engineering ap-
plications. For many optimization problems, the objective is
complicatedly non-linear and non-differentiable, often with
no explicit expression. To deal with these problems, various
nature-inspired methods are proposed, one of which is the
family of swarm intelligence algorithms.

Swarm intelligence is a cluster of population-based meta-
heuristic stochastic algorithms. It is based on the study of
collective behavior in decentralized, self-organized systems
without external guidance or central coordination [4]. A
swarm is typically made up of a population of simple agents.
The collective system is capable of performing complex tasks
in a dynamic environment without external guidance and
central coordination.

In the swarm algorithm, a swarm constitutes a number of
individuals. Each individual owns a position in the search
space and can evaluate the goodness or fitness of the curren-
t position. Individuals can exchange knowledge about the
search space with one another through specific mechanism.

Due to its simplicity and effectiveness, there has been a
growing interest in applying swarm intelligence algorithm-
s to engineering optimization problems. Many swarm in-
telligence algorithms have been proposed in the last sever-
al decades. New algorithms are also continually proposed.
Those swarm algorithms make use of different heuristic mech-
anisms inspired by collective behavior and succuss in diverse
problems.

With its low price and easy access, the GPU has gained
much popularity in general purpose computing [12]. Accel-
erating swarm intelligence algorithms for solving complex
real problems on GPU platform has attracted the attention
of many researchers due to their applicability to many en-
gineering and scientific problems. With improvements in its
programmability and the emergence of more handy develop-



ment toolkits, more and more swarm intelligence algorithms
are implanted to the GPU hardware to leverage the rapidly
increasing performance of GPU. Various GPU-based imple-
mentations from low-level rendering languages [16] to lately
high-level general languages [17, 3, 6, 14] have been report-
ed.

Although GPUs have been successful in accelerating swar-
m intelligence algorithms, conventional swarm intelligence
algorithms are usually designed to be used under small swar-
m size. In the meantime due to the very different architec-
tures, the same operation may have very different efficiency
on CPU and GPU. All these factors prevent the fully ex-
ploitation of GPU’s computing power.

To tackle this, a new GPU-based swarm algorithm called
GPU-FWA is proposed in this paper.

Fireworks Algorithm (FWA) [15] is a novel swarm intelli-
gence algorithm for optimization. FWA stimulates the phe-
nomenon of firework explosion. It is reported that FWA
shows better performance than standard PSO and Clonal
PSO [15]. GPU-FWA is based on the FWA, and can extend
along with the problem scale in a natural and easy way.
GPU-FWA modifies the original FWA to suit the particular
GPU architecture. It do not need special complicated re-
structure data, thus making it easy to implement, while, in
the meantime, can fully exploit the great computing power
of GPU. A mutation mechanism called attract-repulse mu-
tation is introduced to guide the search process.

We implemented the proposed algorithm within the CU-
DA platform. The proposed algorithm is extensively eval-
uated and compared on both speedup and solution quality
on a state-of-the-art Fermi GPU architecture. Experiments
show that it outperforms standard PSO and FWA, and ob-
tains a significant speedup up to 140 and 200 compared to
CPU-based FWA and PSO respectively on an up-to-date
CPU.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the previous work on FWA as well as
general purpose GPU computing and its application in swar-
m intelligence, especially the NVIDIA’s Computing Unified
Device Architecture (CUDA). We present the proposed al-
gorithm GPU-FWA and its implementation within CUDA
platform in section 3. The experiments and results goes in
Section 4. Finally, we conclude this paper in the last section.

2. RELATED WORK
2.1 Fireworks Algorithm (FWA)

A thorough and detailed review on swarm intelligence is
beyond the scope of this paper. In this section, we brief
reviewed FWA base on which the GPU-FWA is proposed.
For a comprehensive survey on swarm intelligence, readers
can refer to [4] and [1].

Inspired by the explosion process of fireworks, a novel
Fireworks Algorithms (FWA) for optimization was proposed
by Tan and Zhu [15]. It has been successfully applied in Non-
negative matrix factorization[5]. The framework of FWA is
as depicted by Fig. 1.

In FWA | the optimization process is driven by the “explo-
sions” of a swarm of artificial fireworks. The amplitude of a
certain explosion is calculated as follows:

_ A f(xi)_ymin+§
A=A (z;’;lu(xi) T— ”) - W

| Initialize n fireworks |

l

Evaluate the quality of
each firework

termination Yes
criterion satisfied?

Set each firework’s explosion
range and spark number

[ Set off fireworks |

|

| Gaussian mutation |

l

Evaluate the quality of
each firework

I}
|Selectthe next generation | | End |

Figure 1: Framework of fireworks algorithm

where the predefined A denotes the maximum explosion am-
plitude, and ymin = min(f(x;)) (i = 1,2,...,n) is the min-
imum (best) value of the objective function among the n
fireworks, and £ , which denotes the machine precision, is
utilized to avoid zero division error, and § is a small float
constant to avoid A; too small for the ith firework.

The number of sparks generated by each fireworks z; is
defined as follows:

Ymaz — f(xi) +&
S Ymaz — f(x0)) + € (2)

where m is a parameter controlling the total number of s-
parks generated by the n fireworks, ymaee = maz(f(x;)) (¢ =
1,2,...,n) is the maximum (worst) value of the objective
function among the n fireworks, and £ denotes the machine
precision. s; is rounded to the nearest integer.

The philosophy lying behind Eq.1 and Eq. 2 is that fire-
works with better fitness generate more sparks within small-
er range (observe Fig.2). Via this mechanism, more com-
puting resource can be assigned to better space to enhance
exploitation, and for the worse space, the search trends to
exploration.

To increase the diversity of the swarm, a gaussian mu-
tation is introduced to generate sparks. This mechanism
is critical for the GPU-FWA, we will discuss it in detail in
section 3.

Si=m-

2.2 General Purpose GPU Computing

Driven by the insatiable demand for realtime, high-definition
3D graphics, the GPU has evolved into a massively parallel,
many-core processor in the last few years. With its tremen-
dous computational horsepower, the GPU has become a sig-
nificant part of modern mainstream, general-purpose com-
puting systems [11]. The GPU is especially well-suited to
address problems with high arithmetic intensity (the ratio



Figure 2: Two Types of Firework Explosions:Good
Explosion (left) and Bad Explosion (right)

of arithmetic operations to memory operations) where the
same program is executed on many data elements in parallel.

NVIDIA’s Computing Unified Device Architecture (CUD-
A) is a high level general purpose parallel computing platfor-
m and programming model. CUDA comes with a software
environment that allows developers to use C as a high-level
programming language, thus, makes it easier for program-
mers to fully exploit the parallel feature of GPUs without
an explicit familiarity with the GPU architecture.

In CUDA programming, GPU computing is conducted by
kernels. A kernel is a function that explicitly specifies data
parallel computations to be executed on GPUs. When a
kernel is launched on the GPU, it is executed by a batch
of threads. Threads are organized into independent blocks,
and several blocks, in turn, constitute a grid.

Threads run in a unique mechanism called Single Instruc-
tion, Multiple Thread (SIMT). When the GPU is given one
or more thread blocks to execute, it partitions them into
warps. As a warp executes one common instruction at a
time, so full efficiency is realized when all 32 threads of a
warp agree on their execution path. If threads of a warp
diverge via a data-dependent conditional branch, the warp
serially executes each branch path taken, disabling threads
that are not on that path, and when all paths complete, the
threads converge back to the same execution path. Branch
divergence occurs only within a warp; different warps exe-
cute independently regardless of whether they are executing
common or disjoint code paths. As can be seen in section 3,
the concept of warp plays an import role in designing and
implementing GPU-FWA.

Closely related to CUDA’s tread hierarchy is its memory
model. CUDA threads may access data from multiple mem-
ory spaces during their execution as illustrated by Fig. 3.
Each thread has private registers and local memory. Each
thread block has shared memory visible to all threads of the
block. All threads have access to the same global memory.
Register and shared memory are very fast on-chip memory
while global memory is off-chip and has very long access la-
tency. So shared memory should be used whenever possible.

3. GPU-FWA: ALGORITHM AND IMPLE-
MENTATION

GPUs provide great computing power at an affordable
cost, but it is not clear whether a conventional paradigm is
suitable for expressing parallelism in a way that is efficiently
implementable on GPU architectures. In this section, we

Grid

' Block (0, 0)

Block (1, 0)

Thread (0, 0) | Thread (1, 0)

FY Y FY Ve v

Figure 3: Memory Model of CUDA

Algorithm 1 GPU-FWA

: Initialize n fireworks
calculate the fitness value of each fireworks
calculate A; according to Eq.1
while termination condition unsatisfied do
for i =1ton do
Search according to Al. 2
end for
Mutate according to Al. 3
calculate the fitness values of the new fireworks
update A; according to Eq.1
: end while

PO RPN W

— =

present a GPU-based approach which is dedicated to the
GPU massively parallel architecture.

The goals of the proposed algorithm on the CUDA plat-
form are achieving:

e Good quality of solutions. The algorithm can find good
solutions, compared to the state-of-the-art algorithms.

e Good scalability. As the problem gets complex, the
algorithm can scale in a natural and decent way.

e And ease of implementation and usability, i.e. few con-
trol variables to steer the optimization. These vari-
ables should also be robust and easy to choose.

To meet these goals, several critical modifications to the
original FWA are adopted to take benefit of this particular
architecture. The pseudo-code of the proposed algorithm is
depicted by Al 1.

As other swarm intelligence algorithms, GPU-FWA is an
iterative algorithm. In each iteration, every firework does a
local search independently. Then, an information-exchange
mechanism is triggered to utilize the heuristic information
to guide the search process. The mechanism should make a
balance between exploration and exploitation.



Algorithm 2 FWA Search

Algorithm 3 Attract-Repulse Mutation

1: fori=1to L do

2:  generate m sparks according to Al. 2

3:  evaluate the fitnesses of each sparks

4:  find the best spark with best fitness value, replace it
with the current firework if better.

5: end for

As the algorithm is self-descriptive, what’s left to be made
clear is Al.2 and Al 3. In the following subsections, we
explain these two algorithms in detail, respectively.

3.1 FWA Search

Mimicking the explosion procedure of a firework in sky,
FWA generate certain number of sparks to exploit the neigh-
bor solution space. Fireworks with better fitness values gen-
erate more sparks with a smaller amplitude. This strategy
aims to put more computational resources to the more po-
tential position, thus making a balance between exploration
and exploitation.

In Al. 2, we adopt this strategy, but in a 'greedy’ way, i.e.,
instead of a global selection procedure in FWA, each fire-
work is updated by its current best sparks. The mechanism
exhibits an enhanced hill-climbing behavior search.

Each firework generates a fixed number of sparks. The
exact number (m) of sparks is determined in accordance
with the specific GPU hardware architecture. This fixed
encoding of firework explosion is more suitable for parallel
implementation on the GPUs.

As aforementioned in section 2.2, within CUDA-enabled
GPU, threads are scheduled by warp. Nowadays, the warp
size is 32 for all the CUDA-enable GPUs. Each warp is
assigned certain number of Stream Processors (SPs). All
threads in the same warp execute a common instruction at
a time on these SPs. For the older generation Tesla archi-
tecture [8], the number is 8, and for Fermi architecture [9]
is 16.

As with our experimental setting (GeForce 560Ti, see
Sec.4.1), the warp size is 32, and is assigned to 16 SPs. To
avoid waste of hardware resource, m should be 16 or multi-
ple of 16. But, it is unnecessary to pick m > 16, as greater
m is apt to over-exploit a certain position, while a better
refined search can be achieved via running more explosions.

So as a rule of thumb, m should be 16 and 32 on GPUs of
the Fermi architecture, and 8 or 16 on previous generation
Tesla architecture. Thus the sparks of each firework can be
generated by treads in a single warp, which, as mentioned a
section 2.2, need not any extra synchronization overhead.

Also, as can seen from Al. 2, unlike FWA | in GPU-FWA
fireworks don’t exchange information in each explosion pro-
cedure, and the number of sparks for each firework genera-
tion is fixed.

It takes the following advantages.

Firstly, global communications among fireworks need ex-
plicit synchronization, which implies a considerable over-
head. By letting the algorithm perform a given number of
iterations without exchanging information, the time can be
reduced greatly.

Secondly, the number of each firework to generate is dy-
namically determined, the computation task must be as-
signed dynamically through the optimization procedure. As
GPUs are inefficient at control operations ,the dynamic com-

1: Initialize the new location: X; = X;;
2: s=U(1—-6,149);

3: ford=1to D do

4:  r=rand(0,1);

5. if r < § then

6: Xi,d = Xi,d + (Xi,d — Xvest,d) * S;

7:  end if

8 if Xj4 > ubg or X;4 < lbg then

9 %Xj.a = 1ba + |X;j,¢ — Ibg| mod (ubg — 1by);
0 end if

1

1
11: end for

/ Current Positions

Firework /\
L

with the best
fitness value \

New Positions

®
e

Figure 4: Attract-Repulse Mutation

putation assignment is apt to harm the overall performance
of GPUs. By fixing the sparks number, we can assign each
firework to a warp, this way, all sparks are synchronized
implicitly without extra overhead.

The last but not the least, implemented the explosion in
one block of threads, it can fully utilize the shared memory,
thus, once the firework position and fitness is loaded from the
global memory, no visit to the global memory is needed. The
latency of visiting global memory can be reduced greatly.

3.2 Attract-Repulse Mutation

While the heuristic information is used to guide local
search, other strategies should be taken to keep the diversity
of the firework swarm. Keeping a diversity of the swarm is
crucial for the success of optimization procedure.

In FWA, a gaussian mutation is introduced to increase the
diversity of the firework swarm. In this mutation procedure,
m extra sparks are generated. To generate such a spark,
first, a scaling factor g is generate from G(1, 1) distribution.
Randomly selecting a firework, the distance between each
corresponding dimension of the firework and the best current
firework is multiplied by ¢g. Thus, the new sparks can be
closer to the best firework or further away from it.

Similar to gaussian mutation, in GPU-FWA, a mechanism
called attract-repulse mutation (ar-mutation) is proposed to
achieve this aim in an explicit way, as illustrated by Al. 3,
where x; depicts the i-th firework, while xp.s: depicts the
firework with the best fitness.

The philosophy behind ar-mutation, as illustrated by Fig. 4,
is that, for non-best fireworks, they either attracted by the
best firework to ’help’ exploit the current best location or
repulsed by the best firework to explore more space. The
choice between ’attract’ and ’repulse’ reflects the balance
between exploitation and exploration.



:
---A=1.005
107 H=="A=0995 e "

Figure 5: E[z] under different values of A

In [15] gaussian mutation is used. But various distribution
can be taken. As uniform distribution is most straightfor-
ward and easiest to utilized, we takes this strategy in the
proposed algorithm.

To theoretically analyze the ar-mutation mechanism, the
procedure can be simplified to a 1-order Markorv chain. Giv-
en, o = 1, the next state is generated by the Eq.3

Tyl = Qu * Ty (3)

where, o subjects to uniform distribution between a and b,
0<a<landbd>1.

Then the t-th state can be expressed by the following e-
quation:

t
Tt = H Qa4 - Xo,
i=1
We can calculate the expected position,
t

Hai] Sz = HE[ai} " To (4)

i=1

E[.l?t} =F

t
:HE[a] g = A" - 1o
i=1

As can be seen from Eq. 4, if the expectation of «, i.e. A,
is greater than 1, then z is expected to increase exponen-
tially; otherwise, if A less than 1, x is expected to decay ex-
ponentially. Fig.5 demonstrates a simulation result, where
tree process subject to U(0.9,1.11) (A = 1.005), U(0.9,1.1)
(A =1), and U(0.9,1.09) (A = 0.995). As the simulation
showed, even a small disturbance on A = 1, the results tend
to diverge to infinite or converge to 0, exponentially.

As for ar-mutation, it means that fireworks are either 're-
pulsed’ to the bounds of feasible range or ’attracted’ to the
current best position. Both conditions lead to prematurity
and the loss of diversity.

To make sure that fireworks can ’linger’ around the search
space more steadily, A should take 1. The distribution
should be the form of s = U(1 — 4,1 + §), where § € (0,1).

However, as the search range is limited , so § should be
taken with care, though A is set to 1.

As depicted by Fig. 6, from left to right, from top to bot-
tom, § takes 0.9 to 0.1, respectively. In the simulation, when
x > 100, z is truncated to 10. z converges to 0 with di-
verse speeds. As a tendency, greater § corresponds to faster
convergency, and vice versa. But what exact convergency
speed is most suitable, is task-dependent. It relies on the

Il 1 Il 1 Il 1 Il i 1
0 100 200 300 400 500 600 700 800 900 1000

8 5=09 bt 5=08 18 5=07
1 1 1
05 05‘{ MM
w00 % 500 w000 % 500 1000
2 5=05 5 5=04
1
! 05
| o
1000 ) 500 1000 0 500 1000
2 _ 15 -
5=0.2 6=0.1
\ “MU oI A i
g,
o i o 05
(] 500 1000 (] 500 1000 o0 500 1000

Figure 6: Simulation Results with different uniform
distribution

landscape of the objective function and how many iteration
the algorithm will run.

3.3 Implementation

The flowchart of the GPU-FWA implementation on CU-
DA is as Fig. 7.

3.3.1 Thread Assignment

In the FWA search kernel, each firework is assigned to
a single warp (i.e. 32 continual threads). But, not all the
threads in the warp are necessary to be used to execute
computation. If the number of sparks is set to 16, then we
use the former half-warp threads, or if the number is 32, all
threads in the warp are used. In our implementation, the
number is set to 16.

Such an implementation brings several advantages. First,
since threads in the same warp are synchronized inherently,
there will cut down the overhead of inter-spark communi-
cation. Second, by keeping each firework and their sparks
in the same warp, the explosion process takes place in a s-
ingle block, thus the shared memory can be utilized. As
accessing to the shared memory is with much lower latency
than global memory, the overall running time can be greatly
reduced. As GPUs automatically dispatch block according
to the computing and memory resources, it is easy for the
proposed algorithm to extend with the problem scale.

3.3.2  Data Organization

In our implementation, the position and fitness value of
each firework are stored in the global memory, while the the
data of sparks are stored in the fast shared memory. For
the purpose of coalescing global memory access [8], data is
usually organized in an interleaving configuration [18][13],
as in Fig.8. In this paper, we take the conventional way
ji.e. the data of the fireworks and sparks in both global
and shared memory are stored in a continual manner (see
Fig.9). For in our implementation, each firework occupies a
single SM. The threads running on the same SM are up to
load the data of a particular firework from global memory,
thus data of the same firework should be stored continually.
This organization is also simpler and easier to extend with
problem scale than the interleaving pattern.

3.3.3 Random Number Generation

Random number plays an important role in swarm intel-
ligence algorithms. It can be very time-consuming to gener-
ating tremendous, high-quality random numbers. The per-
formance of the optimization relies on the quality of random



Host
(CPU)

Start GPU-FWA

Initialize
parameters

Kerngl call

Device
(GPU)

Kernel return

Generate
initial
population

Kernel call
\

Kernel return

Evaluation initial
population (compute |- —
fitness function)

Finish GPU-
FWA and
read the

result

Global

Kernel call

Kernel return

Calculate explosion|

Memory

amplitude

Kernel call

’—b

Kernel{return

_ | Shared | _

FWA Search  [a—r o
lemory

Kernel call

Kernel return

Attract-Repulse

Mutation

Figure 7: The Flowchart of the GPU-FWA implementation on CUDA

Memory Xi1 Xa1 Xa1 Xa1 X1z X2 Xa2 Xaz X1z X3 Xaz Xaz Xia Xoa Xaa Xag

Figure 8: Interleaving Storage

Memory Xi; X2 Xiz Xia Xa X2 Xoz Xoa Xan X3z Xaz Xaa Xar Xaz Xaz Xag

Figure 9: Continuous Storage

numbers. For our implementation, the efficient CURAND
library [10] is used for generating high-quality random num-
bers on the GPU.

4. EXPERIMENTS AND ANALYSIS

To empirically study the performance of GPU-FWA| ex-
tensive experiments are conducted and thoroughly analyzed.

4.1 Experimental Environment

To compare the performance, both in solution precision
and runtime, we implemented two swarm algorithm, Parti-
cle Swarm Optimization (PSO) [2] and Fireworks Algorithm
(FWA) [15]. We conducted our experiments on Windows 7
Professional x64 with 4G DDR3 Memory (1333 MHz) and
Intel core I5-2310 (2.9 GHz, 3.1 GHz). The GPU used in
the experiments is NVIDIA GeForce GTX 560 Ti with 384
CUDA cores. The CUDA runtime version is 5.0.

The benchmark functions are listed in Tab. 1 [7], of which
f1 to fs are unimodal functions, while fi to fs are multi-
modal functions. D depicts the dimension of the test func-
tions, in our work D is set to 30.

We implemented PSO according to [2] with a ring-topology
and FWA according to [15] with minor modification as men-
tioned in section 2.

In all simulations, we performed 20 trials for each func-
tion. For GPU-FWA, in each running, 1000 iterations were
executed. FWA and PSO executed the same number of func-
tion evaluations as GPU-FWA.

For GPU-FWA| the parameters are set as follows: n = 48,
L =30, 6 = 0.5. As in our experimental environment, the
GeForce 560 Ti GPU has 12 CUDA cores, the number of
fireworks should be the multiplication of 12 and big enough
to avoid waste of computational power. 48 is adopted for
the comparison of precision; when comparing the speedup,
72, 96 and 144 are also used (see section 4.2).

So far, there is no theoretical rules on the criterion of the
selection of L and §. Some experiments are conducted to
pre-determine them. L = 30 and § = 0.5 performed quit well
compared to various parameter settings (L = 10, 20, 30, 40, 50
and 6 = 0.1---0.9, as the limit of space, the results are omit-
ted here). The total function evaluation time was 48 % 16 *
1000 = 768000.

For a fair comparison, all of the three algorithms were
tested under the same scale. Here, by saying scale ,we mean
that the number of function evaluations that can be executed
in parallel. For GPU-FWA| the scale in this experiment is
768, so PSO’s swarm size is set as the same number. As
with FWA, as the firework number takes 64, and total spark
number is 640 and number of gaussian sparks is 64.

4.2 Quality of Solutions

All benchmark functions in Tab. 1 were optimized in 20 in-
dependent trails, and the average results and corresponding
standard deviations are as Tab. 2.

Under the significance level of 0.01 (observe Tab 3), it can
be seen that GPU-FWA outperforms FWA on f1 ~ f6 and
{8, it only lost to FWA on 6. PSO outperforms GPU-FWA
on unimodal function {2, but fail to GPU-FWA on another



Table 1: Benchmark Functions

ID | Function Expression Feasible bounds Dimension | optima
f1 | Sphere =3P x? [-5.12,5.12] 30 0
2 | Hyper-ellipsoid f2=30 i-x? [-5.12,5.12]" 30 0
£3 | Schwefel 1.2 fs=3P, (2;1:1 x])2 [—65.536, 65.536] 30 0
£4 | Rosenbrock =05 100 (ki = x2)° + (1= %)’ [-2.048, 2.048]7 30 0
f5 | Rastrigin fs=10-D+ 2 [x? - 10cos (2mx;)] [-5.12,5.12)" 30 0
f6 | Schwefel fo = X2, [-xisin (Vi) [~500, 500]” 30 -1.3e+04
f7 | Griewangk fr= gm0 2, x2 —TI2, cos ("7) +1 [-600, 600]” 30 0
18 | Ackley fs=—a-exp (—b : \/ﬂ> —exp (5 X2, cos (exi)) +a+exp(l) | [~32.768,32.768]” 30 0

Table 2: Precision Comparison
GPU-FWA FWA PSO

Fun
Avg | sud Avg. | sud Avg. Std.

1 1.31E-09 1.85E-09 | 7.41E+00 1.98E+01 | 3.81E-08 7.42E-07
f2 | 1.49E-07 6.04E-07 | 9.91E+01 2.01E4+02 | 3.52E-11 | 1.15E-10

f3 | 3.46E4-00 | 6.75E+01 | 3.63E+02 7.98E+02 | 2.34E404 | 1.84E404
f4 | 1.92E4-01 | 3.03E4+00 | 4.01E402 5.80E4+02 | 1.31E402 | 8.68E+02
f5 | 7.02E4-00 | 1.36E+01 | 2.93E+01 2.92E4+00 | 3.16E4+02 | 1.11E+02
f6 | -8.09E403 | 2.89E4+03 | -1.03E4-04 | 3.77E+03 | -6.49E+03 | 9.96E403
f7 | 1.33E+00 1.78E+01 | 7.29E-01 1.24E4-00 | 1.10E4-00 | 1.18E+400
f8 | 3.63E-02 7.06E-01 7.48E+400 7.12E400 | 1.83E400 | 1.26E+01

Table 4: Running Time and Speedup of Rosenbrock
| n | FWA (s) | PSO(s) | GPU-FWA (s) | SU(FWA) | SU(PSO) |

48 36.420 84.615 0.615 59.2 137.6
72 55.260 78.225 0.624 88.6 125.4
96 65.595 103.485 0.722 90.8 143.3
144 100.005 155.400 0.831 120.3 187.0

unimodal function f3. GPU-FWA can get better results on
multimodal functions f4, 5, f6, 8. In general, as far as the
benchmark functions are concerned, we can see that GPU-
FWA performs better than FWA and PSO.

4.3 Speedup VS. Swarm Size

Besides the precision of the optimization results, speedup
efficiency is another critical factor we must consider.

To observe the speedup GPU-FWA can achieve in com-
parison with PSO and FWA, a series of experiments were
conducted, where n is set respectively to 48, 72,96, 144 for
GPU-FWA. 1000 iterations are run, and the same function
evaluation time under the same scale for PSO and FWA.

The running time (in seconds) and speedup with respect
to Rosenbrock function is illustrated by Tab. 4. Fig. 10 and
Fig. 11 depict the speedup of all the 8 benchmark functions
with respect to the swarm size.

GPU-FWA achieved a speedup as high as 180x with the
scale of less than 200, in the meantime, the up-to-date GPU
accelerated PSO achieve 200x fold speedup with the scale

72 96

Figure 10: Speedup vs. FWA

144
144

72 26

Figure 11: Speedup vs. PSO



Table 3: p-values of t-test

f1 f2 f3 f4 f5 6 f7 f8
GPU-FWA vs. FWA | 1.00E-06 | 0.00E+00 | 0.00E+400 | 0.00E+00 | 0.00E+400 | 0.00E+400 | 5.16E-01 | 0.00E+400
GPU-FWA vs. PSO | 3.46E-01 1.21E-04 | 0.00E+4-00 | 2.15E-02 | 0.00E+00 | 6.50E-03 | 8.03E-01 | 1.21E-02

high up to 10000 [13]. Thus the proposed GPU-FWA are
more scalable than the conventional GPU-based PSO.

5. CONCLUSION

Swarm intelligence is a kind of population-based meta-
heuristic optimization algorithms. As GPU computing has
come into the mainstream, it has attracted more and more
interest from the field of swarm intelligence for algorithm
acceleration purpose. Although GPUs provide great com-
puting power at an affordable cost, it is not clear whether a
conventional paradigm is suitable for expressing parallelism
in a way that is efficiently implementable on GPU archi-
tectures. To take benefit of GPUs, in this paper, a novel
swarm intelligence algorithm, GPU-FWA, for optimization
is presented. The proposed algorithm can fully leverage the
great computing power of the GPU architecture, lending it-
self very well to parallel computation. It do not need special
complicated data structure, thus making it easy to imple-
ment. As the problem scale goes great, it can extend in an
easy and natural way. The new method requires few control
variables, thus is robust as well as easy to use.

Tested on suite of benchmark functions, it is demonstrat-
ed that the new method outperform FWA and the popular,
well-researched PSO in the quality of solution. Experimen-
tal results obtained a speedup up to 160x and 200x compared
to CPU-based FWA and PSO respectively on an up-to-date
CPU .

We can conclude that GPU-FWA is a potential power-
ful tool for solving large-scale optimization problems on the
massively parallel architecture.

6. ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (NSFC), Grant No. 60875080 and No.
61170057.

7. REFERENCES

[1] P. E. Andries and P. Engelbrecht. Fundamentals of
Computational Swarm Intelligence. Wyley, 2005.

[2] D. Bratton and J. Kennedy. Defining a standard for
particle swarm optimization. In Swarm Intelligence
Symposium, 2007. SIS 2007. IEEE, pages 120127,
April 2007.

[3] L. de P. Veronese and R. A. Krohling. Swarm’s flight:
Accelerating the particles using c-cuda. In
Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on, pages 3264—-3270, May 2009.

[4] R. C. Eberhart, Y. Shi, and J. Kennedy. Swarm
Intelligence. Morgan Kaufmann, San Francisco,
California, 2001.

[5] A. Janecek and Y. Tan. Swarm intelligence for
non-negative matrix factorization. International
Journal of Swarm Intelligence Research, 2(4):12-34,
October-December 2011.

[6] P. Kromer, V. Snagel, J. Plato$, and A. Abraham.
Many-threaded implementation of differential
evolution for the cuda platform. In Proceedings of the
138th annual conference on Genetic and evolutionary
computation, GECCO 11, pages 1595-1602. ACM,
2011.

[7] M. Molga and C. Smutnicki. Test functions for
optimization needs, 2005.

[8] NVIDIA. NVIDIA CUDA C Best Practices Guide 5.0,
October 2012.

[9] NVIDIA. NVIDIA’s Next Generation CUDA™
Compute Architecture: Fermi™, 2012.

[10] NVIDIA. Toolkit 5.0 CURAND Guide, September
2012.

[11] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
and J. Phillips. Gpu computing. Proceedings of the
IEEE, 96(5):879-899, May 2008.

[12] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krfz’ger, A. E. Lefohn, and T. J. Purcell. A survey
of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80-113, March 2007.

[13] V. Roberge and M. Tarbouchi. Parallel particle swarm
optimization on graphical processing unit for pose
estimation. WSEAS TRANSACTIONS on
COMPUTERS, 11(6):170 ~179, June 2012.

[14] S. Solomon, P. Thulasiraman, and R. Thulasiram.
Collaborative multi-swarm pso for task matching
using graphics processing units. In Proceedings of the
18th annual conference on Genetic and evolutionary
computation, GECCO ’11, pages 1563-1570, New
York, NY, USA, 2011. ACM.

[15] Y. Tan and Y. Zhu. Fireworks algorithm for
optimization. In Advances in Swarm Intelligence,
volume 6145 of Lecture Notes in Computer Science,
pages 355-364. Springer Berlin Heidelberg, 2010.

[16] M.-L. Wong, T.-T. Wong, and K.-L. Fok. Parallel
evolutionary algorithms on graphics processing unit.
In Evolutionary Computation, 2005. The 2005 IEEE
Congress on, volume 3, pages 2286-2293, September
2005.

[17] Y. Zhou and Y. Tan. Gpu-based parallel particle
swarm optimization. In Fvolutionary Computation,
2009. CEC ’09. IEEE Congress on, pages 1493-1500,
May 2009.

[18] Y. Zhou and Y. Tan. Gpu-based parallel
multi-objective particle swarm optimization.
International Journal of Artificial Intelligence,
7(A11):125-141, October 2011.



