
Pattern Recognition 46 (2013) 230–242
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

$This

under g

the Nat

Program
n Corr

Electron

100871

E-m
journal homepage: www.elsevier.com/locate/pr
Efficient Euclidean distance transform algorithm of binary images
in arbitrary dimensions$
Jun Wang a,b,c, Ying Tan a,b,n

a Key Laboratory of Machine Perception (MOE), Peking University, China
b Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
c Shandong Provincial Office, State Administration of Taxation, Jinan, China
a r t i c l e i n f o

Article history:

Received 8 August 2011

Received in revised form

10 April 2012

Accepted 29 July 2012
Available online 10 August 2012

Keywords:

Euclidean distance transform

Arbitrary dimensions

Independent scan

Linear time algorithm

Binary image
03/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.patcog.2012.07.030

work was supported by the National Natural

rants No. 61170057 and 60875080. This work

ional High Technology Research and Develop

), with grant number 2007AA01Z453.

esponding author at: Department of Mac

ics Engineering and Computer Science,

, China. Tel./fax: þ86 10 62767611.

ail addresses: bedouins@pku.edu.cn.(J. Wang)
a b s t r a c t

In this paper, we propose an efficient algorithm, i.e., PBEDT, for short, to compute the exact Euclidean

distance transform (EDT) of a binary image in arbitrary dimensions. The PBEDT is based on independent

scan and implemented in a recursive way, i.e., the EDT of a d-dimensional image is able to be computed

from the EDTs of its ðd�1Þ-dimensional sub-images. In each recursion, all of the rows in the current

dimensional direction are processed one by one. The points in the current processing row and their

closest feature points in ðd�1Þ-dimensional sub-images can be shown in a Euclidean plane. By using the

geometric properties of the perpendicular bisector, the closest feature points of ðd�1Þ-dimensional sub-

images are easily verified so as to lead to the EDT of a d-dimensional image after eliminating the invalid

points. The time complexity of the PBEDT algorithm is linear in the amount of both image points and

dimensions with a small coefficient. Compared with the state-of-the-art EDT algorithms, the PBEDT

algorithm is much faster and more stable in most cases.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A d-dimensional binary image I is a function: ½1 . . .n1��

� � � � ½1 . . .nd�-f0,1g, each element of which has a value 0 or 1,
referred to as background or feature (foreground) point, respec-
tively. The distance transform (DT) of a binary image computes
the distance between each image pixel and its closest feature
point [1]. Distance transform is related to many other important
entities, such as medial axes, Voronoi diagrams, shortest path
computation, and image segmentation [2]. Distance transform algo-
rithms are excellent tools for a variety of applications, such as image
processing, computer vision, pattern recognition, shape analysis and
computational geometry [3–9]. In practice, several distance metrics,
such as the city-block (L1), the chessboard ðL1Þ, the octagonal, and the
Euclidean distance, are all used for different situations. One of the
most natural and appropriate metrics is the Euclidean metric, which
is the most adequate model to numerous geometrical facts of the
human-scale world and used in many applications, since it is radially
symmetric, virtually invariant to rotation [2,10,11]. However, the
ll rights reserved.

Science Foundation of China

is also in part supported by

ment Program of China (863

hine Intelligence, School of

Peking University, Beijing

ytan@pku.edu.cn (Y. Tan).
computation of exact Euclidean distance transform, named EDT, is
time consuming.

Intuitionally, treated as a global operation, EDT can be com-
puted by an exhaustively brute-force searching algorithm: for
each pixel of the image, compute the distance between it and
each feature pixel, which requires OðN2

Þ time (N is the number of
image pixels) [10,11]. It is generally agreed that an efficient EDT
should be based on obtaining feature pixel information from a
limited region to avoid global searching. Efficient non-Euclidean
distance transform algorithms have been reported since 1966,
while fast algorithms for EDT started to appear only in the 1990s.
Some extensive surveys are introduced in [2,12]. These algo-
rithms can be roughly classified into three approaches according
to how to search for the nearest feature pixel:
1.
 Ordered propagation. The smallest distance information is com-
puted starting from the feature pixels and iteratively propagat-
ing via contour pixels in order of increasing distance [13–17].
Piper and Granum propose a FIFO (first-in-first-out) strategy
only to process the contour of propagation [18]. Verwer et al. use
bucket sorting to store the contour pixels [13]. Eggers restricts
the propagation only along the shortest Euclidean distance [15].
The main problem of this approach is that some pixels can be
updated more than once [2,12]. The performance of the ordered
propagation EDT algorithms is difficult to promote.
2.
 Raster scan. Rosenfeld and Pfaltz propose the first sequential
distance transform algorithm by raster scan with non-Euclidean

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2012.07.030
dx.doi.org/10.1016/j.patcog.2012.07.030
dx.doi.org/10.1016/j.patcog.2012.07.030
mailto:ytan@pku.edu.cn
dx.doi.org/10.1016/j.patcog.2012.07.030

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242 231
metric [1]. The raster scan method is technically fast, since the
scan method processes pixels one by one and the process in
each step is concise. The algorithm of Rosenfeld and Pfaltz
obtains the distance to the closest feature point from neighbor
points [1]. Danielsson proposes a method that obtains the
position information of the closest feature point from neighbor
points [19]. Borgefors uses a chamfer metric to define neighbor
points [20]. Most algorithms of this approach are non-exact
Euclidean distance transform. It is hard to obtain EDT by this
approach since the algorithms based on the raster scan have an
inherent error: as a discrete lattice image, the front wave of
propagating is tiled, which results in the position/distance
information of feature pixels not being propagated precisely
[19]. Some researchers use many techniques to achieve exact
EDT by this approach, but the complex data structures and the
complicated operations decrease the performance [21–23].
Recent progresses in this approach are Cuisenaire and Macq
propose a method by using multi-neighborhoods: a fast but
approximate distance transform is first computed by using a
coarse neighborhood; a sequence of larger neighborhoods is
then used to refine this approximation [16]. They state that
their algorithm apparently remains O(N) even in the worst case,
based on experiments in [12,16]. However, argued by Fabbri
et al., Cuisenaire et al.’s conjecture has not been proved and
the pre-computation of distances error boundary is time-
consuming even for moderate distances [2]. Shih and Wu
[22,23] also propose an algorithm which uses two raster-
scans by using a 3 � 3 neighborhood with dynamically adjusted
neighborhood size.
3.
 Independent scan. This approach computes the EDT by dimen-
sional reduction, which is also devised by Rosenfeld and
Pfaltz [1]. First, the one-dimensional distance transform is
constructed for each row (or column) independently; next, the
intermediate result is used in a second phase to construct the
full two-dimensional distance transform [24–27]. As a deriva-
tive of the raster scan, independent scan methods inherit the
succinct processing structure with a modified inner procedure.
The first stage methods of all independent scan distance
transform algorithms are similar. Specific properties of the
Euclidean metric are exploited during the second phase in
order to restrict the amount of computations. There are three
variants of this approach:
� The first variant uses the simulation of parabola intersec-

tion. Saito and Toriwaki propose an EDT algorithm which
speeds up the second phase scan by calculating the lower
envelope of parabolas to avoid exhausted searching for the
nearest feature points in columns [28]. Similar methods are
used in [29–31], which all take O(N) time.
� The second variant uses a mathematical morphological

operation. Shih and Mitchell use gray scale morphological
erosion and dilation to compute EDT [32]. Huang and
Mitchell use a dilation with 3�3 structuring element to
compute EDT [33]. Lotufo and Zampirolli propose a method
of further decomposing the structuring element into one-
dimensional structure element, which takes O(N) time
[34,35].
� The third variant is based on Voronoi diagram intersection.

This approach is explicitly based on fast computation of
Voronoi diagram intersections with image lines, which
adopts the principle that EDT can be computed by using
general Voronoi diagram constructing algorithms [36–39].
As the image points have integer coordinates, Breu et al.
propose an EDT algorithm by using the construction of the
intersection of the partial Voronoi diagram of sampled
feature pixels with each row [10,11,40,41]. Their algorithm
takes O(N) time. Gavrilova proposes a method to compute
EDT by computing the intersection directly [41], which is
time consuming. Guan and Ma use line segment to replace
a single point in the calculation, since adjacent points in a
row incline to have the same closest feature points [40].
Maurere et al. adapt the ideas of Breu et al. and Guan et al.
to propose a more efficient algorithm, which also takes
O(N) time [11].
There is plenteous research on EDT of two-dimensional binary
images. Although many of these algorithms are of liner time
complexity, some are not stable when the image content is
changed, and some have a large constant term [2,12]. Many
parallel EDT algorithms are also proposed which are extensions
of their sequential version [42,43]. Especially the high parallel
processing capability of GPU provides more speed-ups of EDT
[44,45]. After all, a fast EDT algorithm is decisive.

Two-dimensional EDT algorithms are broadly used in applica-
tions of image processing and computer vision, while higher
dimensional EDT algorithms are more suited to pattern recogni-
tion [5,8,25,46,47]. The research on three or more dimensional
binary image which appeared at 1980s is insufficient. Because of
the heavy computational load of high dimensional EDT, many
researchers propose fast but non-exact Euclidean distance trans-
form algorithms by using the raster scan. Borgefors proposes a
method which uses chamfer metric for multi-dimensional Eucli-
dean distance transform [20]. Ragnemalm [21] gives the method
to obtain the minimum scan times for multi-dimensional Eucli-
dean distance transform. Borgefors proposes a new definition of
chamfer metric for three-dimensional Euclidean distance trans-
form [48]. Svensson and Borgefors [49] propose a 5�5�5
neighbor to compute three-dimensional Euclidean distance trans-
form. Borgefors proposes a definition of 3�3�3�3 neighbors to
compute four-dimensional Euclidean distance transform [50].
Strand and Borgefors use face-centered cubic and body-centered
cubic to replace the previous cubic in order to compute three-
dimensional Euclidean distance transform [47], which has less
error to the exact EDT. EDT algorithms for multi-dimensional
binary images are all based on independent scan [11,28,46], in
which all have the same principles as their two-dimensional
version, respectively.

This paper is the extension of our preliminary work presented
at the International Conference on Computer Vision and Pattern
Recognition (CVPR 2011) [51]. In previous work, we proposed an
efficient method to compute EDT for two-dimensional binary
images. It used the geometric properties of the perpendicular
bisector to compute the segmentation by the closest feature
points for each row. The main contribution of this work is that
it presents a thoroughly theoretical treatment of EDT by means of
independent scan. In addition, we propose an effective unified
EDT algorithm for binary images in arbitrary dimensions. The
proposed algorithm is based on independent scan and implemen-
ted in a recursive way, i.e., the EDT of an d-dimensional image is
able to be computed from the EDTs of its ðd�1Þ-dimensional sub-
images. In each recursion, all of the rows in the current dimen-
sional direction are processed one by one. The points in the
current processing row and their closest feature points in ðd�1Þ-
dimensional sub-images can be shown in a Euclidean plane. Thus,
a common procedure is adapted to compute the EDT of every
dimension. Furthermore, we refine the previous method in the
distance calculation part: the distance between each point in the
currently processed row and its closest feature point is computed
by one distance calculation. By contrast, in this part, Wang and
Tan [51] compare adjacent verified points to determine which one
is the closest point of the operational point, which needs a two-
distance calculation in each step of the loop.

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242232
2. Background on independent scan

In this section, we introduce the principle of independent scan
and explain why the d-dimensional EDT can be computed from
EDT of all ðd�1Þ-dimensional sub-images. As mentioned before,
independent scan, which is also called dimensional reduction, is
the one of the most common choices in EDT computation.
The essential part of independent scan is that each dimension
is processed separately [11,31]. As usual, the EDT algorithm
takes a d-dimensional binary image Id as input—½1 . . .n1��

� � � � ½1 . . .nd�-0,1, and outputs the distance transform, usually
in squared distance. The feature points of Id are denoted by Fd. Let
f(u) denote the closet feature point of u (J � J denote the Euclidean
metric)

f ðuÞ ¼ arg min
vA Fd

Ju�vJ2, uA Id ð1Þ

(if more than one closest feature points, choose one arbitrarily).
The method of computing the closest feature point of each

point is called the closest feature point transform (CFT) [11]. The
EDT of image Id can be computed from its CFT, which is of linear
time complexity (each J � J calculation takes Oð1Þ time)

EDTðuÞ ¼ Ju�f ðuÞJ2, uA Id: ð2Þ

Id can be decomposed from two aspects:
1.
 Let Id�1
id

denote a ðd�1Þ-dimensional sub-image of Id whose dth
coordinate is at id. Thus, there are nd ðd�1Þ-dimensional sub-
images, and

Id ¼
[

id A ½1,nd �

Id�1
id

: ð3Þ

The feature points in sub-image Id�1
id

are denoted by Fd�1
id

.

2.
 Let Rd

ði1 ,...,id�1Þ
denote a row in the dth dimensional direction of

Id. Thus, there are n1 � . . .� nd�1 rows in this dimension, and

Id ¼
[

ik A ½1,nk �,kA ½1,d�1�

Rd
ði1 ,...,id�1Þ

: ð4Þ

Given a row Rd
ði1 ,...,id�1Þ

, each point in Rd
ði1 ,...,id�1Þ

can be located

only by its dth coordinate, denoted by Rd
ði1 ,...,id�1Þ

ðxÞ ð1rxrndÞ. For

a sub-image Id�1
x , Rd

ði1 ,...,id�1Þ
is orthogonal to Id�1

x , and the point

Iði1, . . . ,id�1,xÞ is the cross-point of Rd
ði1 ,...,id�1Þ

and Id�1
x . Therefore,

the closest feature point of Iði1, . . . ,id�1,xÞ in Fd�1
x is closer to

Iði1, . . . ,id�1,xÞ than other feature points, denoted by Nd�1
ði1 ,...,id�1Þ

ðxÞ.

Besides, Nd�1
ði1 ,...,id�1Þ

ðxÞ is closer to every point in Rd
ði1 ,...,id�1Þ

than other

feature points in Fd�1
x (Rd

ði1 ,...,id�1Þ
is orthogonal to Id�1

x Þ.

Let Nd�1
ði1 ,...,id�1Þ

denote the Nd�1
ði1 ,...,id�1Þ

ðxÞ of all points in Rd�1
ði1 ,...,id�1Þ

.
Thus

Nd�1
ði1 ,...,id�1Þ

¼
[

xA ½1,nd �

Nd�1
ði1 ,...,id�1Þ

ðxÞ ð5Þ

Let Dd�1
ði1 ,...,id�1Þ

ðxÞ denote the squared distance between a point
Rd
ði1 ,...,id�1Þ

ðxÞ and it closest feature point in the d�1 sub-image

Dd�1
ði1 ,...,id�1Þ

ðxÞ ¼ JRd
ði1 ,...,id�1Þ

ðxÞ�Nd�1
ði1 ,...,id�1Þ

ðxÞJ2
ð6Þ

For a point Rd
ði1 ,...,id�1Þ

ðxÞ, if there does not exist a feature point in
sub-image Id�1

x , then its closest feature point in sub-image Id�1
x

also does not exist. In this situation, Nd�1
ði1 ,...,id�1Þ

ðxÞ is assigned value
null, and Dd�1

ði1 ,...,id�1Þ
ðxÞ is assigned value 1 (a very large integer

which greater than the maximum squared distance of the EDT of
this image). Thus, Eq. (1) can be rewritten as

f ðuÞ ¼ arg min
vANd�1

ði1 ,...,id�1 Þ

Ju�vJ2, uARd
ði1 ,...,id�1Þ

: ð7Þ

The calculation of CFT is simplified: by (1), the closest feature
point of u is searched in Fd, while is only searched in Nd�1

ði1 ,...,id�1Þ
by

(7). Furthermore, Eq. (7) can be rewritten as

f ðuÞ ¼Nd�1
ði1 ,...,id�1Þ

arg min
xA ½1,nd �

Ju�Nd�1
ði1 ,...,id�1Þ

ðxÞJ2

 !

¼Nd�1
ði1 ,...,id�1Þ

arg min
xA ½1,nd �

Jðu � x�xÞ2þDd�1
ði1 ,...,id�1Þ

ðxÞJ

 !
, uARd

ði1 ,...,id�1Þ

ð8Þ

By (8), two conclusions are concluded:
�
 The CFT of Id can be computed from the CFT of all the ðd�1Þ-
dimensional sub-images. In the same way, the CFT of the
ðd�1Þ-dimensional sub-image can be computed from the CFT
of all the (d�2)-dimensional sub-images, and so on. Therefore,
the CFT of d-dimensional binary image can be computed by a
recursive procedure: the CFT of k-dimensional sub-image is
computed from the CFT of all the ðk�1Þ-dimensional sub-
images, 1okrd.

�
 In the computation of the CFT of a d-dimensional image, for a

given row Rd
ði1 ,...,id�1Þ

, only the points in Rd
ði1 ,...,id�1Þ

and the closest

feature points in sub-images (Nd�1
ði1 ,...,id�1Þ

) of points in Rd
ði1 ,...,id�1Þ

are concerned. The points in Rd
ði1 ,...,id�1Þ

and Nd�1
ði1 ,...,id�1Þ

can be

mapped into a Euclidean plane. Let Rd
ði1 ,...,id�1Þ

be the x-coordi-

nate and let the orthogonal direction be the y-coordinate, the

coordinate of the points in Nd�1
ði1 ,...,id�1Þ

is ðx,Dd�1
ði1 ,...,id�1Þ

ðxÞÞ.

Accordingly, the CFT of Id can be computed by a recursive
procedure.
3. Principle of PBEDT

In this section, we describe the main ideas of the proposed
algorithm—PBEDT (Perpendicular Bisector Euclidean Distance
Transform). For illustration, we use the CFT to explain the principle
of PBEDT. In the computation of d-dimensional CFT, each row
is processed separately. The geometrical properties of the per-
pendicular bisector are used to verify candidate points and the
d-dimensional CFT of currently processed row is computed, which
PBEDT is named after. Processing each row with this method, the
CFT of the d-dimensional image is computed. Accordingly, the EDT
of the d-dimensional image is also computed.

3.1. Overview

Assuming that the CFT of all ðd�1Þ-dimensional sub-images
has been computed, let us focus on the procedure to compute the
CFT of the d-dimensional image. There are n1 � � � � � nd�1 rows in
the dth-dimensional direction and each row is processed sepa-
rately. Without loss of generality, given a row Rd

ði1 ,...,id�1Þ
, its closest

feature points in all sub-images—Nd�1
ði1 ,...,id�1Þ

are computed by the
CFT of all ðd�1Þ-dimensional sub-images. Rd

ði1 ,...,id�1Þ
and Nd�1

ði1 ,...,id�1Þ

are transformed into a Euclidean plane as R0 and N0, respectively.
Thus, Eq. (6) can also be expressed by a simpler form:

D0ðxÞ ¼ JR0ðxÞ�N0ðxÞJ2
ð9Þ

Let R0 be the x-coordinate and let the orthogonal direction be the
y-coordinate, so the coordinate of the points in N0 is ðx,D0ðxÞÞ.

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242 233
Let f d
ðuÞ denote the closest feature point of uAR0 in the d-

dimensional image. Let G denote the list of the closest feature
points of points in R0 in the d-dimensional image

G¼ fv9v¼ f d
ðuÞ, uAR0, vAN0g ð10Þ

Hence, GDN0. Let points in N0 and G be increasingly ordered
by the x-coordinate. Therefore, the objective of computing the CFT
of the d-dimensional image from the CFT of all ðd�1Þ-dimensional
sub-images is to compute G from N0. Let LðtÞ denote the set of
points in R0 whose closet feature point in the d-dimensional image
is t, called t’s region of influence in row R0 of the d-dimensional
image

LðtÞ ¼ fv9f d
ðvÞ ¼ t, vAR0g, tAN0 ð11Þ

If tAG, then LðtÞa|; otherwise, LðtÞ ¼ |. Therefore, G can be
obtained from N0 via

G¼N0�fu9LðuÞ ¼ |, uAN0g ð12Þ

3.2. Verify points by using perpendicular bisector

Next, we take advantage of the geometrical property of the
perpendicular bisector to verify the points in N0 whose region of
influence in row R0 is empty. Given two feature points u,vAN0, let
Buv denote the perpendicular bisector of u and v (Fig. 1). Buv is the
set of points whose distances to u and to v are equal. Conse-
quently, the points located at the u side of Buv are closer to u than
to v or vice versa. Let cuv denote the intersection point of Buv with
row R0. Given u � xov � x, the points in R0 at the left of cuv � x are
closer to u than to v, and we assign as cuv belonging to the u side
of Buv. In Fig. 1, cuv � x can be computed from Ju�cuvJ¼ Jv�cuvJ.

We defined the points in N0 as increasingly ordered by the
x-coordinate, and the points in which are verified from left to right.
1 2 3 4 5 6 71 2 3 4 5 6 7

v

w

1

Fig. 2. Four situations when a point is verified. (a) LðvÞ ¼ |

Fig. 1. The perpendicular bisector of u and v intersects row R0 .
Assume the current verifying point is w, the points in N0 whose
x-coordinate is less than w’s are all verified. Let v denote the last
verified point and LðvÞa|, and u be the second to last point. Thus,
there are three situations of Bvw intersecting with row R0:
1.
2

u

; (b
Bvw intersects with the left extension of row R0 (cvw � xo0),
thus LðvÞ ¼ | (Fig. 2(a)).
2.
 Bvw intersects with the right extension of row R0 (cvw � x4nm),
thus LðwÞ ¼ | (Fig. 2(b)).
3.
 Bvw intersects with row R0 (0ocvw � xrnm), which has two
situations:

� If cuv � xocvw � xðu,v,wAN0Þ, then LðvÞa| and LðwÞa|
(Fig. 2(c)).
� If cuv � x4cvw � xðu,v,wAN0Þ, then LðvÞ ¼ | (Fig. 2(d)).
) Lð
Therefore, the relation of cuv � x and cvw � x expresses whose
region of influence is empty. It is obvious that if LðwÞ ¼ |, then
w=2G (Fig. 2(b)). Next, if LðvÞ ¼ |, then w should be verified with
the point prior to v (Fig. 2(a) and (d)). However, while LðvÞa|
and LðwÞa|, whether w should be verified with the point prior to
v in N0? To answer this question, by the perpendicular bisector
intersects with R0, we observe some properties of the region of
influence:

Property 1. The points in set LðtÞ are continuous with the

x coordinate, or,)vfv9u � xrv � xrw � x,uALðtÞ,wALðtÞ,v=2fLðtÞgg.

Proof. If (vfv9u � xrv � xrw � x,u,wALðtÞ,v=2fLðtÞgg, then exists
vALðsÞ. Thus, Bst intersects with row R0 between u and v, and
between v and w, as well. A line cannot cross a hyperspace twice
in a Euclidean space. Therefore, the hypothesis is false. &

Moreover

Property 2. If u,vAG, u � xov � x, then s � xrt � x , 8sALðuÞ and

8tALðvÞ.

Accordingly, if the points in N0 which is located at the left of w

are all verified, then none of them is closer to the points of R0

which is located at the right of cvw � x than w (Properties 1 and 2).
Therefore, when LðvÞa| and LðwÞa| (Fig. 2(c)), w need not be
verified with the point prior to v in N0.

3.3. CFT computation for a row

Consequently, we use CFT_ROW() to show the idea of comput-
ing G from N0, i.e., computing the CFT for a row. For current row
R0, G is the list of d-dimensional closest feature points to the
points in R0, and N0 is the list of ðd�1Þ-dimensional closest feature
points to the points in R0. Processing each row with CFT_ROW(),
the CFT of d-dimensional image is computed. Accordingly, the
EDT of the d-dimensional image is also computed. Stack is used to
store verified feature points, which is a last-in-first-out data
3 4 5 6 7

v

w

1 2 3 4 5 6 7

u

v

w

wÞ ¼ |; (c) LðvÞa| and LðwÞa|; (d) LðvÞ ¼ |.

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242234
structure (LIFO) and has three operations: add element to the top
of stack, PUSH; delete the top element of stack, POP; access the top
element of stack.
CFT_ROW()

1
 stack and Sc are empty stacks.

2
 while N0 is not empty

3
 withdraw the lowest point w from N0;

4
 if stack is empty

5
 PUSH(stack, w)

6
 else

7
 v is top of stack, calculate cvw � x;

8
 u is the point in stack next to v;

9
 if (u is not exist)

10
 cuv � x¼0;

11
 else

12
 calculate cuv � x;

13
 POPðstackÞ, add w back to the front of N0, when cvw � xocuv � x;

POPðstackÞ, PUSHðstack, wÞ, when cvw � x¼ cuv � x;

PUSHðstack, wÞ, when cvw � x4cuv � x and cvw � xocols;

8><
>:
Initially, stack¼ |. Points are moved from N0 to stack one by
one. If a newly added point results in point p of stack whose
region of influence on R0 being empty, then p should be removed
from stack. When stack is empty, the newly added point w is
added to stack. When stack only has one element, let cuv � x¼ 0. In
the next loop, the newly added point w and the top point of
stack—v are used to compute cvw � x, which is compared with
cuv � x. Thus, the bisectors of every adjacent two points in G
segment R0, and each segmentation corresponds one point in
G—its closest feature point (Properties 1 and 2).
3.4. ‘‘0’’-dimensional CFT

In the recursive procedure, the CFT of the k-dimensional image
is computed from the CFT of all ðk�1Þ-dimensional sub-images,
1okrd. Let us focus on the CFT of the one-dimensional image.
As the two-dimensional image is a plane and the one-dimensional
image is a row, thus, the ‘0’-dimensional image is a point. The CFT
of the ‘0’-dimensional image can be defined as: if this point is a
feature point, then its closest feature point is itself; otherwise,
its closest feature point is | (empty). Similarly, the EDT of the
‘0’-dimensional image can also be defined as if this point is a
feature point, then the distance between this point and its closest
feature point is 0; otherwise, the distance is 1 (a very large
integer which is greater than the maximum squared distance of
the EDT of this image). These two definitions do not conflict with
the common definitions of EDT and CFT. In the CFT of the one-
dimensional image, the elements of N0 are exactly the feature
points in R0. Thus, N0AR0 and N0 ¼G. The bisector of each pair of
adjacent points in N0 intersects R0 at the middle of these two
points. Therefore, the one-dimensional CFT can also be computed
by CFT_ROW() with the CFT of the ‘0’-dimensional sub-images.
4. Implementation of PBEDT

In this section, we implement PBEDT by principles introduced
before, which computes the d-dimensional EDT from EDT of all
ðd�1Þ-dimensional sub-images by using independent scan with-
out computing its CFT. In this implementation, we use several
optimization specifics to avoid repeated calculations, which
reduce the total calculation load.
4.1. The PBEDT algorithm

PBEDT is a recursive procedure and each recursion processes
one dimension. Let us explain the inputs of PBEDT(I, d, k). I is the
preprocessed original image. For each point p of the original
image, if p is a feature point, then p is assigned a value with its
squared first dimensional coordinate. Otherwise, it is assigned
with1. This pretreatment is to make the input image conform to
the recursive body. The reason will be explained in the following
section. d denotes the amount of the dimensions of this image.
k denotes the currently processed dimension.

A LIFO data structure—stack is used in PBEDT to store infor-
mation about verified points. Each element of stack consists of
three components [x, cx, sd]:
1.
 The first component is the x-coordinate of the intersection
point of the bisector and the current row (cuv � x), denoted by
stack � cx.
2.
 The second component stores the x-coordinate of the closest
feature points of the current dimension, since the point in N0

can be located only by the x-coordinate, denoted by stack � x.

3.
 The third component stores the relative squared distance

between N0ðxÞ and the left most point of row R0, denoted by
stack � sd. When accessing the top element of stack, e.g., stack �

x means the second component of the top element of stack.

PBEDT(I, d, k)

1
 if k41

2
 PBEDT(I, d, k�1)

3
 for id ¼ 1-nd
4
 y
5
 for ikþ1 ¼ 1-nkþ1
6
 for ik�1 ¼ 1-nk�1
7
 y
8
 for i1 ¼ 1-n1
9
 Initiate stack to empty;

10
 for ik ¼ 1-nk
11
 sd(Iði1,: :,idÞ;

12
 if (sdo1)
LABEL_A:

13
 if (stack not empty)

14
 cx(Intersection-INTðstack:x,ik,stack:sd,sdÞ;
15
 if (cx¼ stack:cx)

16
 POP(stack); PUSH(stack, [cx, ik, sd]);

17
 elseif (cxostack:cx)

18
 POP(stack); GOTO LABEL_A;

19
 elseif (cxrnd)

20
 PUSH(stack, [cx, ik, sd]);

21
 else

22
 PUSH(stack, [�1, ik, sd]);

23
 if (stack is empty)

24
 continue;

25
 for ik ¼ nk-1

26
 if (ik ¼ stack:cx)

27
 POP(stack);

28
 Iði1,: :,idÞ (Distanceðik,stack:x,stack:sdÞ;

29
 if (kod)

30
 Iði1,: :,idÞ (ikþ1 � ikþ1þ Iði1,: :,idÞ;
The beginning part of PBEDT (line 1 and line 2) controls the
recursive process and conducts the program to execute from one-
dimensional EDT to d-dimensional EDT. The outer loops of PBEDT
(lines 3–8) process each row of the current dimensional direction.
When kth dimension is currently processed, there are n1 � � � � �

nk�1 � nkþ1 � � � � � nd rows in the kth dimensional direction. The
inner loop processes the current row (lines 10–22) by using the
method introduced in CFT_ROW(). The ðk�1Þ-dimensional closest

1 2 3 4 5 6 7

u

v

w

c

1 2 3 4 5 6 7

u

v

w

c

Fig. 3. Different situations of same integer result: (a) cuv � x4cvw � x; (b) cuv � xo
cvw � x.

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242 235
feature points of the points in the current row are verified along the
kth coordinate from low to high (lines 10–22). Invalid points are
discarded and the information about valid feature points is stored in
stack. The intersection points stored in stack segment this row, and
each segment corresponds to one element of stack. The other two
components of the stack element contain information about comput-
ing the distance between the points of this segment and its closest
feature point. Therefore, the distance between each point in the
current row and its closest feature point can be directly computed by
one distance calculation (lines 25–30). In contrast, in this part, Wang
and Tan [51] compare adjacent verified points to determine which
one is the closest point of current point in the current row, which
needs two distance calculations in each step of the loop.

4.2. Details of optimization

The main computational load of PBEDT is coming from Inter-
section-INT() and Distance(). Next, we will explain the optimiza-
tions used in these methods in detail.

4.2.1. Intersection point calculation

In line 14, the x-coordinate of the intersection point of the
bisector and the currently processed row is computed by a
function Intersection�INTðÞ. In Fig. 1, cuv � x can be computed from
Ju�cuvJ¼ Jv�cuvJ (x-coordinate is the row direction, and J � J is
the Euclidean distance in k-dimensional sub-image).

Ju�cuvJ
2
¼ Jv�cuvJ

2

)
X

mA ½1,k�

ðv � im�cuv � imÞ
2
¼

X
mA ½1,k�

ðu � im�cuv � imÞ
2

) ðv � x�cuv � xÞ
2
þ

X
mA ½1,k�1�

ðv � im�cuv � imÞ
2
¼ ðu � x�cuv � xÞ

2

þ
X

mA ½1,k�1�

ðu � im�cuv � imÞ
2

) ðv � x�cuv � xÞ
2
þD0ðv � xÞ ¼ ðu � x�cuv � xÞ

2
þD0ðu � xÞ

) cuv � x¼
ððv � xÞ2þD0ðv � xÞÞ�ððu � xÞ2þD0ðu � xÞÞ

2ðv � x�u � xÞ
ð13Þ

Let

du¼ ðu � xÞ2þD0ðu � xÞ: ð14Þ

Thus, Eq. (13) can be simplified as

cuv � x¼
dv�du

2ðv � x�u � xÞ
: ð15Þ

This calculation only uses four arithmetic operations while
Maurer et al.’s method uses 11 arithmetic operations to verify
one point [2,11,52]. The definition of du in (14) is moving the
calculation of x2 from line 14 to line 30 of previous dimensional
computation. Therefore, each x2 can only be computed one time
in line 30 while multiple times in line 14, which will reduce the
total amount of computation. This is also why the original image
should be preprocessed before it is used by PBEDT.

4.2.2. Integer arithmetic operation

Furthermore, the integer division is used to replace the float
division in (15). The integer division abandons the decimal and
keeps the integer, which is faster but not always accurate. Therefore,
we propose some constraints to keep both the efficiency of integer
arithmetic and the accuracy. Fig. 3 shows two different situations,
but cuv � x¼ cvw � x¼ 4 in every situation by integer division. In both
situations, we assign point p(4,5) close to the leftmost point of this
triple—u, since the point coordinates of the image are all integers.
Negative values in between two integers will be rounded to the
lager integer (�1.9 will be rounded to �1), while positive values in
between two integers will be rounded to the smaller integer (5.9
will be rounded to 5). Therefore, we use �1 to label the left edge of
the processing row (line 22). Moreover, we prejudge the sign of cuv �

x before calculating it, which promote the execution speed. We use
�2 as the return value when dvrdu, which leaves cuv � x at the left
the current row. Therefore, (15) is organized as a Function Intersec-
tion-INT(), where u � x, v � x, du and dv correspond to stack � x, ik,
stack � sd and sd in PBEDT(), respectively. Intersection-INT() only
uses four integer calculations—one division, one multiplication, and
two substractions.
Intersection-INT(u � x, v � x, du, dv)

If ðdv4duÞ

return ðdv�duÞ=ð2ðv � x�u � xÞÞ;
else

return �2;
4.2.3. Distance calculation

In line 28, the distance between a point in the currently
processed row and its closest feature point of the currently
processed dimension is computed by a function Distance().
Eq. (14) can also be used in the distance computation. Given p

is a point in the currently processed row and v is the closest
feature point of p in the current dimension processed, Jp�vJ2 can
be computed by (x-coordinate is the row direction and J � J is the
Euclidean distance in k-dimensional sub-image):

Jp�vJ2
¼

X
mA ½1,k�

ðp � im�v � imÞ
2

¼ ðp � x�v � xÞ2þ
X

mA ½1,k�1�

ðp � im�v � imÞ
2

¼ p2 � x�2ðp � xÞðv � xÞþv2 � xþD0ðv � xÞ
¼ ðp � xÞðp � x�2v � xÞþdv ð16Þ

This equation can be organized as a function, where p � x, v � x

and dv correspond to ik, stack � x and sd in PBEDT(), respectively:
Distance (p � x, v � x, dv)
return (p � x)(p � x � 2v � x) þdv;
In Distance(), it should be noticed that only the current
dimensional coordinates factor into calculation and the distance
from lower dimensions need not be computed. This avoids
repeated computation and reduces the total computational load.
Eqs. (13) and (16) also manifest that the transformation the EDT
of k-dimensional image into a Euclidean plane will not affect the
distance between points and their closest feature points.

4.3. Computational complexity

The time complexity of PBEDT is O(dN) ðN¼ n1 � � � � � ndÞ,
where N is the amount of points in the input image and d is the

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242236
amount of dimensions of the input image). The space complexity of
PBEDT is O(N), which recycles the memory of the input image in each
recursion. The original image is preprocessed before it is used by
PBEDT: for each point p of the original image, if p is a feature point,
then p is assigned a value with its squared first dimensional
coordinate. Otherwise, it is assigned with1. The pretreatment scans
the image and accesses each point only once, which is very fast. In the
strictest sense, the time complexity of these parts is OðC1NþC2dNÞ,
C1 for ‘0’-dimensional EDT and C2 for PBEDT (C15C2, since memory
access is much faster than arithmetic operations). Next, we will prove
that the time complexity of PBEDT is O(dN).

Theorem 4.1. The time complexity of PBEDT is O(dN).

Proof.
1.
 For a d-dimensional image, PBEDT recursively executes
d times.
2.
 In each recursion to compute k-dimensional EDT from ðk�1Þ-
dimensional EDT ð1rkrdÞ, n1 � � � � � nk�1 � nkþ1 � � � � � nd

rows are processed one by one. Given the currently processing
row R0, 9R09rnk. There are two processes for each row R0.
The first process (lines 10–22) is a loop, which executes for nk

times. Although there is an inner loop (lines 13–18), the
computational complexity of this part is OðnkÞ. For each point
p in R0, the distance information between p and its ðk�1Þ-
dimensional closest feature points has been computed by
previous recursions. Known 1r ikrnk, each ik can only be
pushed into stack once, and each element in stack can be
popped no more than once. Thus, neither the PUSH nor the
POP operation is executed more than nk times. Besides, each
intersection point calculation is accompanied with no more
than twice stack operations (inner loop, lines 13–18). More
precisely, let us focus on line 18: the POP operation leads to an
additional intersection point calculation. As the POP operation
is executed no more than nk times, therefore, there are no
more than 2� nk intersection point calculations in the execu-
tion of first process. In addition, only the intersection point
calculation is concerned with the computational complexity.
Accordingly, the first process takes OðnkÞ time.
The second process (lines 25–30) is also a loop and executes
for nk times. In each loop, the distance calculation is executed
once. Thus, the second process takes OðnkÞ time.
Therefore, each row of k-dimensional EDT takes OðnkÞ time. The
total k-dimensional EDT takes Oðn1 � � � � � nk�1 � nkþ1 � � � � �

nd � nkÞ time, i.e., O(N) time.

Finally, the time complexity of PBEDT is O(dN) time. &

5. Experiments

We conducted two groups of experiments to evaluate the
proposed algorithm: on two-dimensional binary images and on
three-dimensional binary images. The tests were performed on a
computer with an Intel Core2 Duo 2.53 GHz processor, 2 GB RAM,
Ubuntu Linux OS with kernel v2.6.31. All algorithms are imple-
mented in ANSI C/Cþþ, and built by GCC v4.1.1.

PBEDT was compared with state-of-the-art EDT algorithms,
such as Maurer et al.’s [11], Saito and Toriwaki’s [28], Cuisenaire
and Macq’s [16], Lotufo and Zampirolli’s [34], Meijster’s [30]
and Felzenszwalb et al.’s [31]. In order to improve readability,
these algorithms are abbreviated as MAURER2003, SAITO1994,
CUISENAIRE, LOTUFOZAMPIROLLI, MEIJSTER, FELZENSZWALB,
respectively. The two-dimensional EDT algorithms are implemen-
ted by Felzenszwalb et al. (FELZENSZWALB) [53] and Fabbri et al.
(other algorithms) [52]. The test images used in two-dimensional
experiments are also the same as Fabbri et al. used in [2,52].

Similar to the two-dimensional experiments, we conducted
the three-dimensional experiments by principle of Fabbri et al.’s
recommendation. By using the principle introduced in the pre-
vious section, all two-dimensional independent scan EDT algo-
rithms can be implemented to their multi-dimensional version.
Therefore, we implemented the three-dimensional EDT algo-
rithms based on the implementation of [52,53]. We also chose
3-D test images by the principle of Fabbri et al.’s recommenda-
tion. Cuisenaire and Macq’s algorithm requires three times the
propagation in the two-dimensional implementation, which is
difficult to be extend to the three-dimensional version. Thus, it
was ignored in the three-dimensional binary images experiment.

5.1. Experiments on two-dimensional images

At first, PBEDT was compared with these algorithms on two-
dimensional binary images. The performance was measured with
images over a wide range of sizes and contents, as Fabbri et al.
recommend in [2,52]:
1.
 Random points (Fig. 4a): The image size is varying from
100�100, 500�500, 1000�1000, 2000�2000, 3000�3000
to 4000�4000 with randomly generated feature points where
the number of feature points comprises 1%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90%, and 99% of the image. This test
provides an idea of the performance of the algorithms relative
to the number of feature pixels [2,11].
2.
 Random squares (Fig. 4b): The image size is varying from
100�100, 500�500, 1000�1000, 2000�2000, 3000�3000,
to 4000�4000. These images are generated by randomly choos-
ing the centers and sizes of black squares rotated by y at 01, 151,
301, 451, 601, 751, and 901. The squares are filled and plotted into
the image until the black pixels add up to a percentage 15%, 30%,
50%, 70%, and 95%. This test is based on a synthetic image having
more similarity to real images with some orientation [2,15].
3.
 Binary image of real object: The edge image from the Lenna
image obtained by thresholding the response of an edge
detector is used, as shown in Fig. 4d. Lenna was chosen since
it has been universally used as an impartial benchmark for
image analysis algorithms [2].
4.
 Special feature contents:
� A feature square located at the corner of an image (top-left

and bottom-right) (Fig. 4e and f). In this case, the EDT
produces the largest and smallest possible distances for a
given image size: diagonal and 1, respectively [2,11].
� A white disk inscribed in the image (Fig. 4g). It is a perfect

test for exactness, since the Voronoi diagram of the pixels
along a circle is very regular in the continuous plane,
however, the discrete Voronoi regions in this case are
irregular, especially near the center of the disk [2,28].
� Half-filled image (Fig. 4h). This is the worst case of the

brute force algorithm [2].
In all these tests, PBEDT is faster and more stable than else in
most cases. As shown in Fig. 5, PBEDT is faster than MAURER2003,
MEIJSTER and FELZENSZWALB at all parameter settings used,
slower than CUSENAIRE, SAITO1994 and LOTUFOZAMPIROLLI
only at a very large proportion of the feature points. Fig. 6a shows
that PBEDT is faster than other algorithms in most cases with a
different proportion of randomly generated feature points. Fig. 6b
shows that in all the tests with special contents, PBEDT is almost
the fastest one, just a little slower than SAITO1994 in the test of
the half-filled image. Table 1 shows the average execution time
on randomly generated squares with varying feature points

0 20 40 60 80
0.2

0.4

0.8

1.6
proportion15%

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Angle (°)
0 20 40 60 80

0.2

0.4

0.8

1.6
proportion30%

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Angle (°)
0 20 40 60 80

0.2

0.4

0.8
proportion50%

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Angle (°)

0 20 40 60 80
0.15

0.2

0.4

0.5
proportion70%

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Angle (°)
0 20 40 60 80

0.15

0.2

0.4

0.5
proportion95%

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Angle (°)

MAURER2003
SAITO1994
CUISENAIRE
LOTUFOZAMPIROLLI
MEIJSTER
FELZENSZWALB
PBEDT

Fig. 5. Execution time for random squares images with varying feature point proportion, size 3000�3000, slant angle varied from 0 to 90.

Fig. 4. Two-dimensional binary images used in the experiment, size: 500 � 500. (a) Randomly generated points, feature pixels proportion: 40%; (b) randomly generated squares,

feature pixels proportion: 15%, square angle: 151; (c) original image Lenna; (d) edge image of Lenna; (e) a feature square is located at the top-left corner of an image; (f) a feature

square is located at the bottom-right corner of an image; (g) the feature points are located at the out of a disk; and (h) a image is half filled by feature points.

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242 237
proportion and slant angle at size 3000�3000. In Table 1, the
advantage of PBEDT is more obvious.
5.2. Experiments on three-dimensional images

Next, PBEDT was compared with these algorithms on three-
dimensional binary images. The performance was measured with
images over a wide range of sizes and contents, similar to the two-
dimensional test:
1.
 Random points (Fig. 7a): The image size is varying from
128�128�128, 256�256�256, to 512�512�512 with
randomly generated feature points where the number of
feature points comprises 0.01%, 0.1%, 1%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90%, and 99% of the image.

1 10 20 30 40 50 60 70 80 90 99
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

E
xe

cu
tio

n
tim

e
(s

)

Proportion (%)
Top–left Bottom–right Lenna White disk Half filled

0.007

0.014

0.028

Image content

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

MAURER2003
SAITO1994
CUISENAIRE
LOTUFOZAMPIROLLI
MEIJSTER
FELZENSZWALB
PBEDT

Fig. 6. Test results of two-dimensional images. (a) Random points images with feature points proportion ranged from 1 to 99 , size 3000�3000 and (b) execution time for

images of special features, size 500�500.

Table 1
Comparison of average execution time for two-dimensional randomly generated

squares images.

Algorithms Average time(s) Comparison with PBEDT (%)

MAURER2003 0.469 178.3

SAITO1994 0.441 167.7

CUISENAIRE 0.547 208.0

LOTUFOZAMPIROLLI 0.802 304.9

MEIJSTER 0.391 148.7

FELZENSZWALB 0.483 183.7

PBEDT 0.263 100

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242238
2.
 Random cubes (Fig. 7b): The image size is varying from
128�128�128, 256�256�256, to 512�512�512, ran-
domly choosing the centers and sizes of black squares rotated
with every axis of coordinates by y at 01, 151, 301, 451, 601, 751,
and 901. The cubes are filled and plotted into the image until
the black pixels add up to 0.01%, 0.1%, 1%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90%, and 99% of the image.
3.
 Special feature contents:
� A real object sample. The scanned point cloud of the male

lion status in front of the library of Peking University, as
shown in Fig. 7c.
� A spherical shell is located in a cubic Fig. 7d, which is used

to test the exactness.
� A feature cube located at the top-left-front corner of an

image (top-left).
As shown in Fig. 8, PBEDT is faster than Maurer2003_3D,
LOTUFOZAMPIROLLI_3D and FELZENSZWALB_3D at all parameter
settings used, faster than SAITO1994_3D and MEIJSTER_3D at
small proportion feature pixels. SAITO1994_3D is faster than
PBEDT when the proportion of feature pixels is higher than 10%
with a slant angle is of 0, 75, 90, and the proportion of feature
pixels is higher than 30% with a slant angle is of 15, 30, 45, and 60.
In the tests of three-dimensional randomly generated cubes,
PBEDT is not affected by the orientation of the objects and is
significantly faster than others when the proportion of feature
pixels is less than 10%. This is meaningful, since in most
practically three-dimensional binary images, the feature points
are relatively sparse (Fig. 7c). Fig. 7a and b also shows that 1%
feature pixels are crowded. Fig. 9 shows that PBEDT is faster
than other algorithms in all cases with different proportions of
randomly generated feature pixels and with special contents.
Table 2 shows the average execution time on randomly generated
point images with varying feature point proportion at size
512�512�512. In Table 2, the advantage of PBEDT is more
obvious.

5.3. Discussion

Although the computational complexities of these algorithms
are all in linear with image size [2,11,16,28,30,31,34], they show
different performances in experiments, since they are based on
different fundamental principles. By the principle of the independent
scan, all independent scan based multi-dimensional EDT algorithms
have a similar program framework. The difference in performance is
still reflected by computation in the recursive body, i.e., in how to
eliminate invalid feature points in a row. Theoretically, these multi-
dimensional EDT algorithms’ performances should have shown a
similar tendency to their two-dimensional versions’. However, the
executional time of an algorithm is also affected by many factors,
such as memory access, temporary memory occupancy, data
structure, invoke procedure. Usually, these factors are not
counted into computational complexity but essentially to the
efficiency of algorithm. For example, with the increase in image
size, the time for allocating and freeing temporary memory will
increase. Besides, with the increase in image dimension, the
number of times for allocating and freeing temporary memory
will also increase.

Comparing linear time algorithms is extremely difficult, since
there is a real danger that we are measuring the specifics of the
machine on which the algorithm runs, and the quality of the
implementation of the algorithm instead of the algorithm itself.
Fabbri et al. provide a convincing baseline to compare state-of-
the-art two-dimensional EDT algorithms [2]. They implemented
every algorithm to be optimal [2,52], which reduced the effect of
implementation. They used a wide variety of binary image
contents to comprehensively measure the performance of these
algorithms. Therefore, we followed Fabbri et al.’s experimental
procedure and compared PBEDT with the same implementations
of state-of-the-art EDT algorithms on the same test images.

Fig. 7. Sample of three-dimensional test binary images: (a) random points, feature pixels proportion: 1%, size: 128�128�128; (b) random cubes, feature pixels

proportion: 1%, square angle: 01, size: 128�128�128; (c) point cloud of lion status, size: 512�512�512; and (d) a spherical shell is located in a cubic, size:

512�512�512.

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242 239
5.3.1. PBEDT vs. MAURER2003

By Fabbri et al.’s analysis, MAURER2003 is the most stable and
fastest one in most cases among these algorithms. Thus, we
compare PBEDT with MAURER2003 in detail. These two algo-
rithms are both based on the independent scan and have a similar
program framework. They both use stack structure to store
verified points. The only difference between them is the way in
which they eliminate invalid feature points in a row:
�
 MAURER2003 is based on partial Voronoi diagram intersec-
tion, which uses three adjacent candidate feature points to
determine the validity of the central point [11]. For example,
in Fig. 2c and d, if the intersection point of Buv and Bvw is under
the currently processed row, then v is kept. Otherwise, v is
abandoned. To avoid directly computing the intersection point,
they use a determination:

c � v � y2
�b � u � y2

�a �w � y2
�a � b � c40, ð17Þ
where a¼ v � x�u � x, b¼w � x�v � x and a¼w � x�u � x¼ aþb �

u � y, v � y, w � y are distanced from u, v, w to the currently
processed row, which are computed by the previous recursion.
This determination takes 11 arithmetic operations [2,11,52].

�
 PBEDT computes the intersection point of Buv (Bvw) and the

currently processed row and compares the intersection points to
determine whether v should be kept. Intersection-INT() only takes
four arithmetic operations to compute the intersection point. It
also takes advantage of integer arithmetic to avoid time consum-
ing float operations. At the same time, we also indicate that the
integer arithmetic has the same precision as float operations.
Besides, because the intersection points are computed, the dis-
tance between each point in the currently processed row and its
closest feature point can be directly computed by one distance
calculation. In contrast, in this part, MAURER2003 compares
adjacent verified points to determine which one is the closest
point to the current point in the currently processed row, which
needs two distance calculations in each step of the loop [11,52].

0.010.1 1 10 20 30 40 50 60 70 80 90 99
0.4

0.8

1.2

2

3.2

Angle0°

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Proportion (%)
0.010.1 1 10 20 30 40 50 60 70 80 90 99

0.4

0.8

1.2

2

3.2

Angle15°

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Proportion (%)
0.010.1 1 10 20 30 40 50 60 70 80 90 99

0.4

0.8

1.2

2

3.2

Angle30°

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Proportion (%)

0.010.1 1 10 20 30 40 50 60 70 80 90 99
0.4

0.8

1.2

2

3.2

Angle45°

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Proportion (%)
0.010.1 1 10 20 30 40 50 60 70 80 90 99

0.4

0.8

1.2

2

3.2

Angle60°
E

xe
cu

tio
n

tim
e

(lo
ga

rit
hm

ic
 s

ca
le

) (
s)

Proportion (%)
0.010.1 1 10 20 30 40 50 60 70 80 90 99

0.4

0.8

1.2

2

3.2

Angle75°

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Proportion (%)

0.010.1 1 10 20 30 40 50 60 70 80 90 99
0.4

0.8

1.2

2

3.2

Angle90°

E
xe

cu
tio

n
tim

e
(lo

ga
rit

hm
ic

 s
ca

le
) (

s)

Proportion (%)

PBEDT
MAURER2003_3D
LOTUFOZAMPIROLLI_3D
MEIJSTER_3D
SAITO1994_3D
FELZENSZWALB_3D

Fig. 8. Execution time for random cube images with varying feature point proportion, size: 256�256�256, slant angle varied from 0 to 90.

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242240
Therefore, PBEDT uses fewer calculations in the kernel part
than MAURER2003. The theoretical analysis and the experimental

results all support that the computational complexity of PBEDT
has a smaller coefficient than MAURER2003. However, because
they have the common framework, the executional performance
of PBEDT surpassing of MAURER2003 is not as significant as the
kernel part.
5.3.2. PBEDT vs. others

Next, we briefly analyze other algorithms. CUSENAIRE is an
ordered propagation method: a fast but approximate distance
transform is first computed by using a coarse neighborhood; a
sequence of larger neighborhoods is then used to refine these
approximations [16]. Cuisenaire et al. state that their algorithm
apparently remains O(N) even in the worst case, based on
experiments in [12,16]. However, argued by Fabbri et al., Cuisenaire
et al.’s conjecture has not been proved and the pre-computation of
distance error boundary is time-consuming even for moderate
distances [2]. Our experiments also indicate that its performance is
poor at lower feature point percentages while fairly good at higher
feature point percentages, since the smaller neighborhood is used in
dense circumstances while the bigger neighborhood is used in sparse
circumstances.

Other algorithms are all independent scan methods. The
independent scan algorithms have similar framework, and the
difference among these algorithms is how to process in a row.
LOTUFOZAMPIROLLI uses mathematical morphological approach
[34]. It simulates the operation of morphological dilation, which
recursively computes the correct distance to the nearest feature
point for each point in the row. The main problem of this
algorithm is that it cannot avoid repetitious computation of
distance. SAITO1994, MEIJSTER and FELZENSZWALB all use the
simulation of parabola intersection [28,30,31]. Let us take MEIJ-
STER as an example. The most complex part in the row-processing
is the computation of the intersection point of adjacent parabolas,
which takes eight arithmetic operations [2,52]. However, it also
has the problem of repetitious computation of distance.

Fig. 9. 3-D images tests. (a) Execution time for random points images with feature points proportion ranged from 1 to 99, size: 512�512�512 and (b) execution time

with images of feature cube at top-left-front corner, point cloud of lion status and spherical shell, size: 512�512�512.

Table 2
Comparison of average execution time for three-dimensional randomly generated

points images.

Algorithms Average time(s) Comparison with PBEDT (%)

MAURER2003_3D 10.59 134.8

SAITO1994_3D 16.78 213.6

LOTUFOZAMPIROLLI_3D 12.05 153.4

MEIJSTER_3D 10.19 129.7

FELZENSZWALB_3D 32.53 370.8

PBEDT 7.85 100

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242 241
6. Conclusion

In this paper, we proposed an efficient EDT algorithm of a
binary image in arbitrary dimensions, named PBEDT. The time
complexity of the PBEDT algorithm is linear with the amount of
both image points and dimensions with a small coefficient
(O(dN)). Compared with the state-of-the-art EDT algorithms, the
PBEDT algorithm shows much better performance on all of the
two- and three-dimensional images with variant image contents.
The PBEDT is much faster and more stable than current algo-
rithms in most cases. In addition, by comparing the output of
PBEDT with that of other algorithms, no difference is observed in
our tests. Additional tests for thousands of randomly generated
images varying in image width and amount of feature points
again demonstrated the correctness and efficiency of the PBEDT
algorithm. As an independent scan method, the PBEDT can be
easily implemented to parallel version for a fast computation.
References

[1] A. Rosenfeld, J.L. Pfaltz, Sequential operations in digital picture processing,
Journal of the ACM 13 (1966) 471–494.

[2] R. Fabbri, L. da Fontoura Costa, J.C. Torelli, O.M. Bruno, 2d Euclidean distance
transform algorithms: a comparative survey, ACM Computing Surveys 40 (1)
(2008).

[3] C. Arcelli, G. Sanniti di Baja, L. Serino, Distance-driven skeletonization in
voxel images, IEEE Transactions on Pattern Analysis and Machine Intelligence
33 (4) (2011) 709–720.

[4] W.H. Hesselink, J.B.T.M. Roerdink, Euclidean skeletons of digital image and
volume data in linear time by the integer medial axis transform, IEEE
Transactions on Pattern Analysis and Machine Intelligence 30 (12) (2008)
2204–2217.

[5] S. Loncaric, A survey of shape analysis techniques, Pattern Recognition 31 (8)
(1998) 983–1001.
[6] A. Peter, A. Rangarajan, Information geometry for landmark shape analysis:
unifying shape representation and deformation, IEEE Transactions on Pattern
Analysis and Machine Intelligence 31 (2) (2009) 337–350.

[7] L. Lam, S.-W. Lee, C. Suen, Thinning methodologies—a comprehensive survey,
IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (9) (1992)
869–885.

[8] M. Jones, J. Baerentzen, M. Sramek, 3d distance fields: a survey of techniques
and applications, IEEE Transactions on Visualization and Computer Graphics
12 (4) (2006) 581–599.

[9] B. Zitov, J. Flusser, Image registration methods: a survey, Image and Vision
Computing 21 (11) (2003) 977–1000.

[10] H. Breu, J. Gil, D. Kirkpatrick, M. Werman, Linear time Euclidean distance
transform algorithms, IEEE Transactions on Pattern Analysis and Machine
Intelligence 17 (5) (1995) 529–533.

[11] J. Maurer, R. Qi, V. Raghavan, A linear time algorithm for computing exact
Euclidean distance transforms of binary images in arbitrary dimensions, IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (2) (2003)
265–270.

[12] O. Cuisenaire, Distance Transformations: Fast Algorithms and Applications to
Medical Image Processing, Ph.D. Dissertation, Louvain-la-Neuve, Belgium, 1999.

[13] B.J. Verwer, P.W. Verbeek, S.T. Dekker, An efficient uniform cost algorithm
applied to distance transforms, IEEE Transactions on Pattern Analysis and
Machine Intelligence 11 (4) (1989) 425–429.

[14] I. Ragnemalm, Neighborhoods for distance transformations using ordered
propagation, CVGIP: Image Understanding 56 (3) (1992) 399–409.

[15] H. Eggers, Two fast Euclidean distance transformations in z2 based on
sufficient propagation, Computer Vision and Image Understanding 69 (1)
(1998) 106–116.

[16] O. Cuisenaire, B.M. Macq, Fast Euclidean distance transformation by propa-
gation using multiple neighborhoods, Computer Vision and Image Under-
standing 76 (2) (1999) 163–172.

[17] A.X. Falcao, J. Stolfi, S. de Alencar, The image foresting transform: intelligence
theory, algorithms, and applications, IEEE Transactions on Pattern Analysis
and Machine 26 (1) (2004) 19–29.

[18] J. Piper, E. Granum, Computing distance transformations in convex and non-
convex domains, Pattern Recognition 20 (November) (1987) 599–615.

[19] P.-E. Danielsson, Euclidean distance mapping, Computer Vision, Graphics,
and Image Processing 14 (1980) 227–248.

[20] G. Borgefors, Distance transformations in arbitrary dimensions, Computer
Vision, Graphics, and Image Processing 27 (5) (1984) 321–345.

[21] I. Ragnemalm, The Euclidean distance transform in arbitrary dimensions,
Pattern Recognition Letters 14 (11) (1993) 883–888.

[22] F.Y. Shih, Y.-T. Wu, Fast Euclidean distance transformation in two scans using
a 3�3 neighborhood, Computer Vision and Image Understanding 93 (2)
(2004) 195–205.

[23] F.Y.-C. Shih, Y.-T. Wu, The efficient algorithms for achieving Euclidean
distance transformation, IEEE Transactions on Image Processing 13 (8)
(2004) 1078–1091.

[24] D.W. Paglieroni, Distance transforms: properties and machine vision applica-
tions, CVGIP: Graphical Model and Image Processing 54 (1) (1992) 56–74.

[25] D.W. Paglieroni, A unified distance transform algorithm and architecture,
Machine Vision and Applications 5 (1) (1992) 47–55.

[26] M.N. Kolountzakis, K.N. Kutulakos, Fast computation of the euclidian distance
maps for binary images, Information Processing Letters 43 (4) (1992)
181–184.

[27] L. Chen, H.Y.H. Chuang, A fast algorithm for Euclidean distance maps of a 2-d
binary image, Information Processing Letters 51 (1) (1994) 25–29.

[28] T. Saito, J. Ichiro Toriwaki, New algorithms for Euclidean distance transfor-
mation of an n-dimensional digitized picture with applications, Pattern
Recognition 27 (11) (1994) 1551–1565.

J. Wang, Y. Tan / Pattern Recognition 46 (2013) 230–242242
[29] T. Hirata, A unified linear-time algorithm for computing distance maps,
Information Processing Letters 58 (3) (1996) 129–133.

[30] A. Meijster, J.B.T.M. Roerdink, W.H. Hesselink, A general algorithm for
computing distance transforms in linear time, Computational Imaging and
Vision 18 (8) (2000) 331–340.

[31] P.F. Felzenszwalb, D.P. Huttenlocher, Distance Transforms of Sampled Func-
tions, Cornell Computing and Information Science, Tech. Rep., September
2004.

[32] F.Y.-C. Shih, O.R. Mitchell, A mathematical morphology approach to Eucli-
dean distance transformation, IEEE Transactions on Image Processing 1 (2)
(1992) 197–204.

[33] C. Huang, O. Mitchell, A Euclidean distance transform using grayscale
morphology decomposition, IEEE Transactions on Pattern Analysis and
Machine Intelligence 16 (4) (1994) 443–448.

[34] R. de Alencar Lotufo, F.A. Zampirolli, Fast multidimensional parallel Euclidean
distance transform based on mathematical morphology, in: SIBGRAPI, IEEE
Computer Society, 2001, pp. 100–105.

[35] F. de Assis Zampirolli, R. de Alencar Lotufo, Classification of the distance
transformation algorithms under the mathematical morphology approach,
in: SIBGRAPI, IEEE Computer Society, 2000, pp. 292–299.

[36] D.F. Watson, Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes, Computer Journal 24 (2) (1981) 167–172.

[37] F. Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric
data structure, ACM Computing Surveys 23 (3) (1991) 345–405.

[38] S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica 2
(1987) 153–174.

[39] R.L. Ogniewicz, O. Kübler, Voronoi tessellation of points with integer
coordinates: time-efficient implementation and online edge-list generation,
Pattern Recognition 28 (12) (1995) 1839–1844.

[40] W. Guan, S. Ma, A list-processing approach to compute Voronoi diagrams and
the Euclidean distance transform, IEEE Transactions on Pattern Analysis and
Machine Intelligence 20 (7) (1998) 757–761.

[41] M.L. Gavrilova, M.H. Alsuwaiyel, Two algorithms for computing the Euclidean
distance transform, International Journal of Image and Graphics (2001)
635–645.
[42] O. Bruno, L. Costa, A parallel implementation of exact Euclidean distance
transform based on exact dilations, Microprocessors and Microsystems 28 (3)
(2004) 107–113.

[43] J. Torelli, R. Fabbri, G. Travieso, O. Bruno, A high performance 3d exact
Euclidean distance transform algorithm for distributed computing, Interna-

tional Journal of Pattern Recognition and Artificial Intelligence 24 (06) (2010)
897–915.

[44] C. Sigg, R. Peikert, M. Gross, Signed distance transform using graphics
hardware, in: Visualization, 2003, VIS 2003, IEEE, October 2003, pp. 83–90.

[45] T. Cao, K. Tang, A. Mohamed, T. Tan, Parallel banding algorithm to compute

exact distance transform with the GPU, in: Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, 2010,

pp. 83–90.
[46] F.Y. Shih, Y.-T. Wu, Three-dimensional Euclidean distance transformation and

its application to shortest path planning, Pattern Recognition 37 (1) (2004)
79–92.

[47] R. Strand, G. Borgefors, Distance transforms for three-dimensional grids with
non-cubic voxels, Computer Vision and Image Understanding 100 (3) (2005)
294–311.

[48] G. Borgefors, On digital distance transforms in three dimensions, Computer
Vision and Image Understanding 64 (3) (1996) 368–376.

[49] S. Svensson, G. Borgefors, Distance transforms in 3d using four different
weights, Pattern Recognition Letters 23 (12) (2002) 1407–1418.

[50] G. Borgefors, Weighted digital distance transforms in four dimensions,
Discrete Applied Mathematics 125 (1) (2003) 161–176.

[51] J. Wang, Y. Tan, Efficient Euclidean distance transform using perpendicular
bisector segmentation, in: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2011, Proceedings CVPR ’2011, June 2011.

[52] R. Fabbri, L. da Fontoura Costa, J.C. Torelli, O.M. Bruno, Complete Results of
the Benchmark Between Exact EDT Algorithms, /http://distance.sourceforge.

netS, 2006.
[53] P.F. Felzenszwalb, D.P. Huttenlocher, Distance Transforms of Sampled Func-

tions (program), /http://people.cs.uchicago.edu/pff/dt/S, 2004.
Jun Wang received the B.S. degree in Mechanical Engineering from Yantai University, Yantai, China, in 1996, the M.S. degree in Computer Science from Shandong
University, Jinan, China, in 2006, and the Ph.D. degree in Computer Science from the Key Laboratory of Machine Perception (Ministry of Education) and the Department of
Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing, China, in 2012. He is currently a scientist of Shandong Provincial
Office, State Administration of Taxation, Jinan, China. His current research interests include data mining, image processing, computer vision and genetic programming.
Ying Tan (M’98-SM’02) received the B.S. degree in Electronic Engineering from the Electronic Engineering Institute, Hefei, China, in 1985, the M.S. degree in Electronic
Engineering from Xidian University, Xi’an, China, in 1988, and the Ph.D. degree in Signal and Information Processing from Southeast University, Nanjing, China, in 1997. In
1997, he became a Postdoctoral Research Fellow and then an Associate Professor with the Department of Electronic Engineering and Information Science, University of
Science and Technology of China, Hefei. He was a Full Professor, an advisor of Ph.D. candidates, and the Director of the Institute of Intelligent Information Science,
University of Science and Technology of China. He was with the Chinese University of Hong Kong, Shatin, Hong Kong, in 1999 and during 2004–2005. He was an electee of
the 100-Talent Program of the Chinese Academy of Sciences, Beijing, China, in 2005. He is currently a Full Professor and an advisor of Ph.D. candidates with the Key
Laboratory of Machine Perception (Ministry of Education) and the Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking
University, Beijing. He is also the Head of the Computational Intelligence Laboratory, Peking University. He has authored or coauthored more than 200 academic papers in
refereed journals and conferences and several books and book chapters. His current research interests include computational intelligence, swarm intelligence, artificial
immune systems, intelligent information processing, pattern recognition, bioinformatics, statistical learning theory, and their applications.

Tan was the Program Committee Chair for the 2008 International Symposium on Neural Networks and the General Chair for the 2010 International Conference on Swarm
Intelligence (ICSI). He is the General Chair of ICSI 2011. He is an Associate Editor of IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics and an
Associate Editor of the International Journal of Swarm Intelligence Research and the IES Journal B: Intelligent Devices and Systems. He is a member of the Advisory Board of
the International Journal of Knowledge-Based and Intelligent Engineering Systems and of the Editorial Board of the Journal of Computer Science and Systems Biology and
Applied Mathematical and Computational Sciences. He is also the Editor of Springer Lecture Notes on Computer Science, LNCS 5263, 5264, 6145, and 6146, and the Guest
Editor of several referred journals, including Information Science, Softcomputing, Neurocomputing, and the International Journal of Artificial Intelligence. He was the
recipient of a number of academic and research achievement awards from his country and universities due to his outstanding contributions and distinguished works,
including the 2009 National Natural Science Prize of China.

http://distance.sourceforge.net
http://distance.sourceforge.net
http://people.cs.uchicago.edu/pff/dt/

	Efficient Euclidean distance transform algorithm of binary images in arbitrary dimensions
	Introduction
	Background on independent scan
	Principle of PBEDT
	Overview
	Verify points by using perpendicular bisector
	CFT computation for a row
	’’0’’-dimensional CFT

	Implementation of PBEDT
	The PBEDT algorithm
	Details of optimization
	Intersection point calculation
	Integer arithmetic operation
	Distance calculation

	Computational complexity

	Experiments
	Experiments on two-dimensional images
	Experiments on three-dimensional images
	Discussion
	PBEDT vs. MAURER2003
	PBEDT vs. others

	Conclusion
	References

