How to Submit Proof Corrections Using Adobe Reader

Using Adobe Reader is the easiest way to submit your proposed amendments for your IGI Global proof. If you
don’t have Adobe Reader, you can download it for free at http://get.adobe.com/reader/. The comment

functionality makes it simple for you, the contributor, to mark up the PDF. It also makes it simple for the 1GI Global
staff to understand exactly what you are requesting to ensure the most flawless end result possible.

Please note, however, that at this point in the process the only things you should be checking for are:

Spelling of Names and Affiliations, Accuracy of Chapter Titles and Subtitles, Figure/Table Accuracy,
Minor Spelling Errors/Typos, Equation Display

As chapters should have been professionally copy edited and submitted in their final form, please remember that
no major changes to the text can be made at this stage.

Here is a quick step-by-step guide on using the comment functionality in Adobe Reader to submit your changes.

1. Select the Comment bar at the top of page to View or Add Comments. This will open the Annotations
toolbar

| would like 1o inform you that 1GI Global s currenthy in the final stages of the production process for the
BOOK TITLE, edited by EDITOR(s), to which you are a contributing suthor, At this tme, | am very pleased 1o
present you with the final version of your contnbution to this publication for your review

Az you are reviewing the proot of your chapter, | would like for you to take into consideration a few tems:

As chagters should have been professionally copy edited (note: it 5 the responsibifity of the chapter author to
have their work professionafly copy edited) and submitted in their final form, no major changes to the text can be
muode o this stoge. Please do not be concerned with tems that are part of 61 Global's House Style and layout
application. These items includs: font type/size, title and sublitle styling. list formatting, and the general spacing
and placement of figures and tatles troughout the text

Please check only the fallawing neme:

Speliing of Nomes and Affifictions
Accuraey of Chopter Titles and Subtities
Figure/Table Accurcey

Minar Spelling Errors/Tvpos

Equation Disploy

TR

W kindly request that you note your revisions directly in the PDF provided to you using the “comment
function® In Adobe Reader. You can find a quick tutorial on how to use this function attached to your POF

Shiould you choose to submit yaur revisions in any other manner, |G| Global reserves the right to send the book to
print without your requested changes, Flease note that this requested format for revisions allows 1G] Glebal's
baok preduction staff to better address your revisions and also allows this book 1o be sent to print in a timely

2. To note text that needs to be altered, like a subtitle or your affiliation, you may use the Highlight Text

tool. Once the text is highlighted, right-click on the highlighted text and add your comment. Please be
specific, and include what the text currently says and what you would I|ke it to be changed to.

| would like 1o inform you that 1GI Global s currenthy in the final stages of the production process for the
BOOK TITLE edied by EDITOR(s], to which vou are a cantributs g nor A thi I am very g
present you with the final version of your comtnaution § 3o far E

Az you are reviswing the proot of your chapter, | would like for you to take into consideration a few

As chagters should have been professionally copy edvted (nete: it 5 the responsibifity of the chapter

have their work professianally copy edited) and submitted in their finsl farm, no major changes to the text can be
muode ot this stoge. Please do not be concerned with items that are part of 161 Global's House Style and layout
application. These items includs: font type/size, title and sublitle styling. list formatting, and the general spacing
and placement of figures and tatles troughout the text

Please check only the fallawing neme:

Speliing of Nomes and Affifictions
Accuracy of Chapter Titles and Subtities
Figure/Table Accurcey

Minar Speliing Errors/Tvoos

Equation Disploy

DR

W kindly request that you note your revisions directly in the PDF provided to you using the “comment
function® In Adobe Reader. You can find a quick tutorial on how to use this function attached to your POF

Shiould you choose to submit yaur revisions in any other manner, |G| Global reserves the right to send the book to
print without your requested changes, Flease note that this requested format for revisions allows 1G] Glebal's
baok preduction staff to better address your revisions and also allows this book 1o be sent to print in a timely



http://get.adobe.com/reader/�

If you would like text inserted, like a missing coma or punctuation mark, please use the Insert Text at

Cursor tool. Please make sure to include exactly what you want inserted in the comment box.

Y e [

-

SO F@BASE| s e = - HE S

Lwauld like to infarm you that 1G] Global is currenthy in the final stages of the production process for the
BOOK TITLE, edited by EDITOR(s), to which you are a contributing suthor, At this time, | am very pleased 1o
present you with the final version of your contribution ta this publlication for your review,

Asyou are reviewing the proof of your chapter, | would like for you 1o take into consideration a few items:

As chapters should have been prof by copy {note: it is the of the chapter author fo
have their wark professianally copy edited) and submitted in their final farm, ne majar changes to the text can be
mode of this stage. Flease do not be concerned with tems that are part of 161 Global's House Style and layout
application. These items include: font type/size, title and subtitle styling, list formatting, and the general spacing
and placement of figures and tatles throughout the text.

Pleaze check anly the fallawing inems:

*  Speliing of Nomes and Affilictions
Accurocy of Chapter Titles and Sublities
Figure/Table Accurcey

Minar Spelling Errors/Tvpes

= Equation Display

Wi Kindly request that yeu note your revisions directly in the PDF provided to you using the “comment
function® in Adobe Reader. You can find a quick tutorial on haw te use this function attached to your POF.

Should you choose to submit your revisions in any other manner, |G| Global reserves the right to send the book to
print withaut your requested charges, Flease note that this requested farmat for revisions allows 131 Global's
baak preduction staff to better sddress your revisions and also allows this book to be sent te print in & timely

T b e g

S @ neE]

If you would like text removed, such as an erroneous duplicate word or punctuation mark,

Add Note to Replace Text tool and state specifically what you would like removed.
s e e I

=g s FUH RS

| weuld like 1o inform you that 1G] Global is currenthy in the final stages of the production process for the
BOOK TITLE, edited by EDITOR(s), to which you are a contributing author, At this time, | am very pleased 1o
present you with the final version of your contnbution to this publication for your review,

As you are reviewing the proof of your chapter, | would like for you to take into consideration a few tems:

As chapters should have been by copy edvted {note: it f5 the v of the chapter outhor to
fave thetr work professianally copy edited) and submitted in their sl farm, no major chonges to the text con be
mode at this stoge. Flease do not be concerned with items that are part of Ma! Glabal's Howse Style and layout
application. These items include: font type/size. title and subtitle styling. list formatting, and the general spacing
and placement of figures and tatles throughout the text

Please check anly the fallawing nems:

Speliing of Namegand Affilictians

Acturoey of Chapter Ttles and Subties — |
Figure/Table Accurcey E el WA
Minor Speliing Ervors/Tvpos b, e
Equation Disloy

n
W kindly request that you note your revisions directly in the PDF provided to you using the “comment
function® in Adobe Reader. You can find a quick tutarial on how to use this function attached 1o your POF.

Should you chaose to submit your revisions in any other manner, |Gl Global reserves the right to send the book to
print without your requested changes, Please note that this requested format for revisions allows 151 Glcbal's
baok preduction staff ko batter address your revisions and also allows this beok to be sent to print in & timely

T b e g

SN XEMEE] sk e[ HA ST

| weuld like 1o inform you that 1G] Global is currenthy in the final stages of the production process for the
BOOK TITLE, edited by EDITOR(s), to which you are a contributing author, At this time, | am very pleased 1o
present you with the final version of your contnbution to this publication for your roview,

s you are reviewing the prost of your chapter, Lusalc ke & i e _
As chagters should have been Iy copy edvted (note: it s the v of the chapter /‘w:'“
o B

have their work profiessianatly copy edited) and submitted in their final form, no major changes to

mode at this stoge. Fiease do not be concerned with (tems that are part of MG Global's HOuse STyH. fra e et s e e
application, These items include: font type/size, ttie and sublithe styling. 15t formatting, and the ge T hees swetm re sy

and placement of figures and tatles throughout the text

Please check anly the fallawing nems:

Speliing of Names and Affilistions
Accuracy of Chapter Titles and Subtities
Figure/Table Accurcey

Minar Speliing Errors/Tvoes

Equation Disploy

W kindly request that you note your revisions directly in the PDF provided to you using the “comment
function® In Adobe Reader. You can find a quick tutorial on how to use this function attached o your POF

Should you chaose to submit your revisions in any other manner, |Gl Global reserves the right to send the book to
print without your requested changes, Please note that this requested format for revisions allows 151 Glcbal's
baok preduction staff ko batter address your revisions and also allows this beok to be sent to print in & timely

e

e

S | o

S | o

please use the



IJSIR Editorial Board

Editor-in-Chief: Yuhui Shi, Xi’an Jiaotong-Liverpool U. China

Associate Editors:  Tim Blackwell, U. of London, UK

Carlos A. Coello Coello, CINVESTAV-IPN, Mexico

Russell C Eberhart, Indiana U.-Purdue U. Indianapolis, USA
Xiaodong Li, RMIT U., Australia

Bob Reynolds, Wayne State U., USA

Ponnuthurai N. Suganthan, Nanyang Technological U., Singapore
Changyin Sun, Southeast U., China

Kay Chen Tan, National U. of Singapore, Singapore

Ying Tan, Peking U., China

Gary Yen, Oklahoma State U., USA

Jun Zhang, Sun Yat-sen U., China

Qingfu Zhang, U. of Essex, UK

International Editorial Review Board:

Payman Arabshahi, U. of Washington, USA

Carmelo Jose Albanez Bastos-Filho, U. of Pernambuco,
Brazil

Wei-Neng Chen, Sun Yat-sen U., China

Shi Cheng, The U. of Nottingham-Ningbo, China

Maurice Clerc, Consultant, France

Leandro dos Santos Coelho, Pontifical Catholic U. of
Parana, Brazil

Oscar Cordon, European Centre for Soft Computing,
Spain

Arindam Das, U. of Washington, USA

Prithviraj Dasgupta, U. of Nebraska, USA

Yongsheng Ding, Donghua U., China

Haibin Duan, Beihang U., China

Zhen Ji, Shenzhen U., China

Yaochu Jin, Honda Research Institute Europe, Germany

Colin Johnson, U. of Kent at Canterbury, UK

Arun Khosla, National Insitute of Technology Jalandhar,
India

Ziad Kobti, U. of Windsor, Canada

Yongming Li, Chongqing U., China

Ju Liu, Shandong U., China

Ann Nowe, Vrije U. Brussel, Belgium

Mahamed G. H. Omran, Gulf U. for Science &
Technology, Kuwait

Kevin M. Passino, The Ohio State U., USA

William Spears, U. of Wyoming, USA

Ke Tang, U. of Science and Technology of China, China

Tiew On Ting, Xi’an Jiaotong-Liverpool U., China

Lei Wang, Tongji U., China

Yanqing Zhang, Georgia State U., USA

IGI Editorial:

Lindsay Johnston, Managing Director
Jennifer Yoder, Production Editor
Adam Bond, Journal Development Editor

Jeff Snyder, Copy Editor
Allyson Stengel, Asst. Journal Development Editor
Ian Leister, Production Assistant

Aer— 1GI PUBLISHING

WWW.IGI-GLOBAL.COM




v

23

39

International Journal

of Swarm Intelligence
Research

October-December 2013, Vol. 4, No. 4

Table of Contents

EDITORIAL PREFACE

Yuhui Shi, Xi’an Jiaotong-Liverpool University, Suzhou, China

RESEARCH ARTICLES

Modeling and Cohesiveness Analysis of Midge Swarms
Kevin M. Passino, Department of Electrical and Computer Engineering, Ohio State University,
Columbus, OH, USA

List-Based Optimisers: Experiments and Open Questions
Maurice Clerc, Independent Consultant, Groisy, France

Introduction to Fireworks Algorithm

Ying Tan, School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

Chao Yu, School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

Shaoqiu Zheng, School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

Ke Ding, School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

Copyright

The International Journal of Swarm Intelligence Research (IJSIR) (ISSN 1947-9263; eISSN
1947-9271), Copyright © 2013 IGI Global. All rights, including translation into other languages
reserved by the publisher. No part of this journal may be reproduced or used in any form or by
any means without witten permission from the publisher, except for noncommercial, educational
use including classroom teaching purposes. Product or company names used in this journal are
for identification purposes only. Inclusion of the names of the products or companies does not
indicate a claim of ownership by IGI Global of the trademark or registered trademark. The views
expressed in this journal are those of the authors but not neccessarily of IGI Global.

The International Journal of Swarm Intelligence Research is indexed or listed in the following:
ACM Digital Library; Bacon’s Media Directory; DBLP; Google Scholar; INSPEC; Journal TOCs;
MediaFinder; The Standard Periodical Directory; Ulrich’s Periodicals Directory




International Journal of Swarm Intelligence Research, 4(4), 39-71, October-December 2013 39

Introduction to Fireworks
Algorithm

Ying Tan, School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

Chao Yu, School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

Shaoqiu Zheng, School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

Ke Ding, School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

ABSTRACT

Inspired by fireworks explosion at night, conventional fireworks algorithm (FWA) was developed in 2010.
Since then, several improvements and some applications were proposed to improve the efficiency of FWA. In
this paper; the conventional fireworks algorithm is first summarized and reviewed and then three improved
fireworks algorithms are provided. By changing the ways of calculating numbers and amplitudes of sparks
in fireworks’explosion, the improved FWA algorithms become more reasonable and explainable. In addition,
the multi-objective fireworks algorithm and the graphic processing unit (GPU) based fireworks algorithm
are also presented, particularly the GPU based fireworks algorithm is able to speed up the optimization
process considerably. Extensive experiments on 13 benchmark functions demonstrate that the three improved
fireworks algorithms significantly increase the accuracy of found solutions, yet decrease the running time
dramatically. At last, some applications of fireworks algorithm are briefly described, while its shortcomings
and future research directions are identified.

Keywords: Fireworks Algorithm, Function Optimization, Graphic Processing Unit, Improved Fireworks
Algorithm, Multi-Objective Fireworks Algorithm

1. INTRODUCTION

In most engineering fields, many problems
can be simplified as numerical optimization
problems through mathematical modeling. In
some of the problems — not only the optimal
solution, but also multiple feasible solutions

DOI: 10.4018/ijsir.2013100103

and viable localized optimal solutions need to
be identified to provide enough information for
decision makers. Such problems are generally
referred to as multi-modal and multi-objective
optimization problems. To solve those prob-
lems, the maximum or the minimum values of
the functions need to be found out.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
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Traditional methods generally solve a
continuous and differentiable function using
mathematical techniques based on gradient
information. However, when dealing with
multi-modal and multi-objective optimization
problems, traditional methods cannot always
obtain even the reasonable solutions. In order
to solve function optimization problems effi-
ciently, many algorithms inspired by biological
behavior are suggested recently.

The study of biological phenomena is no
longer constrained in the biology discipline
alone, but expanded to mathematics, computer
science, information science and other research
fields. Inspired by the behavior of groups of
animals, many swarm intelligence algorithms
are designed in the field of computer science.

Swarm can be described as a number of
individualsin adjacent areas and those individu-
als interact with each other. In nature, a bee, or
an ant, or a bird can hardly survive without its
kin. A group of organics, therefore, such as the
aforementioned bees, ants or birds, has more
chances to survive than the lone individual.
The survival chance for a group is not a simple
composition of each individual’s chance, but
a more complex summary of social and group
dynamics. The character of animal groups can
greatly help its individuals adapt to their envi-
ronment. Each individual obtains information
from social interaction and that information
gained by an individual in a group is more
than the information any single individual can
obtain alone. Information is then transferred
among the group and each individual processes
this transferred information and change its own
behavior, including its own behavioral patterns
and norms. Therefore, the whole group has
some capabilities and characteristics, espe-
cially the ability to adapt to their environment
that a single individual can hardly gain when
working alone. The ability of an individual to
change according with environment is known
as intelligence and this intelligence is gained
by the clustering of individuals.

Inspired by nature, many swarm intelli-
gence algorithms are proposed. Observing the
way of ants finding food, ant colony optimiza-

tion (ACO) algorithm was proposed by Colorni
and his partners in 1991 (Colorni, Dorigo, &
Maniezzo, 1991). Moreover, particle swarm
optimization (PSO) algorithm was put forward
by Kennedy and Eberhart (). The algorithm
mimics the pattern of birds flying to find food.
Yet, differential evolution (DE) algorithm is
another swarm intelligence algorithm, which
was given by Storn and Price (1995). In this
algorithm, the differences between individu-
als are fully utilized. The recently announced
artificial bee colony algorithm (ABC) and fish
school search algorithm (FSS), were proposed
in 2008 and 2009 respectively (Karaboga, &
Basturk, 2008; Filho, de Lima Neto, Lins,
Nascimento, & Lima, 2009). The most recently
proposed fireworks algorithm (FWA) isaswarm
intelligence algorithm that was published by
Tan and Zhu (2010). This algorithm is inspired
by fireworks explosion at night and is quite
effective at finding global optimal value. As a
firework explodes, a shower of sparks is shown
in the adjacent area. Those sparks will explode
again and generate other shows of sparks in a
smaller area. Gradually, the sparks will search
the whole solution space in a fine structure
and focus on a small place to find the optimal
solution.

As a practical optimization algorithm,
fireworks algorithm can fulfill three user
requirements (Storn, & Price, 1997). First of
all, FWA can process linear, non-linear and
multi-model test functions. Secondly, FWA can
be parallelized in order to deal with complex
practical problems. Thirdly, FWA has good
convergence properties and can always find
the global minimization.

This article completely summarizes fire-
works algorithm, including the conventional
fireworks algorithm, its improvements and
its applications. All algorithms are tested on
standard datasets. The remainder of this article
is organized as follows. Section II presents the
conventional fireworks algorithm. Section III
to section V describes three improvements by
several researchers. Some experiments are de-
signed and the experimental results are shown
insection VI. Section VIl states multi-objective

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



International Journal of Swarm Intelligence Research, 4(4), 39-71, October-December 2013 41

fireworks algorithm and section VIII describes
GPU-based fireworks algorithm. Applications
of fireworks algorithm on solving optimization
problems are given in section IX. In the last
section X, conclusions and further research
directions are drawn to enrich the research and
enlarge the range of application of fireworks
algorithm.

2. FIREWORKS ALGORITHM

After a firework exploded, the sparks are ap-
peared around a location. The process of ex-
ploding can be treated as searching the neighbor
area around a specific location. Inspired by
fireworks in real world, fireworks algorithm
(FWA) is proposed. Fireworks algorithm uti-
lizes N D-dimensional parameter vectors ;z;f’
as a basic population in each generation. Pa-
rameter ¢ varied from 1 to N and parameter
G stands for the index of generations.

Every individual in the population ‘ex-
plodes’ and generates sparks around him/her.
The number of sparks and the amplitude of each
individual are determined by certain strategies.
Furthermore, a Gaussian explosion is used to
generate sparks to keep the diversity of the
population. Finally, the algorithm keeps the
best individual in the population and selects the

rest (N — 1) individuals based on distance for

next generation.
More specific strategies of fireworks algo-
rithm can be described as follows.

2.1. Explosion Sparks Strategy

The explosion sparks strategy mimics the
explosion of fireworks and is the core strategy
in fireworks algorithm. When a spark blasts,
the spark is vanished and many sparks appear
around it. The explosion sparks strategy mim-
icking this phenomenon is used to produce new
individuals by explosion.

In this strategy, two parameters need to
be determined. The first one is the number of
sparks:

) Y;naz_f(xi>+5
S (Y, — f(z))+e

S =3

i

(M

In the formula, S represents the number
of sparks generated by an individual from the
population, where ¢ varies from 1to N.Asa
controlling parameter of the total number of
generated sparks, S is set as a constant. Sup-
pose the goal is to find the minimal of a function.
Variable Y stands for the worst fitness

value in the current generation, while f (x,) is

the fitness value for an individual =, . The last
parameter expressed as is used to prevent the
denominator from becoming zero.

The second parameter in this strategy is
the amplitude of sparks:

Aci o dE) Y te )

l i=1 (f(wi>_ymin>+€

Variable A gives the amplitude for an
individual z; to generate the explosion sparks

and A is a constant to control the amplitudes.
The best fitness value Y isused to calculate
amplitudes. In this formula, the last parameter
helps to avoid the error of having the denomi-
nator being zero. If an individual is close to the
boundary, the generated sparks may lie out of
the feasible space. Therefore, a mapping
method is used to keep sparks inside of the
feasible space.

2.2. Mapping Strategy

The mapping strategy ensures all the individu-
als stay in the feasible space. If there are some
outlying sparks from the boundary, they will
be mapped to their allowable scopes:

T, =2, t |'T1' | % (mmaz - :Bmm) €)

min
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where z, represents the positions of any sparks

that lie out of bounds, while z_
stand for the maximum and minimum boundary
of a spark position. The symbol % stands for
the modular arithmetic operation. Aside from
the explosion sparks strategy, another way to
generate sparks is proposed as Gaussian sparks
strategy.

and z .
m

in

2.3. Gaussian Sparks Strategy

To keep the diversity of the population, Gauss-
ian sparks strategy is used to generate sparks
with Gaussian distribution. Suppose the position
of current individual is stated as :c,f , the Gauss-
ian explosion sparks are calculated as:

L =T 4)

where ¢ is a random number in Gaussian
distribution:

g = Gaussian (1,1) (5

Parameter g obeys the Gaussian distribu-
tion with both mean value and standard devia-
tion are 1. After normal explosions and Gauss-
ian explosions, we consider a proper way to
select individuals for next generation. Here, a
distance based selection method is suggested.

2.4, Selection Strategy

To select the individuals for next generation,
the best individual is always kept at first. Then
thenext (N — 1) individuals are selected based
on their distance to other individuals. The in-
dividual that is far from other individuals gets
more chance to be selected than those indi-
viduals with smaller distances to other indi-
viduals.

The general distance between two locations
is calculated by:

R(z)=3_d(z,2)=%_ | -=] ©

o]

where location z, and , (i#)) can be any

locations and K is the set of all current loca-
tions. For the distance measurements, many
methods can be used, including Euclidean
distance, Manhattan distance and Angle-based
distance. Inspired by the immune density (Lu,
Tan, & Zhao, 2002), Euclidean distance is used
in the fireworks algorithm (Tan, & Zhu, 2010):

(7

ife.e)=[1(s) - 1(s)

where f(xi) is the fitness for location z, and

d (Iw xj) represents the distance between two

locations.

As last, a roulette wheel method is used
to calculate the possibility of selecting the
locations:

ple)=—= ®)

The individuals with larger distance from
others have more chance to be selected. In this
way, the diversity ofa population can be ensured.

The flowchart and pseudo code for fire-
works algorithm is stated in Figure 1.

Fireworks algorithm works quite well on
following parameters, where n =5, m =50,
a =0.04, b =0.8, A =40 and m =5. Although
fireworks algorithm reaches great progress at
several problems, there are still some places
forimprovement. Zheng etal. (Zheng, Janecek,
& Tan, 2013) proposed an enhanced fireworks
algorithm, which significantly increased the
accuracy of result on test functions. Liu et al.
(2013) studied the exploration and exploitation
abilities of fireworks algorithm and then de-
signed a transfer function to calculate the
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Figure 1. The flowchart of fireworks algorithm

Select n initial locations

]

— Set off n fireworks at n locations

l

Obtain the locations of sparks

No

:

Evaluate the quality of the locations

number and the amplitude for sparks (see Al-
gorithm 1). Pei et al. (2012) presented an em-
pirical study on the influence of fitting methods
of fireworks algorithm. Other related refer-
ences including but not limited to Zheng, and
Tan (2013), Zhou, and Tan (2009), Zhou, and
Tan (2011), Bureerat (2011), Lou, Li, Jin, and
Li(2012), Lou, Li, Shi, and Jin (2013) and Tan
and Xiao (2007).

3. ENHANCED FIREWORKS
ALGORITHM (EFWA)

To overcome the disadvantages of fireworks
algorithm, many researchers have attempted
in different ways to improve it. Zheng et al.
(2013) proposed an enhanced fireworks algo-
rithm through improvements it in the following
five aspects.

Optimal
gcation found?

Yes

3.1. Minimal Explosion
Amplitude Setting

In the evolution process, some explosion
amplitude may be close to zero, which is not
conducive to find the global best value. Since
the explosion amplitude was closely related to
fitness values, two ways to limit the minimum
amplitude boundary were proposed. One way
is based on a linear function and the other is
based on a non-linear function:

A —A
Ak‘ (t) _ A init final %t (9)

min init
evals _maz

Ak- (t) _ Az'm't B Aﬁnal
evals _maz
*\/<2 xevals  max— t) x 1

min init

(10)
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Algorithm 1.
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for (1 = 0; 1 < N; i++)
randomly generate an individual.
while (count < gen max) {

// For each individual,
for (1 = 0; 1 < N; i++)

{
1)),

Set Zk round k

= (rand (0, 2,

. . k
For each dimension of xi

(2" == 1) xf+f::Ai*randCle);

if (xf
calculate fitness;
evaluation count += Si;

}

// Generate Gaussian Sparks
for (i = 0; i < M; i++) {
Set zk round (rand (0, 1)),

if

is out of scope)

) k 2,
For each dimension of xf

if (2" == 1) 2% = Gaussian(1,1) ;
if (x

calculate fitness;

is out of bounds)

evaluation count += m;

}
//Selection

Then select (N - 1) individuals
if (evaluation count > evals max) break;

}

// gen max is the maximum number of generation
generate Si sparks within amplitude Ai.

execute mapping operation;

.y

execute mapping operation;

Keep the best individual for next generation

//evals_max is the maximum number of evaluations

.., dimension

dimension

In both formulae, Afm (t) means the lower

boundary for an individual in the k dimension
when the function is evaluated t times. The two

and A._ = stands for the

t final

initiate and final amplitudes. The last parameter
is the maximum evaluation times, which is ex-
pressedas evals _max . Theschematicdiagrams
for linear and non-linear minimal explosion
amplitudes are drawn in Figure 2.

new parameters A
2N

3.2. Explosion Sparks Strategy

In the fireworks algorithm, the same increment
will be added to some selected dimensions of
an individual.

As it is shown in Figure 4, the same incre-
ment may cause a loss of diversity to a popula-

tion. Hence, it is necessary to generate different
increments and add the increments to each
selected dimension for an individual to obtain
the diversity of population. In Figure 3,

z!(j =1,2,..., Dimension) stands for the
value in the j™ dimension of the i individual.
A, is the amplitude for that individual z, .

3.3. Gaussian Sparks Strategy

The fireworks algorithm works significantly
well on functions that will reach their optimal
at the origin of coordinate. For example, the
optimal value of a two-dimensional Ackley
function lies at the origin of its coordinate. But
if the function is shifted, e.g. the optimal value
is shifted to [-70, -55], the fireworks algorithm
performs badly. Figure 4 shows the location of
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Figure 2. The schematic diagrams of minimal amplitude for linear and non-linear decreases.
This figure is obtained from the work of (Zheng, Janecek, & Tan, 2013).
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Figure 3. Increment of FWA and EFWA in each selected dimension
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Figure 4. Effect of the Gaussian sparks. This figure comes from the work of (Zheng, Janecek,

& Tan, 2013).
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the Gaussian sparks in fireworks algorithm. It
can be seen that Gaussian sparks can easily find
the optimal value at the origin of coordinate
when the function is not shifted. But Gaussian
sparks work poorly on the shifted function.

To overcome the disadvantage of Gaussian
sparks, Zheng etal. (2013) used another way to
generate Gaussian sparks. Referring the posi-
tion of the current global best individual, the
Gaussian sparks are generated by:

ko k ko k
x.—:vl—f—(mm xj)*g

[

(1)

where ¢ is arandom number obeyed Gaussian
distribution, i.e.:

g = Gaussian (0,1) (12)

In the formula, 2! stands for the selected

k
Best

is the best individual the algorithm has find out
so far. Parameter ¢ obeys the Gaussian distri-
bution of mean 0 and standard deviation 1.

individual to generate Gaussian sparksand x

3.4. Mapping Strategy

The proposed fireworks algorithm used modular
arithmetic operation to map individuals back
into scope. However, modular arithmetic op-
eration is time consuming. Besides, some of
the individuals are mapped to a place near the
origin, straying from the diversity of population.
For example, suppose the solution space varies
from -20 to 20. If there is an individual who has
a value of -21, then it maps to 1 according to
the formula suggested in fireworks algorithm.
Hence, a new mapping operator is proposed:

af =2’ 4 rand(0,1)x (mk -z ) (13)

max min

where xim and x;m are the lower and upper
boundary of the solution space.

3.5. Selection Strategy

The most time consuming part of conventional
fireworks algorithm lies in the selection. In the
selection strategy of conventional fireworks
algorithm, the distances between individuals
need to be calculated. Hence, the computational
complexity of selection strategy is much higher
than random selection strategy.

The selection operation is called as Elitism
Random Selection (ERS). According to the
work of Pei et al. (2012), the best individual is
always preserved for next generation, while the
other (N —1) individuals are selected ran-
domly. In this way, the running time for fire-
works algorithm is largely decreased and fur-
thermore, the computational complexity is
linear.

4. IMPROVED FIREWORKS
ALGORITHM (IFWA)

WITH TWO DIFFERENT
SELECTION METHODS

Liu et al. (2013) put forward another effec-
tive improvement of fireworks algorithm. The
individuals are sorted by their fitness values
in increasing order and two new formulae are
given concerning the number and the amplitude
of sparks:

§,=5 : (14)
Zilt(z)
Y t(N—it+1)
where t(i) is a transfer function with a:
. 1
i) = —— (16)
14+e @
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Transfer function helps to decrease the
number and the amplitude of sparks evenly.
Parameter varies from 20 to 1 with an even
number of distributions for each generated

value. § and A are set as constant parameters
controlling ofthe total number and the maximum
amplitude of sparks respectively. N stands for

the number of individuals, while S, and A, are

the number and the scope for an individual z,
to generate the explosion sparks.

A random function is proposed to replace
the function to generate Gaussian sparks:

o =gt + (zz:fm - J:fm.n) «rand(0,1)  (17)
The function randomly generates indi-

viduals and ensures the generated individuals
are in the feasible space. z' and z'  arethe
maximum and minimum boundaries of the k™
dimension.

Two different selection methods are pro-
posed, named as the best fitness selection and
roulette fitness selection:

1. BestFitness Selection (BFS): The best fit-
ness selection is first proposed by Zheng et
al. (2013). The bestindividuals are selected
for next generation from both the basic
individuals and the generated sparks;

2. Roulette Fitness Selection (RFS): After
the algorithm selects the best individual,
other individuals are selected by roulette
based on their fitness values. The prob-
ability for each individual to be selected
is calculated as:

_ Ynm - f(mz)
Zf{:l (Ymaz o f(xz))

r(z)

(18)

where ¥V stands for the worst fitness value
in the population, while f (:rl) is the fitness
for an individual T, Parameter K means the

total number of individuals, including basic
individuals, explosion sparks and Gaussian

sparks. It can be seen that the individuals with
lower fitness value have more chance to be
selected.

5. THE INFLUENCE

OF APPROXIMATION
APPROACHES ON ENHANCED
FIREWORKS ALGORITHM

To figure out the influence of sampling methods
and fitting methods on enhanced fireworks
algorithm, Pei et al. (2012) proposed three
sampling methods and two fitting methods in
enhanced fireworks algorithm. Also, they used
arandom selection method to choose individual
for next generation.

5.1. Sampling Methods

1. Best Sampling: The best K individuals
are selected as sampling data;

2. Distancenear the Best Fitness Individual
Sampling: By calculating the Euclidean
distance between the best individual and
the other individuals, the nearest K indi-
viduals are selected as sampling data;

3. Random Sampling: K individuals are
selected randomly as sampling data.

5.2. Fitting Methods

In order to generate anew spark, three sampling
methods and two fitting methods are used and
compared. The first sampling method is to
select the best K individuals (BST), whereas
K can be defined as 3, 5 or 10. The second
sampling method is to pick up the K indi-
viduals, which have the smallest distance from
the best individual (DIS). The third sampling
method is to choose the K individuals ran-
domly (RAN). The two fitting methods are
linear least square approximation (LS1) and
non-linear two degree polynomial approxima-
tion (LS2).

Three sampling method are tested with two
fitting method. Hence, six different methods
are proposed. For example, LS1-BST3 means
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to select the best three individuals among the
population and generates a new spark from
these selected individuals using linear least
square approximation method. In each dimen-
sion, a line segment generates and the value of
the middle point is taken as the new spark. As
for non-linear fitting methods, the value of the
extreme point is treated as the new spark. The
new spark replaces the worst individual in the
population if the new spark is better.

5.3. Selection Methods

Inthe paper Pei, Zheng, Tan, and Takagi (2012),
Pei et al. keeps the best individual for next
generation and randomly selects the rest
(N —1) individuals. The selection method is
named as Random Selection with Replacement
(RSR).

6. EXPERIMENTS
6.1. Design of Experiments
Thirteen test functions are chosen to verify

the performance of conventional fireworks
algorithm, its variants and standard particle

Table 1. The details of benchmark functions

swarm optimization as seen in Table 1 (Bratton,
& Kennedy, 2007).

According to the work of Zheng et al.
(2013), fireworks algorithm works extremely
well on those functions whose optimum is
located at original point (0, 0), because the
Gaussian sparks can easily find that point. To
shift the global optimal value away from point
(0, 0), a number of shifted values are added to
the functions. Here, the optimum of the func-
tions is shifted to the right corner of the feasible

search space. Table 2 shows the shifted values.
X . and X = meansthe maximum and

minimum boundaries for the individual, respec-
tively. Still, there are two more parameters in

EFWA named as A,

rameters are set as (X

and Aﬂmd . The two pa-
X,.) *0.02 and

(Xmaz — Xmm) *0.001, respectively.

The experimental platform is Visual Stu-
dio 2012 and the program is running on 64-bit
Window 8 operation system with an Intel Core
17-3820QM with2.70GHzand2GB RAM. Each
experiment runs 30 times and during each run,
the fitness functions are evaluated just over
300,000 times. The function evaluation cannot

t

No. Name Attributes Optimization Value | Initial Population | Dimension
F1 Sphere Unimodal 0.0 [-100, 100]° 30
F2 Schwefel’s Problem 1.2 Unimodal 0.0 [-100, 100" 30
F3 Generalized Rosenbrock Unimodal 0.0 [-30, 301 30
F4 Ackley Unimodal 0.0 [-32, 32]° 30
F5 Generalized Griewank Unimodal 0.0 [-600, 6001 30
Fo6 Penalized Function F8 Multimodal 0.0 [-50, 501° 30
F7 Penalized Function P16 Multimodal | 0.0 [-50, 501° 30
F8 Six-hump Camel Back Multimodal | -1.032 [-5,5]P 2
F9 Goldstein-Price Multimodal | 3.0 [-2,2]° 2
F10 | Schaffer F6 Multimodal | 0 [-100, 100]° 2
F11 | Axis Parallel Hyper Ellipsoid | Multimodal | 0 [-5.12,5.12]° 30
F12 | Rotated Hyper Ellipsoid Multimodal | 0 [-65.536, 65.536]° | 30
F13 | Generalized Rastrigin Multimodal | 0 [-5.12,5.12]° 30
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Table 2. Shifted index and shifted value (index zero means no shift)

Shifted Index Shifted Value
0 0
| 0.025 * (X -X,.)
mazr min
5 0050+ (X, —X )
maxr mwn
3 0.100*(X ,—X,,)
maxr mi
4 0.150 * (X -X,.)
mazxr min
5 0250+ (X, — X, )
maxr mwn
6 0.350*(X ,—X,,)
maxr mi

be equal to 300,000 because the number of
sparksisnot fixed in each generation. Therefore,
once the number of function evaluations exceeds
300,000 at the end of a generation, there will
not be any further generations.

According to reference Bratton and Ken-
nedy (2007), standard particle swarm optimiza-
tion (SPSO) includes a ring topology when the
particles are only communicated with their two
neighbors. Moreover, the number of particles is
setas 50, while the initialization is non-uniform
and the evaluation operations are skipped if the
particles are out of the feasible search space.

6.2. Experimental Results

Six swarm intelligence algorithms are com-
pared, including the conventional fireworks
algorithm, four improved fireworks algorithms
and the SPSO algorithm.

The parameters of SPSO algorithm are the
same as in reference Bratton et al (2007), while
the other four improved fireworks algorithms
have the same parameters with the conventional
algorithm in reference (Tan, & Zhu, 2010).
EFWA is proposed by Zheng (Zheng, Janecek,

& Tan, 2013), whereas improved fireworks al-
gorithm with fitness value selection (IFWAFS)
and improved fireworks algorithm with best
selection (IFWABS) can be found in reference
Liu, Zheng, and Tan (2013). The algorithm
named LS2-BST10 is the best algorithms
stated in article Pei, Zheng, Tan, and Takagi
(2012) with extinguished sampling numbers
and fitting methods. LS2-BST10 means the
sampling method is non-linear and the best ten
individuals are selected.

In order to make the figures more easily
readable, the experiment results are divided
into two figures, namely Figure 5(a) and Figure
5(b). Thus, the horizontal and vertical axis in
Figure 5(a) have the same meaning as Figure
5(b). The horizontal axis stands for the six
algorithms along with 13 functions and the
vertical axis represents the mean values in the
form of logarithm. Some bar figures are not
shown because the corresponding mean values
are below zero and the logarithm operation
cannot be performed.

Figure 6 depicts the running time for each
algorithm onthe 13 functions. The vertical axes
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Figure 5. (a) Mean values of conventional fireworks algorithm and its variants on function 1
to 7 (b) Mean values of conventional fireworks algorithm and its variants on function 8 to 13
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in both Figure 6 (a) and Figure 6 (b) represent The running time of each algorithm is

the running time in seconds. The higher the bar  shown in Table 5. The unit of the results is
graphis, the more time consuming the algorithm  second.
for each function.
Table 3 represents the mean values and 6-3. Discussions
the standard deviations of each algorithm run-

ning on all the functions with shifted indexes 1 ne following observations can be concluded
from 0 to 6. from the experimental results in Table 5:

Table 4 shows the t-test results of fireworks
algorithm againstevery otheralgorithms. Thet- 1. EFWA, IFWAFS, IFWABS and LS2-

testresults of fireworks algorithm with the other BST10 are superior to conventional FWA
algorithms are shown below. The bold values on most functions;

in the table indicate the other algorithms are 2. With increasing shifted values, EFWA
significant better than FWA. If the experiment achieves much better results than conven-
results are the same, there is no t-test result and tional FWA;

a sign NAN is shown. 3. EFWAperforms steadily even the optimum

is shifted to the edge of the feasible space;
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Figure 6. (a) Running time of conventional fireworks algorithm and its variants on function 1
to 7 (b) Running time of the same algorithms on function 8 to 13
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4. SPSO achieves better results on large with multi-objective optimization problems,

shifted indexes;

Improved fireworks algorithms, including

EFWA, IFWAFS, IFWABS and LS2-
BST10, are worse than SPSO on most

functions;

EFWA is extremely fast on 11 functions,

while SPSO is quicker than other algo-

rithms on 2 other functions;
Conventional FWA consumes much more

time than all the other algorithms.

7. MULTI-OBJECTIVE FWA

Conventional FWA and its variants can solve
problems with single objective. When dealing

those algorithms are no longer useful and ef-
ficient.

Zheng et al. (2013) firstly studied multi-
objective fireworks algorithm (MOFOA) and
applied it to optimize variable-rate fertilization
in oil crop production. Three objectives were
chosen and the data from three oil crops were
used. The distribution of solutions by MOFOA
was given and it was also compared with multi-
objective random search (MORS).

Fertilizing Oil Crops can be described as a
multi-objective problem with three objectives.
They are crops quality, fertilizer cost and en-
ergy consumption. Compare with conventional
FWA, two new strategies were proposed.
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Table 3. Mean and standard deviation of FWA and other algorithms with shifted values
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Table 4. T-test results for FWA VS other algorithms

S 1 0[S 1 1]8 I 2 |S I 318 1 4 1S 1 518 1 6
FI | i¥4 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
FE | 0.000000000 | 0.000000000 | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
& | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
240 NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
P50 NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
R | #v | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000012121
FE | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000012143
f® | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000012155
] NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000018158
50 | 0.000031083 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000012120
B | i | 0.001698719 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000014 | 0.000006926
i | 0.009688508 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000014 | 0.000006927
f&E | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000014 | 0.000006927
[247 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000014 | 0.000006927
950 | 0.000077747 | 0.000000000 | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000014 | 0.000006926
B | B4 | 0.000000313 | 0.002853052 | 0.002922802 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
W | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
ME | 0.000000000 | 0.000000000 | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
] NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
$50 | 0.000000000 | 0.000000264 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
F5 | iy | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000002
WE | 0.000000029 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000002
[ | 0.000000038 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000002
1) NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000002
950 | 0325581988 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000002
F6 | WL | 0.008562417 | 0.392489849 | 0.000000007 | 0.000000000 | 0.000000000 | 0.000001636 | 0.000657971
F§ | 0.000000007 | 0.000000039 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000001636 | 0.000657971
FE | 0.000000009 | 0.000000041 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000001636 | 0.000657971
[24m | 0.000000008 | 0.000000041 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000001636 | 0.000657971
50 | 0.000000007 | 0.000000038 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000001636 | 0.000657971
F | ByL | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000101 | 0.000084571
fE | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000101 | 0.000084571
FE | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000101 | 0.000084571
[0 | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 [ 0.000000000 | 0.000000101 | 0.000084571
50 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000101 | 0.000084571
B | Ve | 0.000244879 | 0.000615038 | 0.021836460 | 0.002381466 | 0.003457959 | 0.000049865 | 0.004188248
[ | 0.106555198 | 0.001001718 | 0.029754181 | 0.002910600 | 0.003594118 | 0.000052123 | 0.004222141
A | 0.001191246 | 0.000707112 | 0.022263809 | 0.002418769 | 0.003473945 | 0.000050402 | 0.004196431
[4m | 0.001124488 | 0.001195725 | 0.028853886 | 0.002698376 | 0.003687445 | 0.000054462 | 0.004320319
$50 | 0.000244879 [ 0.000615038 | 0.021836460 | 0.002381466 | 0.003457959 | 0.000049865 | 0.004188248
B | B | 0004629525 | 0.000118236 | 0.000076419 | 0.000104555 | 0.007461993 | 0.001120415 | 0.001433219
Wi | 0.010355369 [ 0.000530539 | 0.000130786 | 0.000138918 | 0.007975965 | 0.002980494 | 0.001542341
s | 0.005412157 [ 0.000174996 | 0.000081426 | 0.000124419 | 0.007639982 | 0.001500402 | 0.001491748
[ | 0.004692955 | 0.000202631 | 0.000091841 | 0.000129511 | 0.007876122 | 0.001154433 | 0.001587999
950 | 0.004629505 | 0.000118234 | 0.000076418 | 0.000104555 | 0.007461988 | 0.001120380 | 0.001433214
F | B4 | 0.000006171 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000184
[ | 0.003291062 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000184
g | 0.000440739 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000184
] NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000184
50 | 0.043384982 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000184
Hl| E¥L | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000161
[§ | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000165
[ | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000162
] NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000168
§PS0 NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000161
i | Eve | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
[ | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
f& | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
AT NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
$50 | 0.000000105 | 0.000004135 | 0.000033876 | 0.000009171 | 0.000037778 | 0.000031965 | 0.026562953
| EYe | 0.000000000 | 0.000000002 | 0.000000188 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
[ | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
[V | 0.000000000 [ 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
[ NaN 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
$50 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.010234914 | 0.000000000 | 0.000000000
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Table 5. Time consuming for each algorithm

S I 0[S I 1]s I 2 ]S 1 3|s I 4 |s 1 5 |s 1 6

F1 | FWa 115.660 113.841 113.702 113.906 113.906 114.503 114.484
EFWA 22.689 22.536 22.517 22.504 22.519 22.579 22.535
[ 30.301 30.300 31.734 30.721 31.170 30.158 30.175
WS 32.130 31.661 31.646 31.660 32.052 32.208 32519
[ 34.296 33.567 33.629 33.692 33.692 33.707 34.098
50 33.926 34.268 34.270 34.426 34.785 34.893 34.738

F2 [ FWA 127.001 125.656 125.687 127.326 126.624 125,608 125,576
EFWA 32.426 32.457 32411 32.426 32471 32396 32410
IS 40.177 40.205 40.288 40.098 40.739 44.632 41.598
W 42323 41.224 41.443 41.082 41.740 41.129 41.098
104m 44.740 44.160 45.295 49.780 44.021 44.101 44.694
50 46.178 45.648 45.662 45.817 45.115 44.959 44.584

F3 | Fwa 119.813 118.248 118.140 115.780 115.625 115.610 116.140
EFYA 24.456 23.658 23.769 23.661 23.785 23.691 23.895
IF84S 33.191 31.224 32.174 31715 32.813 33.394 33443
W4 36.647 34.207 33.864 33.567 33.207 32.942 32.661
1m 37.490 35.396 35.443 35.489 35.474 35.708 35.990
SO 35.035 35.019 34.927 35.487 35.319 35.112 35395
B4 | FWA 121.103 121.170 120.326 120.373 120.857 120.546 120.311
EFVA 28.483 27.768 27.692 27.627 27911 28.740 28.087

1R85 40.830 38.271 37.543 37.501 37.541 37.829 37.641
WA 39.129 36.818 36.863 36.864 36.818 36.895 36.866
5] 41.224 39.787 39.817 39.818 39.896 40.193 40477

550 52.037 49.100 40.959 39.661 39.225 39.363 39.426

F5 | FWA 124.123 123.359 123.374 123.452 123.281 123.405 123518
EFWA 32.671 32.082 31.638 31.582 31.941 31.300 31.254
[ 43.386 41.044 41.825 41371 41.183 41476 41.144
W 42.271 40.056 40.097 39.989 39.976 40.021 40.177

184 44.208 42.349 42.272 42.271 42317 42366 42380
50 42.817 41.740 41.614 42.130 42.098 42.539 42.145
E6 | Fwa 163.692 137.155 137.203 137.736 137.487 137.547 137.299
EF¥A 71.494 45.803 45.785 45.785 45.819 45.803 45.849
[ 88.198 60.253 60.811 60.166 61.281 60.745 59.544

WA 87.292 60.681 60.446 60.226 60.087 60.038 60.196

[ 97.076 69.760 69.790 70.010 70.133 70.462 70.853

550 92.775 66.320 66.399 65.507 65.461 66.507 66.414
F7 | FWA 126.905 126.252 126.934 126.733 126.844 126.702 126.889
EFYA 34.801 34.179 34.753 34.177 34.192 34.238 35.691
U 47.530 46.418 45.553 45.308 45.403 45.897 45.969
WA 47.006 44.536 44.396 44.256 44.162 43.991 44.037
L4 48.148 46.178 46.193 46.255 46.430 46.757 47.116

£y 46.567 46.412 46.349 45911 46.834 46.569 47.177

F§ | FWA 21.534 21.314 21.784 21.508 21.409 21.315 21.331
EF¥A 3.189 3.172 3.157 3.172 3.172 3.156 3.173
IS 5.031 4.909 4.875 4.892 4.801 4.969 4.892
Ly 6.825 6.829 6.769 6.734 6.595 6.689 6.656
164 8.360 8.267 8.267 8.283 8.359 8.298 8298
550 3.189 3.157 3.156 3.094 3.110 3.110 3.093
F9 | Fwa 26.269 25.550 25.550 25.534 25.533 25.535 25.534
WA 8.079 7.485 7.220 7.313 7361 7376 7407
1A 19.517 18.082 17.617 17.298 17.313 17.278 17.315
WS 25.144 22457 22.439 22.424 22,426 22425 22,423
(] 24.269 21.876 21.879 21.893 22425 22.565 22237
50 3.094 3.079 3.047 3.063 3.031 3.095 3.031

Fio | Fwa 22.383 22.462 22313 22,487 22,721 21971 21.878
£F¥A 3.735 3.642 3.665 3.619 3.641 3.641 3.638
[ 5.344 5.392 5.187 5.189 5.110 5.048 5.151
WS 6.313 6.235 6.251 6.189 6.265 6.345 6.344
L 7.032 7.079 7.142 7.110 7219 7.079 7250
$PS0 3.531 3.547 3.595 3.516 3.547 3.562 3.564

FIl | FWA 116.654 114.765 115.092 114.889 114.889 115.066 115.167
EF¥A 24316 23.861 24.191 24.512 24.412 25424 24.692
[ 36.683 35.029 34.271 32224 32.598 32316 32.644
W 36.239 33.833 33.880 33.850 33.895 34.036 34.365
LA 39.787 36.989 37.036 37.177 37.176 37.301 37.271
P50 34.957 35.629 35.770 35.941 35.926 36.255 36.333
FI2 | FWA 127.795 125.861 125.983 125.687 125.689 126.000 127.813
EF¥A 32.738 32.599 32.581 32.550 32.567 32.815 32.629
[ 39.990 39.770 40.004 40.144 39.614 39.566 39.583

WS 41.654 41.719 41.774 41.568 41.567 41.678 41.597
L 44.848 43.895 43.864 43.770 43.646 43.833 44115

50 47.239 46.834 46.177 46.756 47.020 47.943 46.677

FIi | FWA 120.702 119.719 119.702 119.828 119.810 119.733 119.748
EFWA 28.441 27.753 27.754 27.784 27.833 27.956 28.081
[ 38.568 36.585 36.349 36.378 36.603 37.083 37.240
[ ™= 40.240 37.879 37.896 38427 38.128 38.115 38442
HED 43.867 41.989 41.972 42741 41.396 41.459 41.520
[ 45.052 44.256 43911 43.944 44.412 45.005 44913
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7.1. New Fitness Value
Assigning Strategy

The new fitness value is represented as the
strength of an individual combined with the
density value of the individual, whereas the
individual strength is the number of other
individuals that the individual dominates. The
fitness value is evaluated by the formula below:

flz)= 2 e, )

Hx’ € PUNP|z, - x]}‘+ (19)

% (z)

The sign > represents the Pareto domi-
nance relationship. o, (l}) is the distance of

T, to its k th nearest individual and £ 1is set

as the square root of the sample size |P U UP| .
7.2. New Mutation Strategy

MOFOA algorithm randomly selects three
individuals and generates a new individual
according to the following formula:

v, =1, + F- (:z:r2 - CL'G) (20)

In the formula, 7, 7, and r, are random

indexes of individuals. Parameter F' isthe scale
factor.

The new individual will replace the old
individual by a possibility of CR , as described
in the following formula:

v/, if rand(0,1) < CR or j =i

uw =
z!, otherwise

(e2y)

Whenever a new individual is generated,
it is compared with the old individual to find
the better fitness value. For each generation,
several individuals will be generated while the
best fitness value will be selected.

The solutions of two algorithms are listed
in Table 6 and the distribution is drawn as well
in Figure 7.

Yet, FWA can work on 0/1 knapsack prob-
lems. The 0/1 knapsack problem is an NP hard
problem and fireworks algorithm can solve this
problem. Zhang J. Q. (2011) first used FWA on
knapsack problem and obtained satisfactory
solutions.

8. A GPU-BASED PARALLEL
FIREWORKS ALGORITHM

Conventional swarm intelligence algorithms
are not designed for GPU architecture. There-
fore, they cannot make use of the tremendous
computational ability of GPUs. As aresult, they
are difficult to deal with scaled problems. To
overcome the shortcomings, many parallelized
swarm intelligence algorithms are proposed

Table 6. Compared MOFOA with MORS on a variable-rate fertilization problem. This table is

from the work of Zheng, Song, and Chen (2013).

Solution

#2(54.8,84.4,33.2)

#3(54.4,85.7,31.0)

#5(53.8, 80.3, 34.0)

#6(53.5, 84.0, 33.8)

#8(52.6, 83.5, 31.9)

#9(52.5,82.7,32.1)

#2(56.7,82.9,31.2)

#3(56.4, 82.6,31.5)

Algorithms
#1(56.2, 86.5, 32.9)
MORS #4(54.1,85.2,32.1)
#7(52.8,84.9,30.7)
#1(57.3,84.9,31.4)
MOFOA
#4(56.1,81.3,33.4)

#5(55.6, 83.6, 30.8)

#6(54.8, 85.1,30.5)
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Figure 7. The distribution of solutions in the objective space for MOFOA and MORS. This figure
is from the work of (Zheng, Song, & Chen, 2013).

E
S

to speedup conventional algorithms. Ding et
al. (Ding, Zheng, & Tan, 2013) proposed an
algorithm named GPU-based parallel fireworks
algorithm (GPU-FWA).

GPU-FWA modifies conventional fire-
works algorithm so that the algorithm is more
suitable for GPU architecture. The implemen-
tation of GPU-FWA is based on the CUDA
platform and the flowchart of GPU-FWA
implementation on CUDA is given in Figure 8.

8.1. Two New Strategies

Two new strategies are introduced based on
conventional FWA and GPU-FWA, namely
FWA search and Attract Repulse Mutation.
FWA search mimics the fireworks in the sky
and generates a shower of sparks to explore the
neighbor area. Attract repulse mutation is used

58

55 A
54

@ solutions found by MOFOA
52 @ solutions found by MORS

to keep the diversity of the fireworks swarm as
it is vital to keep the diversity of a swarm in
the optimization procedure. After the mutation
operation, some sparks are close to the best
spark, while some other sparks are distance
from the best spark:

1. FWA Search (see Algorithm 2).

In FWA Search, each firework generates
afixed number of sparks independently. It takes
a greedy strategy to decide which spark is se-
lected as the new firework. It guarantees a strong
capability of local search. In order to enhance
the local search efficiency and minimize the
overhead of communication, the greedy search
isexecuted L times before the next strategy is
triggered:
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Figure 8. The flowchart of GPU-FWA implementation on CUDA. This figure is according with

the work of (Ding, Zheng, & Tan, 2013).

Host Device
Start GPU-FWA
Initialize
parameters
Kernel call Generate
[ K ! initial
« ernel return population
L Kernel call ,J™ Evaluation initial
L Kernel return | POPulation (compute
e fitness function)
Finish GPU-
FWA and
read the
result
NO -
[—Kemﬂﬂ”—- Calculate explosion | _
e Kernel return amplitude -
|
|
Kernel call
[ m—  Shared
. ! FWA Search <—>Memw
| Kernel return
|
|4Kemel,j:all_, Attract-Repulse
l_ | Kernel return Mutation
Algorithm 2.
for i = 1 to L do
generate m sparks.
evaluate the fitness value of each sparks.

update the global best spark.
end for

find the current best spark with best fitness value.

2. Attract Repulse Mutation.

In order to increase the diversity of fire-
works, which is also to improve the global
search capability, attract repulse mutation is
applied after all fireworks have finished around
of FWA search. In attract repulse mutation, the
firework with the best fitness value is selected
as the center. Other fireworks can be either be

attracted to the center or repulsed away from
it. This process is driven by picking a scaling
factor randomly from a uniform distribution
lying in (1—6,1+6) and the parameter
varying from 0.1 to 0.9. After that, all dimen-
sions are multiplied by the factor and fireworks
are expected to fill the search space uniformly.

Figure 9 shows a general view of attract
repulse mutation. The firework with the best
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Figure 9. Attract repulse mutation. This figure comes from the work of Ding, Zheng, and Tan (201 3).

Firework
with the best
fitness value

fitness value is stationary (bottom left), while
a position that is attracted will move towards
it (top left) and another position that repels it
moves away (bottom right), thus, creating two
new positions.

The pseudo code of attract repulse mutation
is shown in Algorithm 3.

Thanks to the two new strategies and the
massively parallel computing hardware GPU,

Algorithm 3.

Current Positions

New Positions

GPU-FWA is much more effective than FWA
and PSO. Compared with FWA and PSO which
based on CPU, GPU-based GPU-FWA canreach
a speedup as high as 250 times.

8.2. Implementation of GPU-FWA

Here are the three steps for the implementation
of GPU-FWA:

Initialize the new location: :% = ;

i3
s = [fﬂ.—-é,l%—é);
for d = 1 to D do
r = rand (0, 1);
1
if r<— then
2
Tig = Tig + (Ii,d - $best.d) "8
end if

if Jl’j’d >ubd or .Ij,d <lbd then

—

—

T, = lbd +

end if
end for

T, —lbd

mod (ubd —1b, ) ;
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Thread Assignment: In the GPU-based
parallel FWA, each firework is assigned
to a group of threads (i.e. 32 continual
threads). However, not all of the threads
will necessarily be used in the computa-
tion. For instance, if the number of sparks
is 16 and the number of a group of threads
is 32, only half of the threads are used. By
using thread assignment, three advantages
are revealed. First of all, the threads in the
same group can easily interchange informa-
tion. Secondly, each group processes in the
same space and the memory can be shared.
As accessing the shared memory costs
less time than accessing global memory,
computational time can be greatly reduced.
Thirdly, any proposed algorithm can be
extended with problem scale since GPUs
will automatically dispatch block while
running;

Data Organization: For each firework, the
position and fitness value are stored in the
global memory. However, the data of sparks
are stored in shared memory. Distinguished
from interleaving configuration, both the
data of fireworks and sparks are stored in a
continuous way. This kind of organization
is easy to extend with problem scale;
Random Number Generation: Since gen-
erating high quality random number is time

consuming, the efficient CURAND library
(NVIDIA, 2012) is used for generating the
random numbers in the implementation.

8.3. Experiments of GPU-FWA

Based on a state-of-the-art commodity Fermi
GPU, extensive tests are taken on a suite of
well-known benchmark function. GPU-FWA
is compared with FWA and PSO on both run-
ning time and solution quality. Experimental
results demonstrate that GPU-FWA generally
outperforms both FWA and PSO, and enjoys a
significant speedup as high as 200x, compared to
the sequential version of FWA and PSO running
on an up-to-date CPU. GPU-FWA also enjoys
the advantages of being easy to implement
and scalable.

Aside from running on CPU, conventional
fireworks algorithm is also available to run
on GPU. Comparing conventional FWA and
GPU-based FWA, the experimental results are
shown in the Table 7. Note that the functions
below are different from the functions listed in
the experiments design section.

For GPU-based parallel fireworks algo-
rithm, the experimental results are tested on
Windows 7 Professional x64 with 4G DDR3
Memory (1333 MHz) and Intel core i5-2310
(2.9 GHz, 3.1 GHz). The GPU used in the

Table 7. Comparison of GPU-FWA, FWA and PSO on mean and standard deviation

GPU-FWA FWA PSO
Functions
No. Average Standard Average Standard Average Standard
Value Deviation Value Deviation Value Deviation
Fl1 1.31e-09 1.85e-09 7.41e+00 1.98e+01 3.81e-08 7.42e-07
F2 1.49¢-07 6.04e-07 9.91e+01 2.01e+02 3.52¢-11 1.15e-10
F3 3.46e+00 6.75¢+01 3.63e+02 7.98e+02 2.34e+04 1.84e+04
F4 1.92e+01 3.03e+00 4.01e+02 5.80e+02 1.31e+02 8.68e+02
Fs 7.02¢+00 1.36e+01 2.93e+01 2.92e+00 3.16e+02 1.11e+02
Fo -8.09¢+03 2.89¢+03 -1.03e+04 3.77e+03 -6.49¢+03 9.96e+03
F7 1.33e+00 1.78e+01 7.29e-01 1.24¢+00 1.10e+00 1.18e+00
F8 3.63¢-02 7.06e-01 7.48e+00 7.12e+00 1.83e+00 1.26e+01
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experiments is NVIDIA GeForce GTX 560 Ti
with 384 CUDA cores, while the CUDA run-
time version is 5.0. For more specific details of
parameters setting, please see reference (Ding,
Zheng, & Tan, 2013).

Both Table 7 and Table 8 are from previ-
ously published experiment results (Ding,
Zheng, & Tan, 2013). The better results are
shown in bold font. It can be seen from Table 7
and Table 8 that GPU-FWA defeated both FWA
and PSO on the 8 functions, yet the GPU-FWA
is also the quickest algorithm for calculation.

According to Table 8, it is obvious that
GPU-FWA greatly reduced the running time
compare with FWA and PSO.

For more details, please refer to the refer-
ence Ding et al (2013).

9. APPLICATIONS

Conventional fireworks algorithm and its vari-
ants are capable of dealing with optimization
problems. Many researchers used these algo-
rithms in a variety of applications.

Janecek et al. (2011) applied fireworks
algorithm to non-negative matrix factorization
(NMF). In their paper, a new iterative update
strategy for multiplicative update algorithm
based on fireworks algorithm is proposed.
Experimental results have proved that the new
iterative update strategy approach the same
approximation error as the standard version in
significantly fewer iterations. Besides, the new
strategy consumes less time.

Gao et al. (2011) applied fireworks algo-
rithm to digital filters design. After transform-
ing the design of digital filters to a constrained
optimization problem, fireworks algorithm was

able to find the global optimum. Computer
simulations shown the filters using fireworks
algorithm were better than using PSO and
improved PSO algorithms.

He et al. (2013) used fireworks algorithm
for spam detection. In their article, a new
framework to optimize the anti-spam model us-
ing swarm intelligence optimization algorithm
was proposed and experimental results show
a good performance demonstrated on corpora
PUI, PU2, PU3 and PUA.

Du (2013) solved nonlinear equations
with fireworks algorithm and compared it with
artificial bee colony (ABC) algorithm. From
the four equations listed in his paper, fireworks
algorithm was better than ABC algorithm on
three equations. Therefore, fireworks algorithm
worked very well on nonlinear equations.

9.1. FWA for NMF Computing

The Non-negative Matrix Factorization (NMF)
refers to as low-rank approximation and has
been utilized in several different areas such as
content based retrieval and data mining ap-
plications, et al. NMF can reduce storage and
runtime requirements, and also reduce redun-
dancy and noise in the data representation while
capturing the essential associations. The NMF
method requires all entries in A, W and H
to be zero or positive (Lee, & Seung 1999)
which makes the interpretation of the NMF
factors much easier. The NMF consists of re-

duced rank nonnegative factors W € R™* and
H € R" with k < min{m,n} that ap-
proximate a matrix A € R™" by WH . The

nonlinear optimization problem underlying
NMEF can generally be stated as:

Table 8. Comparison of GPU-FWA, FWA and PSO on running time and speedup

Number of Sparks FWA (s) PSO (s) GPU-FWA (s) Speedup (FWA) Speedup (PSO)
48 36.420 84.615 0.615 59.2 137.6
72 55.260 78.225 0.624 88.6 125.4
96 65.595 103.485 | 0.722 90.8 143.3
144 100.005 155.400 | 0.831 120.3 187.0
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minW,H fW, H)

= min,, , % ||A—WH |[. (22)

The error between the original data 4 and
the approximation WWH are stored in a distance
matrix D = A — WH. The schematic diagram
of coarse NMF approximation with extremely
low rank k is shown in Figure 10.

To solve this problem, the nature-inspired
optimization heuristics algorithms, genetic
algorithms (Goldberg, 1988), particle swarm
optimization (Kennedy, & Eberhart, 1995),
differential evolution (Storn, & Price 1995),
fish school search (Filho, de Lima Neto, Lins,
Nascimento, & Lima, 2009), fireworks algo-
rithm (Tan, & Zhu, 2010) are all used.

The parameters in the algorithms are set
as following:

*  GA: Mutation rate = 0.5; selection rate

=0.65;

*  PSO: Following (Bratton, & Kennedy,
2007);

* DE: Crossover probability set to upper
limit 1;

- FSS SUPy i =1
step,, J fnal = 0.001, V[/;We =10;

*  FWA: The number of first selected loca-
tion is set as 10.

The experiment results of FWA on NMF
computing are shown below. Figure 11 shows
the convergence curves of accuracy while
Figure 12 provides the running time for the six
algorithms. It can be seen from the two figures
that FWA works well on NMF computing.

Pseudo code for the iterative optimization
for the Multiplicative Update (MU) algorithm

Figure 10. Scheme of coarse NMF approximation with extremely low rank k. This figure is firstly
published in the work of Janecek, and Tan (2011).

Original data
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Figure 11. (a) Convergence curves of the accuracy when updating only the row of W, m=2, ¢=20,
k=2 (b) Convergence curves of the accuracy when updating only the row of W, m=2, ¢=20, k=5.
This figure is according to the work of Janecek, and Tan (2011).
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Figure 12. The proportion of running time to achieve the same accuracy. Set the running time
of Basic MU as 1 and updating only the row of W, m=2, ¢c=20, k=2. This figure comes from the
work of Janecek, and Tan (2011).
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is listed in Algorithm 4. The methods used in  the smaller the parameter k is, the more ad-
this algorithm are explained below. Here m is  vantages the heuristics algorithms gain.
2 while c is set as 20 which denotes the num-
ber of rows and/or columns that are optimized 9.2. FWA on Design
in the current iteration. Ac: The value of cis  Of Digital Filters
decreased by Ac in each iteration.

FWA performs just the same as the other  To design a digital filter, a multi-parameter
heuristics algorithms while all of them get bet-  optimization problem mustbe solved. However,
ter results compared with Basic MU method, the existing methods, such as particle swarm
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Algorithm 4.

For T = 1 to maxIter dimensions do

W=W-(AH")/(WHH" +¢)
H=H-(W'A)/(W'WH +e)
if t < m then

i

IX W=IX_ W(:c)

W =

w;‘;..-w’r]

m

i

IX H=IX_ H(l:c)

H = b, ]

n
end if
end for

VjEIX_H, use SIO to find h; that minimized ”a; —Wh]c

dl.r is the ith row vector of D =A—-WH

[Val, IX_W] = sort [norm (dT ) ,descend']
Vi e IX_W , use SIO to find w,' that minimized “a: 7wZHO“

dl.r is the ith row vector of D =A—-WH

[Val, X _H] = sort [norm (dc)’ ,descend']

optimization (PSO), quantum-behaved particle
swarm optimization (QPSO) and adaptive
quantum-behaved particle swarm optimization
(AQPSO) cannot find the optimal solution
effectively. A cultural fireworks algorithm is
proposed for digital filter design.

In the finite impulse response (FIR) and
infinite impulse response (IIR) digital filters,
cultural fireworks algorithm is used to design
ajoint objective function. The goal for cultural
fireworks algorithm is to find the minimal value
of the following function:

aF + PE ,x € st
fay=] o TP

N 6[aEF + ﬁEI],:v & st 23)

f(z) is the objective function while «
and (3 are Boolean parameters. For FIR digital
filters, & equals to 1 and 3 means to 0, while
in IIR digital filters, verse vice. ¢ is set to be

larger than 1, whereas E, and F, stands for

FIR and IIR filters separately. The constraint
condition of vector z is represented as s.t.
Table 9 shows the comparison of four algorithms
in FIR filter design.

Figure 13 shows the flow chart of digital
filter based on cultural fireworks algorithm
(CFWA).

Experimental results show that the pro-
posed cultural fireworks algorithm has a faster
convergence and better optimization accuracy
than particle swarm optimization, quantum-be-
haved particle swarm optimization and adaptive
quantum-behaved particle swarm optimization
algorithms. Therefore, cultural fireworks al-
gorithm is effective and useful on digital filter
design. For more experimental results, please
refer to reference Gao, and Diao (2011).

9.3. FWA on Spam Detection

In previous research, it is simple to set the
parameters manually in the anti-spam process.
However, the manually settings may cause
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Table 9. Comparison of four algorithms on FIR filter. This figure is taken from the work of Gao,

and Diao (2011).
Low-Pass Filter
Objective Value
PSO QPSO AQPSO CFWA
Max 1.8505¢-3 8.8845¢-9 7.6096e-9 8.8818e-16
Min 7.5908e-5 6.6311e-12 1.1427e-10 0
Mean 3.9566¢-4 5.8634e-10 1.2362¢-9 2.5535e-16
Variance value 8.6053¢-8 1.3445¢-18 1.1087¢-18 1.1330e-32

Figure 13. The flow chart of design digital filters by cultural fireworks algorithm. This figure is
first published in the work of Gao, and Diao (2011).

( Initialilzation )

> Select g solutions randomly

.

Evaluate the performance

I

Choose p solutions and set off fireworks

.

Evaluate and select the top g sparks

No

Meet terminal
condition?

( Output the optimal value >

several problems. First of all, when setting the
parameters without prior knowledge, people
have to test many groups of parameters to find
the bestone. Secondly, the parameters of differ-
ent datasets are varied. There are no universal
parameters.

To solve the problem of setting parameters,
anew framework to find the proper parameters

in anti-spam model with fireworks algorithm is
proposed. In the anti-spam model, the error rate
represents the quality of the model. To make
the error rate lower, an optimal vector:

* *

017027”.’Cm >

P =< Fl*,p;,...,p

n’
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is suggested, which contains two parts. The first
part Ff to F: means the feature calculation

relevant parameters and the second part C: to

C; stands for the classifier relevant parameters.
CF(P) represents the cost function and it is

calculated as:

CF(P) = Err(P) (24)

where Err(P) is the classification error of
10-fold cross-validation on the training set.
Different feature extraction methods may need
different parameters. In local-concentration
model, the selection rate m helps to select the
top m percentterms in aterm set with descend-
ing importance. The proclivity threshold 6
equals to the minimal difference of a term’s
frequency in non-spam emails minus a term’s
frequency in spam emails. The parameter NV
is the number of sliding windows.

The flowchart of using fireworks algorithm
to optimize parameters in local-concentration
model for spam detection is given in Figure 14.

Fireworks algorithm is used to optimize
the parameters in the model and there are two
strategies to build the model. The first strategy
is to derive a small dataset from the training
set. The small dataset is used as a validation set
and do not participate in the training process.
After building a model on the training set, the
model is validated on the small dataset. The
best model is chosen before apply to the test
set. The second strategy is to divide the train-
ing set into ten even parts and each part is used
only once as the validation set. Therefore, ten
models are built and the best model is applied
to the test set.

Table 10 shows the experimental results of
the comparison between fireworks algorithm
with two strategies each with local concentra-
tion (LC) method.

Tables 10 and 11 are from the work of He,
Mi, and Tan (2013). The details of evaluation
criteria can be found in He, Mi, and Tan (2013).

Experimental results show that the fire-
works algorithm is better than local concentrate
method on corpora PU1, PU2, PU3 and PUA.

9.4. FWA on Non-Linear Equations

In the engineering and scientific fields, many
problems can be transferred to non-linear equa-
tions. Traditional methods use derivative of the
object function to solve non-linear equations.
However, traditional methods are sensitive
to initial values and convergent in local area.
Thus, swarm intelligent algorithms are used
to solve non-linear equations. Since artificial
bee colony algorithm cannot achieve the best
optimal result, fireworks algorithm is used to
deal with non-linear equations.

Four non-linear equations from article Du
(2013) are listed below:

Equation 1:

flz)=2"-22-5=0,z¢ [—4,4]

Equation 2:

f(z)=2"-32" 62+ 82 € [0,2]
Equation 3:

z. +0.75=0

476

1 2
f(@) =2z +Zm§x
£(x) =z, +0.405¢" ) —1.405 = 0
1
fi(r) =2, — Zx4:1:6 +125=0
J(2)= o, —0.605¢" ) —0.305 = 0
1
fi(x) =x, —5372:136 +15=0
f@)=2,—z2, +15=0

where z, varies from -2 to 2 and the optimal
liesin (-1, 1,-1, 1, -1, DT:
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Figure 14. The flowchart of parameter optimization in a local-concentration model for spam
detection using fireworks algorithm. This figure is first published in the work of (He, Mi, & Tan,
2013).

Select N position for initial fireworks
<FI"F'2,...’F q’c2’...’C >

n> m

A

Calculate the number of sparks for each fireworks

'

Calculate the amplitude for each sparks

!

Generate explosion sparks

|

Generate Gaussian sparks

{

Select N sparks for next generation

No

Meet terminal
condition?

C Output the optimal value >

Table 10. Comparison of fireworks algorithm with the first strategy and local concentration method

Corpus Methods Precision (%) Recall (%) Accuracy (%) F -Measure
LC 94.85 95.63 95.87 95.21
PUI1
FWA 96.55 95.21 96.33 95.81
LC 95.74 77.86 94.79 85.16
PU2
FWA 95.15 80.71 95.35 86.65
LC 96.68 94.34 96.03 95.45
PU3
FWA 95.81 95.71 96.18 95.69
LC 95.60 94.56 94.91 94.94
PU4
FWA 96.63 94.56 95.53 95.49
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Table 11. Comparison of fireworks algorithm with the second strategy and local concentration

method
Corpus Methods Precision (%) Recall (%) Accuracy (%) F -Measure
UL LC 100.00 92.36 96.67 95.88
FWA 100.00 96.64 98.57 98.22
LC 100.00 64.00 90.71 74.62
PU2
FWA 100.00 94.17 98.57 96.57
LC 97.84 91.30 95.37 94.34
PU3
FWA 98.25 95.91 97.56 97.02
LC 95.78 90.72 93.64 92.68
PU4
FWA 98.75 96.44 97.73 97.42
Equation 4: Step 1: Randomly generates n individuals at

Ty T _ _
T+, 5:213:2:173 85 =0
3 T T _

T, — 1, T, 60=0

Ty T I,
'tz —z, 2=0

where the ranges of z, is from 0 to 10 and the
best solution is (4, 3, 1)T.

Note that the square of each equation is
the objective function. The steps of fireworks
algorithm is as follows:

initial;

Step 2: Generate common sparks and Gaussian
sparks the same as fireworks algorithm;

Step 3: Choose the best individual for next
generation and the next (N — 1) individu-
als are choose the same like fireworks
algorithm;

Step 4: If the terminal condition is met, stop
the procedure. If not, go back to step 2.

The experimental result is listed in Table
12. The best results are in bold font.

Table 12. Comparison of ABC and FWA on four equations. The table comes from the work of

Du (2013).

Equation No. Variables ABC FWA
Equation 1 X 2.09455448 2.09465148
Equation 2 X 1.14324234 0.98973242
Equation 3 X1 -1.000343 -1
Equation 3 X2 0.844234 1
Equation 3 X3 -1.64535 -1
Equation 3 X4 1.031231 1
Equation 3 X5 -0.98232 -1
Equation 3 X6 0.9932432 1
Equation 4 X1 4.000013 4
Equation 4 X2 3.000029 3
Equation 4 X3 0.962344 1
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The result of artificial bee colony (ABC)
algorithmis fromthe work of ZhangJ. L. (2012).

10. CONCLUSION AND
FUTURE DIRECTIONS

Fireworks algorithm provides a brand new
way to solve complex problems. The current
fireworks algorithm and its applications prove
that it can solve many optimization problems
effectively. Furthermore, fireworks algorithm
can be parallelized and thus suitable to deal with
big data problems. No matter for theoretical or
appliedresearches, fireworks algorithmis worth
researching and can bring great scientific and
economic benefits.

However, there are still some disadvan-
tages in fireworks algorithm. Firstly, fireworks
algorithm simulates behaviors of biomes and
lack of necessary mathematical foundation.
For example, there is no proof of convergence
in fireworks algorithm. Secondly, most of the
parameters in fireworks algorithm are set by
experience and the parameters largely depend
on specific problems. Thirdly, not many appli-
cations of fireworks algorithm are currently in
use. Furthermore, it is crucial to observe each
algorithm in real world problems, rather than
strictly theoretical situations in order to fully
appreciate its benefits.

Fireworks algorithm has been greatly de-
veloped, but still it is not perfect. The direction
of its future development can be described as
follows. First of all, fireworks algorithm needs
its mathematical foundation and theoretical
analysis. Secondly, the selection of the control
parameters of fireworks algorithm often relies
on experience. So how to choose the mostly
appropriate parameters needs a theoretical
guidance. Thirdly, the prospects of fireworks
algorithm applications are still at infancy and
require further exploration. Fourthly, as an
open source algorithm, fireworks algorithm can
learn from other algorithms. How to improve
fireworks algorithm is also a useful research

direction. Last but certainly not least, the study
of GPU to accelerate fireworks algorithm is at
its initial stage and will attract more and more
researchers who are devoted to apply the FWA
to real world problems.
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