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Abstract— Fireworks Algorithm (FWA) is a new proposed
optimization technique based on swarm intelligence. In FWA,
the algorithm generates the explosion sparks and Gaussian
mutation sparks by the explosion operator and Gaussian
mutation operator to search the global optimum in the problem
space. FWA has been applied in various fields of practical
optimization problems and gains great success. However, its
convergence property has not been analyzed since it has been
provided. Same as other swarm intelligence (SI) algorithms,
the optimization process of FWA is able to be considered
as a Markov process. In this paper, a Markov stochastic
process on FWA has been defined, and is used to prove the
global convergence of FWA while analyzing its time complexity.
In addition, the computation of the approximation region of
expected convergence time of FWA has also been given.

I. INTRODUCTION

DEVELOPED by Tan Y. and Zhu Y. in 2010, Fireworks
Algorithm (FWA) simulates the process of fireworks

explosion in the night sky to search the optimal solution of
optimization problem [1]. It is a new swarm intelligence (SI)
algorithm based optimization techniques, which generates the
explosion sparks and Gaussian mutation sparks by the explo-
sion operator and Gaussian mutation operator to search the
problem space. Compared to the other SI algorithms, FWA
has distinctive advantages in solving optimization problems
while presenting a different search manner.

Since its first introduction, FWA has shown its significance
and superiority in dealing with the optimization problems
and has been seen many improvements and applications
with practical optimization problems [1]- [2]. Andreas and
Tan used FWA to compute the initialization of non-negative
matrix factorization and gains a little advantages compared
to SPSO, FSS, GA [2], [3]. Pie et al. investigated the
influences of approximation approaches on accelerating the
FWA search by elite strategy [4]. In [4], they compared
the approximation models, sampling methods, and sampling
number on the FWA acceleration performance, and the
random sampling method with two-degree polynomial model
gains better performance on the benchmark functions. Gao
Hongyuan and Ming Diao designed a cultural FWA which is
used to search optimal value of filter design parameters with
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parallel search. Simulation results have shown that FIR and
IIR digital filters based on the cultural FWA are superior to
previous filters based on the other SI algorithms in terms of
convergence speed and optimization results [5]. Zheng Yujun
et.al proposed a hybrid multi objective fireworks optimization
algorithm (MOFOA) for oil crop fertilization [6], which
takes into consideration not only crop yield and quality
but also energy consumption and environmental effects.
Liu Jianhua et al. [7] provided a kind of new method to
calculate the number of explosion sparks and amplitudes of
fireworks explosion on FWA. The modified FWA improves
the performance compared with original FWA. He Wenrui
et al. [8] proposed a new framework that optimizes anti-
spam model with heuristic swarm intelligence optimization
algorithms. This framework could integrate various classifiers
and feature extraction methods, which consider the spam
detection problem as an optimization process which aims
to achieve the lower error rate.

Though many researcher have developed the original al-
gorithm and applications, FWA has never been analyzed
about its convergence and time complexity since it has
been provided. Same as the other SI algorithms, FWA can
be considered as a kind of population-based Evolutionary
Algorithms (EAs). The use of population has been regarded
as one of the key features of EAs. EAs have been shown to
be very effective in solving practical problems, yet many
important theoretical issues of them are not clear. The
expected first hitting time and Markov Stochastic Process are
two important theoretical issues of evolutionary algorithms,
since it implies the average computational time complexity.
In the developments of convergence analysis of EAs, many
researchers have developed this work. He Jun, and Xin Yao
[9] used first hitting time and Markov Modal to compares
(1 + 1) EAs to (N + N) EAs theoretically which is shown
that a population can have a drastic impact on an EA’s
average computation time, changing an exponential time to
a polynomial time (in the input size) in some cases. It is
also shown that the first hitting probability can be improved
by introducing a population. Yu Yang and Zhihua Zhou
[10] established a bridge between the expected first hitting
time and another important theoretical issue and proposed
a new general approach to estimating the expected first
hitting time. Based on this approach, they analyzed EAs with
different configurations, including three mutation operators,
with/without population, a recombination operator and a
time variant mutation operator, on a hard problem. Huang
Han et al [11] analyzed the ACO convergence time based
on the absorbing Markov chain model. They presented a
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Algorithm 1 Conventional Fireworks Algorithm.
1: Select n positions for initial fireworks;
2: Calculate the number of sparks for each firework;
3: Calculate the amplitude of explosion for each firework;
4: Generate the sparks of explosion for each firework;
5: Generate the sparks of Gaussian mutation for each

firework;
6: Select n locations for next generation fireworks
7: If condition does not meet, algorithm turns to 2
8: Output results

general result for the estimation of convergence time to reveal
the relationship between convergence time and pheromone
rate. Chen Tianshi et al [12] studied the computational
time complexity of a simple EDA in order to gain more
insight into EDAs complexity. They proved theoretically that
the univariate marginal distribution algorithm(UMDA) with
margins can solve the BVLeadingOnes problem efficiently.
Yi Shengqiu et al [13] focused on the theoretical analysis
of quantum-inspired evolutionary algorithms with Hϵ gate
which is a modified version of the rotation gate. Applying
the theory and analytical techniques in non-homogeneous
Markov chains, they obtained the conclusion that quantum-
inspired evolutionary algorithms converge in probability un-
der some mild conditions. Ding Lixin and Jinghu Yu [14]
introduced some techniques for the analysis of time complex-
ity of evolutionary algorithms (EAs) based on a finite search
space. The Markov property and the decomposition of a
matrix are employed for the exact analytic expressions of the
mean first hitting times that EAs reach the optimal solutions
(FHT-OS). Huang Han et al [15] used an absorbing Markov
process to analyze the time complexity of Evolutionary
Programming and ant colony algorithm, which constructs
some theory of analysis on swarm intelligence.

Same as other evolutionary algorithms, FWA can be con-
sidered as the Markov stochastic process to prove its global
convergence and compute the expected time. This paper will
define a Markov stochastic process for FWA and develop its
theory model. Using the conceptions and theorems on FWA,
we prove its global convergence and derive the approximate
region of expected convergence time.

The paper is organized as follows: Section II introduces the
FWA ; the Markov Modal of FWA is constructed in Section
III. Section IV analyzes and proves the global convergence
of FWA. The Section V gives the basic theory of time
complexity. The time complexity of FWA is analyzed in
Section VI. The conclusion is drawn in Section VI.

II. FIREWORKS ALGORITHM

For the model of Fireworks Algorithm, the sparks and
fireworks are the potential solutions for an optimization prob-
lem. In term of the literatures [1] and [7], the procedure of
conventional Firework Algorithm can be seen in Algorithm.1.

For a minimal optimization problem, according to the
idea of FWA, a good firework denotes a position with the

better fitness which means that the firework may be close
to the optimal/local minimal point. Therefore, the good
firework will generate bigger number of sparks in the smaller
amplitude of explosion. On the contrast, the bad firework will
generate smaller number of sparks in the larger amplitude of
explosion. For each firework, the number of explosion sparks
and amplitude of explosion needs to be calculated before it
explodes, which formulas of each dimension is as follows:

• Calculating the Number of Sparks which is operated in
step 2 of Algorithm 1:

Si = m
ymax − f(xi) + τ

n
∑

i=1

(ymax − f(xi)) + τ
(1)

mi =







round(a ·m) if si < a ·m
round(b ·m) if si > b ·m
round(Si) otherwise

(2)

where mi is the number of the sparks of the ith firework
explosion, m is the total number of sparks generated
by the n fireworks. ymax is the maximum value of the
objective function among the n fireworks, and τ is a
small constant which is utilized to avoid zero-division-
error. The constant a and b are the const parameters.

• Calculating the Amplitude of Explosion which is oper-
ated in step 3 of Algorithm 1:

Ai = Ã
f(xi)− ymin + τ

n
∑

i=1

(f(xi)− ymin) + τ
(3)

Where Ã denotes the maximum explosion amplitude
and ymin is the minimum value of the objective function
among n fireworks. Ai is the exploding region of ith
firework.

• In original FWA, it selects n location for next gen-
eration fireworks in each iteration. The best firework
or spark needs to be selected as the first location of
next generation fireworks, and the other locations of
next generation fireworks are selected by the following
Eq.(4) and Eq.(5), which are computed in step 6 of
Algorithm 1:

R(xi) =
∑

j∈K

d(xi, xj) =
∑

j∈K

||xi − xj || (4)

p(xi) =
R(xi)

∑

j∈K R(xi)
(5)

where the xi is the location of ith sparks or firework,
d(xi, xj) is the distance between two sparks or fire-
works. K is the set of sparks and firework generated in
current generation. The p(xi) is the probability which
the ith firework or spark is selected as the firework of
next generation.
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III. THE STOCHASTIC MODAL OF FIREWORKS
ALGORITHM

It is assumed that FWA search is undertaken for the
essential infimum which is defined as Eq.(6).

ψ = inf(t : ν[n ∈ S|f(z) < t] > 0) (6)

where ν[A] is the Lebesgue measure on the set A. The
above equation means that there must be more than one
point in a subset of search space yielding function values
arbitrarily close to ψ, so that ψ is the infimum of the function
values from nonzero Lebesgue measurable set, and then the
stochastic process of Fireworks Algorithm is established as
follows.

Definition 1: {ξ(t)}∞t=0 is named as the stochastic pro-
cess of Fireworks Algorithm, where ξ(t) = {F (t), T (t)}
which F (t) = {F1(t), F2(t), . . . , Fn(t)} denotes the position
of n fireworks in the problem space in the step t; And
T (t) = {A(t), S(t)}, A(t) = {A1(t), A2(t), . . . , An(t)}
denotes the explosion amplitude of n fireworks, S(t) =
{s1(t), s2(t), . . . , sn(t)} denotes the explosion sparks num-
ber of n fireworks.

Now, an optimality region can be defined as follow.
Definition 2: Rε = {x ∈ S|f(x) − f(x∗) < ε, ε > 0}

is named as the optimal region of function f(x), where
x∗ represents the optimal solution of function f(x) in the
problem space.

In term of the Definition 2, if the algorithm finds a point
in the optimal region, an acceptable approximation to the
global minimum of the function has been acquired by the
algorithm. According to the above definition of infimun,ψ,
the Lebesgue measure of optimal solution space must be no
zero, which means that v(Rε) > 0 is held.

Definition 3: The optimal state of FWA is defined as
ξ∗(t) = {F ∗(t), T (t)}, where there exist Fi(t) ∈ Rε and
Fi(t) ∈ F ∗(t), i ∈ 1, 2, . . . , n.

The definition 3 means that the best firework in the optimal
state ξ∗(t) of FWA is in the optimal region Rε. So here exist
Fi(t) ∈ R and |f(Fi(t))− f(x∗)| < ε, x∗ ∈ Rε .

Lemma 1: The stochastic process of FWA, v{ξ(t)}∞t=0, is
Markov stochastic process.

proof: {ξ(t)}∞t=00 is the stochastic process of discrete
times, because the state ξ(t) = {F (t), T (t)} is decided
by the {F (t − 1), T (t − 1)}, so the probability P{ξ(t +
1)|ξ(1), ξ(2), . . . , ξ(t)} = P{ξ(t + 1)|ξ(t)}, which means
that the probability of (t+1)th state occurring is not related
to the probability of tth state occurring. Therefore, the
{ξ(t)}∞t=0 is Markov stochastic process.

The proof is completed.
Definition 4: (optimal state space) Given Y is represented

as the state space of FWA’s state ξ(t) and Y ∗ ⊂ Y . Y ∗ is
named as the optimal state space if there exists a solution
s∗ ∈ F ∗ such that s∗ ∈ Rε for any state ξ(t)∗ = {F ∗, T} ∈
Y .

In the term of the above definition, it means that |f(s∗)−
f(x∗)| < ε for any x∗ ∈ F ∗. If the state of the Fireworks
Algorithm can arrive at the optimal state, there exists a

firework in the fireworks which stays in the optimal region
Rε and the optimal solution of problem has been acquired by
the Fireworks Algorithm. After this time, the optimal solution
must be in the optimal region forever.

Definition 5: Given a Markov stochastic process {ξ(t)}∞t=0

and optimal state space Y ∗⊂Y , if {ξ(t)}∞t=0 s.t. P{ξ(t+1) ̸∈
Y ∗|ξ(t) ∈ Y ∗} = 0, {ξ(t)}∞t=0 is named as an absorbing
Markov process.

Lemma 2: The stochastic process of FWA,{ξ(t)}∞t=0,is an
absorbing Markov stochastic process.

proof: According to the lemma 1, the stochastic process of
FWA, {ξ(t)}∞t=0, is a Markov stochastic process. If F1(t) ∈
F (t) stays in the optimal solution space Rε, the state ξ(t) =
{F (t), T (t)} must belong to the optimal state space Y ∗.
Because F1(t) is the best location in all fireworks of FWA,
f(F1(t+ 1)) is not worse than f(F1(t)) in term of the step
6 of FWA. So, the state ξ(t+1) must belong to the optimal
state space Y ∗. Therefore, P{ξ(t+1) ̸∈ Y ∗|ξ(t) ∈ Y ∗} = 0,
the stochastic process of FWA, {ξ(t)}∞t=0, is an absorbing
Markov process.

The proof is completed.

IV. THE GLOBAL CONVERGENCE OF FIREWORKS
ALGORITHM

In this section, the definition of convergence is given,
which is used to analyze the convergence of Fireworks
Algorithm.

Definition 6 :(convergence) Given an absorbing Markov
process {ξ(t)}∞t=0 = {F (t), T (t)} and an optimal state space
Y ∗ ⊂ Y, λ(t) = P{ξ(t) ∈ Y ∗} denotes the probability that
the stochastic state arrives at the optimal state in step t, if
limt→∞λ(t) = 1, {ξ(t)}∞t=0 is convergence.

In term of above definition, the convergence of Markov
stochastic process depends on the probability of P{ξ(t) ∈
Y ∗}. If it converges to 1 with the time t, the Markov process
{ξ(t)}∞t=0 will be convergence.

Theorem 1: Given an absorbing Markov process {ξ(t)}∞t=0

of FWA and optimal state space Y ∗⊂Y . If P{ξ(t)∈Y ∗|ξ(t−
1) ̸∈ Y ∗} ≥ d ≥ 0 for any t and P{ξ(t) ∈ Y ∗|ξ(t − 1) ∈
Y ∗} = 1, then P{ξ(t) ∈ Y ∗} ≥ 1− (1− d)t.

proof: Let t = 1, P{ξ(1) ∈ Y ∗}

= P{ξ(1) ∈ Y ∗|ξ(0) ∈ Y ∗} · P{ξ(0) ∈ Y ∗}

+P{ξ(1) ∈ Y ∗|ξ(0) ̸∈ Y ∗} · P{ξ(0) ̸∈ Y ∗}

≥ P{ξ(0) ∈ Y ∗}+ d · P{ξ(0) ̸∈ Y ∗}

= P{ξ(0) ∈ Y ∗}+ d · (1− P{ξ(0) ∈ Y ∗})

= d+ (1− d) · P{ξ(0) ∈ Y ∗}

Because (1− d) ≥ 0,so d+ (1− d) · P{ξ(0) ∈ Y ∗} ≥ d,
then P{ξ(1) ∈ Y ∗} ≥ d = 1− (1− d)1;

Now, it is assumed that the P{ξ(t) ∈ Y ∗} ≥ 1− (1− d)t
is held for any t < k − 1, and then for t = k,

P{ξ(k) ∈ Y ∗} = P{ξ(k) ∈ Y ∗|ξ(k − 1) ∈ Y ∗}

·P{ξ(k − 1) ∈ Y ∗}+ P{ξ(k) ∈ Y ∗ |ξ(k − 1) ̸∈ Y ∗}
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·P{ξ(k − 1) ̸∈ Y ∗}

= P{ξ(k − 1) ∈ Y ∗}+ P{ξ(k) ∈ Y ∗|ξ(k − 1) ̸∈ Y ∗}

·P{ξ(k − 1) ̸∈ Y ∗}

≥ P{ξ(k − 1) ∈ Y ∗}+ d · (1− P{ξ(k − 1) ∈ Y ∗})

= d+ (1− d) · P{ξ(k − 1) ∈ Y ∗}

≥ d+ (1− d) · (1− (1− d)k−1) = 1− (1− d)k

Consequently, P{ξ(t) ∈ Y ∗} ≥ 1− (1− d)t is true for any
t ≥ 1.

The proof is completed
According to the step 5 of Algorithm 1 on FWA, FWA

has the operation of mutation. It is assumed for simplicity
that the operation is the stochastic mutation.

Theorem 2: Given FWA an absorb state Markov pro-
cess {ξ(t)}∞t=0 and optimal state space Y ∗ ∈ Y , then
limt→∞λ(t) = 1 which means that ξ(t)∞t=0 will converge
to the optimal state Y ∗.

Proof : In term of the step 5 of FWA in Algorithm 1, FWA
can provide the mutation operator, so the probability that
the firework of FWA arriving optimal region Rε from non
optimal region by mutation operator is denoted as Pmu(t).
It is expressed as follow:

Pmu =
ν(Rε) · n
ν(S)

.

where ν(S) is the Lebegue measure value of the problem
space S, n is the number of fireworks.

Because ν(Rε) > 0, so Pmu > 0.
In term of the stochastic Markov process {ξ(t)}∞t=0 of

FWA, it holds that

λ(t) = P{ξ(t) ∈ Y ∗|ξ(t− 1) ̸∈ Y ∗} = Pmu(t) + Pex(t).

where Pex(t) denotes the probability of the fireworks of FWA
arriving the optimal region Rε by the firework’s explosion
in FWA.

So, P{ξ(t) ∈ Y ∗|ξ(t− 1) ∈ Y ∗} ≥ P (mu) > 0.
Therefore, because the Markov process {ξ(t)}∞t=0 of FWA

is an absorbing Markov process while the condition of the
theorem 1 is held, the following equation can be got.

P{ξ(t) ∈ Y ∗} = 1− (1− Pmu(t))
t.

So, limtt→∞P{ξ(t) ∈ Y ∗} = 1.

Consequently, the Markov process {ξ(t)}∞t=0 of FWA will
converge to the optimal state.

The proof is completed.

V. THE BASIC THEORY OF TIME COMPLEXITY ON
FIREWORKS ALGORITHM

On the analysis of evolution computation based on Marko
Model, Huang Han and Hao Zhifeng have done for the
evolutionary programming [15] and ant colony optimization
[16]. In this section, the definitions of some conception and
theorems on FWA are as follows which are referred to the
literatures [15] and [16].

Definition 6: (expected convergence time) Given FWA an
absorbing state Markov process {ξ(t)}∞t=0 and optimal state
space Y ∗ ⊂ Y , if γ is a stochastic nonnegative value such
that: if t ≥ γ, P{ξ(t+1) ∈ Y ∗} = 1; if 0 ≤ t ≤ γ, P{ξ(t+
1) ̸∈ Y ∗} < 1, then the γ is named as the convergence time
of FWA. The expected value Eγ is named as the expected
convergence time of FWA.

The expected convergence time describes the expected
time of arriving the global optimal solution with probability
1 at the first time. The smaller the expected value Eγ is,
the faster the convergence of FWA is and the more effective
FWA is. However,it can also use the expected first hitting
time(EFHT) as a index of convergence time which is given
as follows [9].

Definition 7:(expected first hitting time) Given FWA an
absorbing state Markov process {ξ(t)}∞t=0 and optimal state
space Y ∗ ⊂ Y ; µ is a stochastic value such that: if t = µ,
ξ(t) ̸∈ Y ∗; if 0 ≤ t ≤ µ, ξ(t) ̸∈ Y ∗. The expected value Eµ
is named as Expected First Hitting Time.

The following theorem give the method to compute the
Expected First Hitting Time,Eλ.

Theorem 3:Given FWA an absorbing state Markov process
ξ(t)

∞
t=0 and optimal state space Y ∗ ⊂ Y . If λ(t) = P{ξ(t) ∈

Y ∗} and limtt→∞λ(t) = 1, the Expected Convergence Time
is Eγ = Σ∞t=0(1− λ(t)).

Proof :

λ(t) = P{ξ(t) ∈ Y ∗} = P{µ ≤ t}

⇒ λ(t)− λ(t− 1) = P{µ ≤ t} − P{µ ≤ t− 1}

⇒ P{µ = t} = λ(t)− λ(t− 1),

then

Eµ = 0 · P{µ = 0}+Σ∞t=0t · P{µ = t},

Eµ = Σ∞t=0t · (λ(t)− λ(t− 1))

= λ(1)− λ(0)) + 2 · (λ(2)− λ(1)) + . . .

+t · (λ(t)− λ(t− 1)) + . . .

= Σ∞i=1(λ(t)− λ(t− 1)) + Σ∞i=2(λ(t)− λ(t− 1))

+ . . .+Σ∞i=t(λ(t)− λ(t− 1)) + . . .

= (limt→∞λ(t)− λ(1)) + (limt→∞λ(t)− λ(2))

+ . . .+ (limt→∞λ(t)− λ(t− 1)) + . . .

= Σ∞i=1(limtt→∞λ(t)− λ(t− 1)) = Σ∞i=1(1− λ(t− 1))

= Σ∞i=1(1− λ(t))
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So,

Eγ = Eµ = Σ∞i=1(1− λ(t)).

The proof is completed
According to the theorem 1, it is difficult to compute the

expected convergence time Eγ becouse it is hard to acquire
the value of λ(t),. So, its estimation is given as follows. The
proof of following lemmas theorems can been referred to
[16].

Lemma 3: Given two stochastic nonnegative variable, µ
and ν, and Du(.) and Dv(.) denote the distribution functions
of µ and ν,respectively. The expected value of µ and ν can
hold Eµ < Eν if Du(.) ≥ Dv(.) for t = 0, 1, 2, . . ..

Theorem 4: Given FWA an absorbing state Markov process
{ξ(t)}∞t=0 and optimal state space Y ∗ ⊂ Y . If λ(t) =
P{ξ(t) ∈ Y ∗} such that 0 ≤ Dl(t) ≤ λ(t) ≤ Dh(t) ≤
1(∀t = 0, 1, 2, . . .) and limtt→∞λ(t) = 1, then:

Σ∞i=1(1−Dl(t)) ≤ Eγ ≤ Σ∞i=1(1−Dt(t)).

Theorem 5: Given FWA an absorbing state Markov process
{ξ(t)}∞t=0 and optimal state space Y ∗ ⊂ Y ; if λ(t) =
P{ξ(t) ∈ Y ∗} and 0 ≤ a(t) ≤ λ(t) ≤ b(t), Σ∞l=1[(1 −
λ(0))Π∞i=0(1− a(t))] ≤ Eγ ≤ Σ∞t=0[(1 − λ(0))Π∞i=1(1 −
a(t))].

Corollary 1: Given FWA an absorbing state Markov
process {ξ(t)}∞t=0 and optimal state space Y ∗ ⊂ Y ; and
λ(t) = P{ξ(t) ∈ Y ∗}. If a ≤ P{ξ(t + 1) ∈ Y ∗|ξ(t + 1) ̸∈
Y ∗} ≤ b(a, b > 0) and limt→∞λ(t) = 1, then the expected
convergence time Eγ of FWA is such that:

b−1[1− λ(0)] ≤ Eγ ≤ a−1[1− λ(0)].

The above corollary and theorems indicate that the formula
P{ξ(t) ∈ Y ∗|ξ(t − 1) ̸∈ Y ∗} can give description of the
probability of arriving at the optimal state from the non
optimal state. The estimation of value range of Eλ is able to
be computed by the range of value of P{ξ(t) ∈ Y ∗|ξ(t−1) ̸∈
Y ∗}.

VI. THE ANALYSIS OF TIME COMPLEXITY ON
FIREWORKS ALGORITHM

The time complexity of FWA is used to define the expected
convergence time Eλ. In term of the Corollary 1 in previous
section, it is mainly related to the probability of the FWA
state arriving optimal region Rε from non optimal region
which is the formula, P{ξ(t + 1) ∈ Y ∗|ξ(t − 1) ̸∈ Y ∗}. In
the section, we will further analyze the formula to get the
time complexity of FWA. FWA includes three operations:
explosion, mutation and selection, but the operations which
directly make the Markov state of FWA get to the optimal
region are explosion and mutation, so the following theorem
is given.

Theorem 6: Given FWA an absorbing state Markov process
{ξ(t)}∞t=0 and optimal state space Y ∗ ⊂ Y , then FWA is such

that:

ν(Rε)× n
ν(S)

≤ P{(ξ(t+ 1)) ∈ Y ∗|ξ(t) /∈ Y ∗}

≤ ν(Rε)

(

n

ν(S)
+

n
∑

i=1

mi

ν(Ai)

)

.

(7)

where ν(Rε) is the Lebegue measure value of the optimal
regionRε. The ν(S) is the Lebegue measure value of the
problem search region S, v(Ai) is the Lebegue measure value
of the explosion region Ai of ith firework.

Proof : In term of the step of FWA, the FWA includes
two operations to generate the sparks: explosion operator and
mutation operator. So the following equation is got:

P (ξ(t+ 1) ∈ Y ∗|ξ(t) /∈ Y ∗) = Pmu + Pex. (8)

where Pmu denotes the probability that the fireworks of
FWA arrive optimal region Rε from non optimal region by
mutation operator. Pex is the probability which explosion
operator of n fireworks make some sparks stay optimal region
Rε.

For Pmu, it is assumed that the mutation operator opera-
tion is randomness with uniform distribution. The probability
of one firework being mutated to the optimal region Rεis:

ν(Rε)

ν(S)
.

So the probability of n fireworks to be randomly mutated
to the optimal region Rε,Pmu(t), is:

ν(Rε)× n
ν(S)

.

That means:

Pmu =
ν(Rε)× n
ν(S)

.

For the Pex , the probability that ith firework explodes and
make sparks stay in the optimal range Rϵ can be derived as
follows:

ν(Ai ∩Rε)×mi

ν(Ai)
.

So, the probability which explosion of n fireworks make
some sparks stay optimal region Rε,Pex,is:

Pex =
n
∑

i=1

ν(Ai ∩Rε)×mi

ν(Ai)
.

where Ai denotes the search space in which the ith
firework explodes; mi is the number of spark which the ith
firework generates.

Therefore, it is derived that:

P (ξ(t+ 1) ∈ Y ∗|ξ(t) /∈ Y ∗) = ν(Rε)× n
ν(S)

+

n
∑

i=1

ν(Ai ∩Rε)×mi

ν(Ai)
.

(9)
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Because 0 ≤ ν(Ai ∩Rε) ≤ ν(Rε),

0 ≤ Pex =
n
∑

i=1

ν(Ai ∩Rε)×mi

ν(Ai)

≤
n
∑

i=1

ν(Rε)×mi

ν(Ai)
= ν(Rε)

n
∑

i=1

mi

ν(Ai)
.

And then,

ν(Rε)× n
ν(S)

≤ P (ξ(t+1)∈Y ∗|ξ(t) /∈ Y ∗)

≤ ν(Rε)× n
ν(S)

+ ν(Rε)
n
∑

i=1

mi

ν(Ai)

= ν(Rε)

(

n

ν(S)
+

n
∑

i=1

mi

ν(Ai)

)

.

It is got that

ν(Rε)× n
ν(S)

≤ P (ξ(t+1)∈Y ∗|ξ(t) /∈ Y ∗)

≤ ν(Rε)

(

n

ν(S)
+

n
∑

i=1

mi

ν(Ai)

)

.

The proof is completed.
The above theorem gives the rude result because the right

formula of the Eq.(7) is difficult to be confirmed and be
computed. It is complex for FWA to run and hard to compute
the probability about it. In order to realize the probability
exactly, the Eq.(8) need to be further investigated which is
given as follows.

Pex =
n
∑

i=1

ν(Si ∩Rε)×mi

ν(Si)
.

As it can be known, the formulas ν(Si ∩ Rε) and mi in
the above equation play key role to the Pex because the two
formulas is dynamically changed with the algorithm running.

The formula ν(Si ∩Rε) is related to the firework location
Fi. In term of Eq.(4) and Eq.(5), the distance between two of
fireworks selected as the next generation is as far as possible,
so it can be assumed that just one firework can stay in the
optimal region Rε in the same time. In other hand, it is
further assumed that there is the highest probability for the
best firework to get into the optimal region Rε.

According to the above idea of Fireworks Algorithm,
ν(Ai) ≥ ν(Abest) and mi ≤ mbest,i ∈ (1, 2, . . . n), where
Abest and mbest is the exploding region and generating
sparks number of the firework which fitness is best in the all
fireworks, respectively. So, it can be derived as the follows:

ν(Ai ∩Rε)×mi

ν(Ai)
<
ν(Abest ∩Rε)×mbest

ν(Abest)
.

It can be considered that(Ai∩Rε) ∩ (Abest∩Rε) = ϕ for
i ∈ (1, 2, . . . , n) and i ̸= best, especially in the early running
time, so the following equation can be derived.

P (exp) =
n
∑

i=1

ν(Si∩Rε)×mi

ν(Si)

<
ν(Sbest∩Rε)×mbest

ν(Sbest)
<
ν(Rε)×mbest

ν(Sbest)
.

(10)

So the Eq.(7) can be changed to the follows:

ν(Rε)× n
ν(S)

≤ P (ξ(t+1)∈Y ∗|ξ(t) /∈ Y ∗)

≤ ν(Rε)

(

n

ν(S)
+

mbest

ν(Sbest)

)

.

(11)

The above Eq.(11) is more meaningful than the Eq.(7),
which tells that the best firework is more important. In
term of the Eq.(11) and Corollary 1, let a = ν(Rε)×n

ν(S) and

b = ν(Rε)
(

n
ν(S) +

mbest

ν(Sbest)

)

, so the following equation is
derived:

ν(S)× ν(Sbest)

ν(Rε)× (n× ν(Sbest) +mbest × ν(S))
× (1− λ(0))

≤ Eγ ≤ ν(S)

ν(Rε)× n
× (1− λ(0)).

where λ(t) = P{ξ(t) ∈ Y ∗}.
According to the Step1 of FWA, the initialization of n

fireworks is generated in random. The following results can
be acquired. Because λ(0) = P{ξ(0) ∈ Y ∗} << 1, 1 −
λ(0) = 1; then

ν(S)× ν(Sbest)

ν(Rε)× (n× ν(Sbest) +mbest × ν(S))

≤ Eγ ≤ ν(S)

ν(Rε)× n
.

(12)

Corollary 2: Fireworks Algorithm’s expected convergence
time Eλ such that:

ν(S)× ν(Sbest)

ν(Rε)× (n× ν(Sbest) +mbest × ν(S))

≤ Eγ ≤ ν(S)

ν(Rε)× n
.

(13)

From the Eq.(12), the more lager value of Rε and the
smaller value of ν(S) are beneficia to the efficiency of FWA,
but the two values are related to the search problem.The
Eq.(12) indicates that the ν(Sbest) and mbest is very impor-
tant for FWA’s expected convergence time. But above some
results are got under the condition of some assumptions.
The more exact analysis need to be further done through
considering the detail of some equations about originate
FWA.

VII. CONCLUSIONS

Fireworks Algorithm is a novel swarm intelligence algo-
rithm which generates the explosion sparks and Gaussian
mutation sparks by the explosion operator and Gaussian
mutation operator to search the problem space thus can be ap-
plied to solve practical optimization problems. However, little
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theoretical analysis or work on FWA has been done. Same
as the other swarm intelligence algorithms, the optimization
process of Fireworks Algorithm is considered as a Markov
process. The time complexity of FWA can be analyzed using
an absorbing Markov process. This paper has presented some
conceptions on Markov stochastic process of FWA and has
proven its global convergence. Moreover, we also present the
approximate region of expected convergence time of FWA.
Although the results given in the paper are incomplete and
naive, its theorem analysis can provide a direction on the
theory of Fireworks Algorithm.

REFERENCES

[1] Tan Y. and Zhu Y. C.,Fireworks Algorithms for Optimization, Proceed-
ing of International Conference on Swarm Intelligence (ICSI2010),
Part II,LNCS 6145, pp.355-364,2010.

[2] Janecek Andreas and Ying Tan,” Using population based algorithms
for initializing nonnegative matrix factorization,” Advances in Swarm
Intelligence, Springer Berlin Heidelberg, 307-316,2011.

[3] Janecek Andreas and Ying Tan, ”Iterative improvement of the
multiplicative update nmf algorithm using nature-inspired optimiza-
tion,”Seventh International IEEE Conference on Natural Computation
(ICNC), Vol.3, 2011.

[4] Pei Yan et al, ”An empirical study on influence of approximation
approaches on enhancing fireworks algorithm,” IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2012.

[5] Gao Hongyuan and Ming Diao, ”Cultural firework algorithm and
its application for digital filters design,” International Journal of
Modelling, Identification and Control,Vol.14 , pp. 324-331, 2011.

[6] Zheng Yu-Jun, Qin Song and Sheng-Yong Chen, ”Multiobjective
fireworks optimization for variable-rate fertilization in oil crop pro-
duction,” Applied Soft Computing, Vol.13,pp. 4253-4263,2013.

[7] Liu Jianhua, Shaoqiu Zheng and Ying Tan. ”The Improvement on
Controlling Exploration and Exploitation of Firework Algorithm,”
Advances in Swarm Intelligence. Springer Berlin Heidelberg, pp. 11-
23, 2013.

[8] He Wenrui, Guyue Mi and Ying Tan, ”Parameter Optimization
of Local-Concentration Model for Spam Detection by Using Fire-
works Algorithm,” Advances in Swarm Intelligence. Springer Berlin
Heidelberg,pp.439-450,2013.

[9] He Jun and Xin Yao, ”From an individual to a population: An analysis
of the first hitting time of population-based evolutionary algorithms,”
IEEE Transactions on Evolutionary Computation, Vol 6, pp.495-
511,2002.

[10] Yu Yang, and Zhi-Hua Zhou. ”A new approach to estimating the
expected first hitting time of evolutionary algorithms.” Artificial In-
telligence 172.15 (2008): 1809-1832.

[11] Huang Han, Chun-Guo Wu and Zhi-Feng Hao, ”A pheromone-rate-
based analysis on the convergence time of ACO algorithm,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
Vol.39,pp. 910-923, 2009.

[12] Chen Tianshi et al, ”Analysis of computational time of simple esti-
mation of distribution algorithms,”IEEE Transactions on Evolutionary
Computation, Vol.14,pp.1-22, 2010.

[13] ]Yi Shengqiu, Ming Chen and Zhigao Zeng, ”Convergence analysis on
a class of quantum-inspired evolutionary algorithms,” Seventh IEEE
International Conference on Natural Computation (ICNC), Vol. 2.,
2011.

[14] Ding Lixin and Jinghu Yu, ”Some techniques for analyzing time
complexity of evolutionary algorithms,” Transactions of the Institute
of Measurement and Control, Vol.34 pp.755-766,2012.

[15] Huang Han, Hao Zhifeng and Qin Yong, ”Time Complexity of
Evolutionary Programming”, Journal of Computer Research and De-
velopment, Vol.45(11),pp.1850-1857,2008.(In Chinese).

[16] Huang Han, Hao Zhifeng,Wu ChunGuo and Qin Yong, ”Time Con-
vergence Speed of Ant Colony Optimization,” Chinese Journal of
Computer, Vol.30(8),pp.1344-1353,2007.(In Chinese).

3213




