
Dynamic Search in Fireworks Algorithm

Shaoqiu Zheng, Andreas Janecek, Junzhi Li and Ying Tan

Abstract— We propose an improved version of the recently
developed Enhanced Fireworks Algorithm (EFWA) based on
an adaptive dynamic local search mechanism. In EFWA, the
explosion amplitude (i.e., search area around the current
location) of each firework is computed based on the quality
of the firework’s current location. This explosion amplitude is
limited by a lower bound which decreases with the number
of iterations in order to avoid the explosion amplitude to be
[close to] zero, and in order to enhance global search abilities
at the beginning and local search abilities towards the later
phase of the algorithm. As the explosion amplitude in EFWA
depends solely on the fireworks’ fitness and the current number
of iterations, this procedure does not allow for an adaptive
optimization process. To deal with these limitations, we propose
the Dynamic Search Fireworks Algorithm (dynFWA) which
uses a dynamic explosion amplitude for the firework at the
currently best position. If the fitness of the best firework could
be improved, the explosion amplitude will increase in order to
speed up convergence. On the contrary, if the current position
of the best firework could not be improved, the explosion
amplitude will decrease in order to narrow the search area.
In addition, we show that one of the EFWA operators can
be removed in dynFWA without a loss in accuracy — this
makes dynFWA computationally more efficient than EFWA.
Experiments on 28 benchmark functions indicate that dynFWA
is able to significantly outperform EFWA, and achieves better
performance than the latest SPSO version SPSO2011.

I. INTRODUCTION

OPTIMIZATION problems can be found in many appli-
cations, ranging from the academic field to industrial

world problems. The characteristics and requirements of
these problems determine whether the overall best solution
can be found within a limited time period [1]. Recently,
various stochastic, population-based optimization algorithms
based on Swarm Intelligence (SI) have been proposed with
great success. The problem-solving ability of SI emerges
from the interaction of simple information-processing units
(either living creatures or lifeless bodies) that collectively
work together as a swarm [1]. Inspired by the collective
behaviors of swarms in nature, several SI algorithms have
been proposed, such as Particle Swarm Optimization [2], Ant
Colony Optimization [3], and many more.

The Fireworks Algorithm (FWA) [4] is a recently devel-
oped SI algorithm based on simulating the explosion process
of real fireworks exploding and illuminating the night sky.

Shaoqiu Zheng, Junzhi Li and Ying Tan (corresponding author) are with
the Department of Machine Intelligence, School of Electronics Engineering
and Computer Science, Peking University Key Laboratory of Machine
Perception (Ministry of Education), Peking University, Beijing,100871, P.R.
China. (email: {zhengshaoqiu, ljz, ytan}@pku.edu.cn).

Andreas Janecek is with University of Vienna, Research Group The-
ory and Applications of Algorithms, 1090 Vienna, Austria (email: an-
dreas.janecek@univie.ac.at)

This work was supported by the National Natural Science Foundation of
China under grants number 61375119, 61170057 and 60875080.

In FWA, the fireworks (i.e, individuals) are let off to the
potential search space and an explosion process is initiated
for each firework. This stochastic explosion process is one
of the key features of FWA. After the explosion, a shower
of sparks fills the local space around the firework. Both
fireworks as well as the newly generated sparks represent po-
tential solutions in the search space. A principle FWA works
as follows: At first, 𝑁 fireworks are initialized randomly, and
their quality (i.e., fitness) is evaluated in order to determine
the explosion amplitude and the number of sparks for each
firework. Subsequently, the fireworks explode and generate
different types of sparks within their local space. Finally, 𝑁
candidate fireworks are selected among the set of candidates,
which includes the newly generated sparks as well as the 𝑁
original fireworks. The algorithm continues the search until
a termination criterion (time, maximum number of iteration
or fitness evaluation, or convergence) is reached.

FWA uses a so called explosion amplitude in order to
balance the global and local search. Fireworks located at
good positions can generate a large population of explosion
sparks within a smaller range, i.e., with a small explosion
amplitude. Contrary, fireworks located at positions with lower
fitness values can only generate a smaller population within
a larger range, i.e., with higher explosion amplitude. After
the explosion, another type of sparks are generated based
on a Gaussian mutation of randomly selected fireworks. The
idea behind this is to further ensure diversity of the swarm.
In order to improve readability we use the same notations
as in [5] to differentiate between the two distinct types of
sparks: “explosion sparks” are generated by the explosion
process, and “Gaussian sparks” are generated by Gaussian
mutation.

Related work. Since its introduction in [4], FWA has proven
its efficiency in dealing with optimization problems. The
works based on FWA can be grouped into two categories,
algorithm developments and applications.

Algorithm developments include single-objective FWA
[5]–[8], multi-objective FWA [9] and parallel FWA imple-
mentations [10]. The majority of studies based on FWA have
focused on the development of single-objective FWA. Zheng
Y. et al. [6] proposed a hybrid algorithm FWA-DE between
FWA and differential evolution (DE), by including mutation
and crossover operators into FWA. In FWA-DE, in each
iteration, the selected fireworks perform mutation, crossover
and selection in order to create a new set of fireworks which
will be used to generate explosion and Gaussian sparks.
Experimental results on six benchmark functions indicate
that this hybrid version of FWA and DE outperforms the
standard versions of both, FWA and DE. In [7], Pei et

3222

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

al. investigated the influence of approximation approaches
on accelerating FWA with elite strategies by comparing
approximation models, sampling methods, and sampling size.
Results indicate that the random sampling method with a
two degree polynomial model gains the fastest convergence
speed. Additionally, Liu et al. [8] invested the influence on
FWA when using different numbers of sparks and explosion
amplitude strategies. The most significant improvement of
FWA can be found in [5], where Zheng S. et al. proposed the
Enhanced Fireworks Algorithm (EFWA) which incorporates
five modifications compared to conventional FWA in order to
eliminate the drawbacks of the original algorithm: (𝑖) a new
minimal explosion amplitude check, (𝑖𝑖) a new operator for
generating explosion sparks, (𝑖𝑖𝑖) a new mapping strategy for
sparks which are out of the search space, (𝑖𝑣) a new operator
for generating Gaussian sparks, and (𝑣) a new operator
for selecting the population for the next iteration. Zheng
Y. et al. proposed a framework for multi-objective FWA
(MOFWA) in [9], which based on their previous work [6].
In terms of parallel implementation, Ding et al. proposed
GPU-FWA [10], a GPU implementation with several modi-
fication compared to conventional FWA in order reduce the
interaction among fireworks.

FWA and applications. FWA has been used for FIR
and IIR digital filters design in combination with cultural
algorithms [11], the initialization of Non-negative Matrix
Factorization (NMF) [12]–[14], parameter optimization in
the process of pattern extraction for finger-vein identifica-
tion [15]. Experimental results in these studies indicate that
FWA is a promising swarm SI algorithm which is well suited
for optimizing FIR and IIR digital filters [11], allows for fast
convergence and low approximation error for NMF [12]–
[14], and achieves low equal error rate for pattern extraction
tasks [15].

Contributions. In FWA and EFWA, the explosion ampli-
tude value is one of the key parameters which is used to
balance between the local and global search capabilities of
the algorithm. The fitness of the current location of each
firework is used to calculate the explosion amplitude. The
main idea is that a firework with better fitness (i.e., smaller
fitness value for minimization problems 1) can generate a
larger population of explosion sparks within a smaller range,
i.e., with a small explosion amplitude, while fireworks with
poorer fitness (i.e., higher fitness value) can only generate
a smaller population within a larger range, i.e., with higher
explosion amplitude. As a result, fireworks at good locations
will perform local search in a narrow range around the
current location, while fireworks with higher fitness will
perform global search in a wider range.

The minimal explosion amplitude check strategy
(MEACS) in EFWA [5] introduced a lower-bound for this
explosion amplitude in order to avoid that the explosion
amplitude of the best firework found so far is set to zero.
This strategy decreases the explosion amplitude solely

1In this paper, without loss of generality, the optimization problem 𝑓 is
assumed to be a minimization problem.

with the current number of function evaluations, which
heavily depends on the predefined number of iterations
for the algorithm. Experimental results indicate that this
strategy does not allow for efficient local search around the
currently best solution. Therefore, in this paper, we present
an appropriate strategy for varying the explosion amplitude
dynamically based on the current success of the optimization
process. Additionally, we show that it is possible to remove
the rather time-consuming Gaussian sparks operator of
EFWA in dynFWA without loss in optimization accuracy.
The proposed dynFWA algorithm significantly improves the
optimization results of EFWA and also significantly reduces
the computational cost.

Synopsis. Section II briefly introduces the framework of
EFWA, and properties of the minimal explosion amplitude
check strategy of EFWA are discussed in detail in Section III.
Section IV describes the dynamic explosion amplitude strat-
egy of the proposed algorithm. Experimental results based on
the CEC 2013 benchmark suite are presented in Section V,
and concluding remarks are drawn in Section VI.

II. THE FRAMEWORK OF EFWA

In this paper, EFWA [5] is used as baseline algorithm for
dynFWA. As already mentioned, EFWA was proposed as an
extension of conventional FWA [4] to overcome some of the
limitations inherent in the original algorithm. EFWA consists
of five different operators which are briefly summarized in
the following (for details see [5]).

A. Minimal Explosion Amplitude Check

In order to automatically balance between exploration
and exploitation capabilities of the algorithm, fireworks with
better fitness will have a smaller explosion amplitude and a
larger number of explosion sparks than firework with lower
fitness. Assume that the number of fireworks is 𝑁 and the
number of dimensions is 𝑑, then the number of explosion
sparks 𝑠 (Eq. 1) and the explosion amplitude 𝐴 (Eq. 2) for
each firework 𝑋𝑖 are calculated as follows:

𝑠𝑖 =𝑀𝑒 ⋅
𝑦𝑚𝑎𝑥 − 𝑓(𝑋𝑖) + 𝜀∑𝑁

𝑖=1(𝑦𝑚𝑎𝑥 − 𝑓(𝑋𝑖)) + 𝜀
(1)

𝐴𝑖 = 𝐴 ⋅
𝑓 (𝑋𝑖)− 𝑦𝑚𝑖𝑛 + 𝜀∑𝑁

𝑖=1 (𝑓 (𝑋𝑖)− 𝑦𝑚𝑖𝑛) + 𝜀
(2)

where 𝑦𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑓(𝑋𝑖)), 𝑦𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑓(𝑋𝑖)), 𝑓(𝑋𝑖)
denotes the fitness of firework 𝑖, and 𝑀𝑒 and 𝐴 are two
constants to control the explosion amplitude and the number
of explosion sparks, respectively, and 𝜀 is the machine
epsilon. Additionally, the number of sparks 𝑠𝑖 that can be
generated by each firework is limited by an upper bound.
Eq. 2 reveals that the explosion amplitude of the firework at
the best location (i.e., smallest fitness value for minimization
problems) will usually be very small (close to 0). If the
explosion amplitude of the firework at the best location 𝑋𝑏

is zero, the explosion sparks will be located at the same
location as 𝑋𝑏. As a result, these sparks cannot improve
the location of 𝑋𝑏. To overcome this problem, EFWA uses

3223

a minimal explosion amplitude check strategy (MEACS) in
order to bound the explosion amplitude 𝐴𝑘

𝑖 of each firework
𝑖 in each dimension 𝑘 as follows:

𝐴𝑘
𝑖 =

{
𝐴𝑘

min if 𝐴𝑘
𝑖 < 𝐴

𝑘
min,

𝐴𝑘
𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(3)

where 𝐴𝑘
min decreases non-linearly with increasing number

of function evaluations such that

𝐴𝑘
min = 𝐴𝑖𝑛𝑖𝑡 −

𝐴𝑖𝑛𝑖𝑡 −𝐴𝑓𝑖𝑛𝑎𝑙

𝑒𝑚𝑎𝑥

√
(2𝑒𝑚𝑎𝑥 − 𝑡) 𝑡, (4)

where 𝑡 refers to the number of function evaluation at the
beginning of the current iteration, and 𝑒𝑚𝑎𝑥 is the maximum
number of evaluations. 𝐴𝑖𝑛𝑖𝑡 and 𝐴𝑓𝑖𝑛𝑎𝑙 are the initial and
final minimum explosion amplitude, respectively.

B. Explosion Sparks Operator

Now, each firework explodes and creates explosion sparks
within a given range around its current location. A firework
with better fitness can generate a larger population of ex-
plosion sparks within a smaller range, i.e.,, with a small
explosion amplitude. For each of the 𝑠𝑖 explosion sparks of
each firework 𝑋𝑖, Algorithm 1 is performed once.

Algorithm 1 – Generating “explosion sparks” in EFWA

1: Initialize location of the “explosion sparks”: �̂�𝑖 = 𝑋𝑖

2: Set 𝑧𝑘 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑(0, 1)), 𝑘 = 1, 2, ..., 𝑑.
3: for each dimension of �̂�𝑘

𝑖 , where 𝑧𝑘 == 1 do
4: Calculate offset displacement:

△𝑋𝑘 = 𝐴𝑖 × 𝑟𝑎𝑛𝑑(−1, 1)
5: �̂�𝑘

𝑖 = �̂�𝑘
𝑖 +△𝑋𝑘

6: if �̂�𝑘
𝑖 out of bounds then

7: map �̂�𝑘
𝑖 to the potential space

8: end if
9: end for

C. Mapping Operator

When the location of a new spark exceeds the search range
in dimension 𝑘, this spark will be mapped to another location
within the search space (in dimension 𝑘) with uniform distri-
bution according to �̄�𝑘

𝑖 = 𝑋𝑘
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑘

𝑚𝑎𝑥 −𝑋𝑘
𝑚𝑖𝑛).

D. Gaussian Sparks Operator

After the explosion, another type of sparks are generated
based on a Gaussian mutation of randomly selected fire-
works. The idea behind this is to further ensure diversity
of the swarm. Algorithm 2 describes how Gaussian sparks
are calculated. This algorithm is performed 𝑀𝑔 times, each
time with a randomly selected firework 𝑋𝑖 (𝑀𝑔 is a constant
to control the number of Gaussian sparks).

Algorithm 2 – Generating “Gaussian sparks” in EFWA

1: Initialize the location of the “Gaussian sparks”: �̂�𝑖 = 𝑋𝑖

2: Set 𝑧𝑘 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑(0, 1)), 𝑘 = 1, 2, ..., 𝑑
3: Calculate offset displacement: 𝑒 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 1)
4: for each dimension �̂�𝑘

𝑖 , where 𝑧𝑘 == 1 do
5: �̂�𝑘

𝑖 = �̂�𝑘
𝑖 +(𝑋𝑘

𝑏 − �̂�𝑘
𝑖) ∗ 𝑒, where 𝑋𝑏 is the position

of the best firework found so far.
6: if �̂�𝑘

𝑖 out of bounds then
7: map �̂�𝑘

𝑖 to the potential space
8: end if
9: end for

E. Selection Operator

EFWA applies the computationally efficient Elitism-
Random Selection (ERP, [1]). Although this method is rather
simple compared to distance based selection operators that
aim at selecting very divers individuals (cf. [4]), analysis
in [5] has shown that there is almost no difference in terms
of convergence, final fitness and standard deviation.

III. PROPERTIES OF MINIMAL EXPLOSION AMPLITUDE

CHECK STRATEGY (MEACS) IN EFWA

For simplicity we use the following definitions:

Core Firework(CF): In each iteration, the firework at the
currently best location is marked as core firework (CF). Thus,
for minimization problems, among the set 𝐶 of all fireworks
the firework 𝑋𝐶𝐹 is selected as CF iff

∀𝑋𝑖 ∈ 𝐶: 𝑓(𝑋𝐶𝐹) ≤ 𝑓(𝑋𝑖) (5)

Local Minimum Space and Local Minimum Point: Given an
objective function 𝑓 , in a continuous space Ψ ⊆ Ω, there
∃ only one point x, ∃𝜀, and 𝑓(𝑥𝑖) − 𝑓(x) ⩾ 0, for ∀𝑥𝑖,
∣𝑥𝑖 − x∣ ⩽ 𝜀, then x is a local minimum point. For region
𝑆, if these is only one local minimal point in it, then 𝑆 is a
local minimum space.

A firework with better fitness can generate a larger popu-
lation of explosion sparks within a smaller range, i.e., with a
small explosion amplitude. Contrary, fireworks with poorer
fitness can only generate a smaller population within a larger
range, i.e., with higher explosion amplitude. This allows
to balance between exploration and exploitation capabilities
of the algorithm. Exploration refers to the ability of the
algorithm to explore various regions of the search space in
order to locate promising good solutions, while exploitation
refers to the ability to conduct a thorough search within a
smaller area recognized as promising in order to find the
optimal solution (cf. [16]). Exploration is achieved by those
fireworks which have a large explosion amplitude (i.e., poorer
fitness), since they have the capability to escape from local
minima. Exploitation is achieved by those fireworks which
have a small explosion amplitude (i.e, better fitness), since
they reinforce the local search ability in promising areas.

In EFWA, the MEACS (cf. Section II-A) enforces the
exploration capabilities at the early phase of the algorithm

3224

(larger 𝐴𝑘
min ⇒ global search), while at the final phase of the

algorithm the exploitation capabilities are enforced (smaller
𝐴𝑘

min ⇒ local search). This is further enforced by the non-
linear decrease of 𝐴𝑘

min (cf. Eq. 4). Obvisouly, this procedure
decreases the explosion amplitude solely with the current
number of function evaluations which heavily depends on
the pre-defined number of iterations for the algorithm. The
explosion amplitude strategy should consider the optimiza-
tion process information rather than solely the information
about the current iteration (or evaluation) count. In order to
tackle this problem we propose a dynamic explosion strategy
for the CF in order to enhance the local search ability.

IV. THE DYNFWA

In dynFWA, fireworks are separated into two groups. The
first group consists of the CF, while the second group consists
of all remaining fireworks. The responsibility of the CF is to
perform a local search around the best location found so far,
while the responsibility of the second group is to maintain
the global search ability. For both groups, the explosion am-
plitude is a key feature in order to efficiently and effectively
improve the current locations of the fireworks. However, for
the CF the selection of the explosion amplitude is even more
important due to its high influence the convergence speed
towards the local minimum point within the local minimum
space and the property that it is always selected in the
optimization process. Contrary to EFWA, in dynFWA the
explosion amplitude of the CF is not calculated by Eq. 2.
Instead, the local information of the optimization process
(i.e., the information if the algorithm has improved its best
location during the last iterations) is used for the calculation
of the explosion amplitude for the CF. For all fireworks
in the second group (non-CFs), the explosion amplitude is
calculated similarly to EFWA, i.e., by using Eq. 2, however,
without using the minimum explosion amplitude check from
Eq. 3. Recall that the explosion amplitude influences the
calculation of the explosion sparks, while it has no impact
on the computation of Gaussian sparks. In Section IV-
D we further discuss that in dynFWA it is possible to
completely remove the Gaussian sparks operator without a
loss in accuracy.

A. Dynamic Explosion Amplitude for the First Group (CF)

The CF stores the best solution found so far. Let us
define �̂�𝑏 as the “best” newly created explosion spark of
all fireworks in the swarm, and Δ𝑓 = 𝑓(�̂�𝑏) − 𝑓(𝑋𝐶𝐹).
Based on the value of Δ𝑓 , there are two situations:

1) One or several explosion sparks have found a better
position, i.e., Δ𝑓 < 0 (for minimization problems).

It is possible that (𝑖) an explosion spark generated by the
CF has found the best position, or that (𝑖𝑖) an explosion spark
generated by a different firework than the CF has found the
best position. Both cases indicate that the swarm has found
a new promising position and that �̂�𝑏 will be the CF for the
next iteration.

(𝑖) In most cases, �̂�𝑏 has been created by the CF. In such
cases, in order to speed up the convergence of the algorithm,

the explosion amplitude of the CF for the next iteration will
be increased compared to the current iteration. Figures 1(a)
and 1(b) illustrate this situation.

(𝑖𝑖) In other cases – though with a lower probability – a
firework different from the CF will create �̂�𝑏. This situation
happens more frequently during the earlier phase of the
optimization process than during later iterations. In such
cases, �̂�𝑏 will become the new CF for the next iteration
(recall that the best location among all individuals is always
selected for the next iteration). Since the position of the CF
is changed, the current explosion amplitude which considers
the optimization information of the position of the current
CF will not be effective to the newly selected CF (�̂�𝑏).
However, it is possible that �̂�𝑏 is located in rather close
proximity to the previous CF: since the CF creates the
large number of sparks among all fireworks, the random
selection method may select several sparks created by the
CF, which are initially located in close proximity to the
CF. If so, the same consideration as in (𝑖) applies, and the
explosion amplitude of the CF will be increased. If �̂�𝑏 is
created by a firework which is not in close proximity to
the CF, the explosion amplitude can be re-initialized to the
pre-defined value. However, since it is difficult to define
“close” proximity, we do not compute the distance between
�̂�𝑏 and 𝑋𝐶𝐹 but rely on the dynamic explosion amplitude
update ability. Similarly to (𝑖), the explosion amplitude is
increased. If the new CF cannot improve its location in the
next iteration, the new CF is able to adjust the explosion
amplitude itself dynamically in the following iterations.

We underline the idea why an increasing explosion ampli-
tude may accelerate the convergence speed: Assume that the
current position of the CF is far away from the global/local
minimum. Increasing the explosion amplitude is a direct and
effective approach in order to increase the step-size towards
the global/local optimum in each iteration, i.e., it allows for
faster movements towards the optimum. However, we note
that usually the probability to find a position with better
fitness decreases with increasing explosion amplitude due to
the increased search space (obviously, this depends to a large
extent on the optimization function).

2) None of the explosion sparks of the CF nor of all other
fireworks has found a position with better fitness compared
to the CF, i.e., Δ𝑓 >= 0. In this situation, the explosion
amplitude of the CF is reduced in order to narrow down the
search to a smaller region around the current location and to
enhance the exploitation capability of the local search of the
CF. The probability to find a position with better fitness usu-
ally increases with decreasing explosion amplitude. Figure
1(c) illustrates the situation where the location of CF could
not be improved.

B. Discussion

Algorithm 3 summarizes the dynamic update strategy as
discussed in Section IV-A. Figure 2 shows the process of the
amplification/reduction during the optimization of the sphere
function for 1 000 iterations (algorithm dynFWA). As can be

3225

(a) Iteration 𝑡+ 1 (b) Iteration 𝑡+ 2 (c) Iteration 𝑡+ 3

Fig. 1. Illustration of the amplification/reduction of the CF’s explosion amplitude. In Figure 1(a), the radius of the circle with dashed red line indicates
the explosion amplitude of the CF in iteration 𝑡, while the cirlce with solid black line indicates the explosion amplitude in iteration 𝑡 + 1; the increased
explosoin amplitude indicates that in this situation, a better position has been found by the explosion sparks. In iteration 𝑡+ 2 (cf. Figure 1(b)), the CF is
able to further improve its location, and, as a result, the explosion amplitude of the CF is further increased. Figure 1(c) shows an example when the fitness
of the CF could not be improved. In this case, the CF’s explosion amplitude is decreased in iteration 𝑡+ 3.

Algorithm 3 Dynamic explosion amplitude update for CF
Initialization: Define:

𝑋𝐶𝐹 is the current location of the CF;
�̂�𝑏 is the best location among all explosion sparks;
𝐴𝐶𝐹 is the current explosion amplitude of the CF;
𝐶𝑎 is the amplification coefficient;
𝐶𝑟 is the reduction coefficient;

Iteration:
1: if 𝑓(�̂�𝑏)− 𝑓(𝑋𝐶𝐹) < 0 then
2: 𝐴𝐶𝐹 ← 𝐴𝐶𝐹 ∗ 𝐶𝑎;
3: else
4: 𝐴𝐶𝐹 ← 𝐴𝐶𝐹 ∗ 𝐶𝑟;
5: end if

seen from Figure 2, the reduction and amplification explosion
amplitudes happen in an alternating manner. Obviously, there
are more reduction than amplification phases, which is partly
caused by the values of 𝐶𝑎 and 𝐶𝑟, which are set to 1.2
and 0.9, respectively, and also by the fact that the explosion
amplitude is initially set to the size of the search space, which
is a rather large number in the first iteration (cf. Section V-
A).

In the following, we discuss why a reduction of the
explosion amplitude increases the probability to find a better
location. A Taylor series is used to represent the properties
of the local region around the CF. Assume a continuously
differentiable second-order optimization function 𝑔 with 𝑘
dimensions: if the position of the CF is not a local/global
minimal point, and 𝐴𝐶𝐹 is the current explosion amplitude,
then 𝑔(x) − 𝑔(𝑋𝐶𝐹) = ∇𝑔(𝑋𝐶𝐹)

𝑇 (x − 𝑋𝐶𝐹) +
1
2 (x −

𝑋𝐶𝐹)𝐻(x)(x − 𝑋𝐶𝐹), where 𝐻(x) = [∂2𝑔
∂𝑥𝑖∂𝑥𝑗

]𝑘×𝑘. Ac-
cording to the definition of “local/global minimal point”
in Section III (i.e. 𝑋𝐶𝐹 is not a local/global minimum
point), there ∃𝜀, ∀x in 𝑆 = {x∣ ∣x−𝑋𝐶𝐹 ∣ ⩽ 𝜀} and
𝑔(x)−𝑔(𝑋𝐶𝐹) = ∇𝑔(𝑋𝐶𝐹)

𝑇 (x−𝑋𝐶𝐹)+𝑜(∇𝑔(𝑋𝐶𝐹)
𝑇 (x−

𝑋𝐶𝐹)), where 𝑜 means low order. From the Taylor series,
if 𝜀 → 0, then in region 𝑆, if there exists a point x1 and
x1−𝑋𝐶𝐹 = Δx, then there exists a point x2 and x2−𝑋𝐶𝐹 =

−Δx. Under this circumstance, the probability of generating
a spark with smaller fitness than the CF is very high (i.e.
(𝑔(x1)− 𝑔(𝑋𝐶𝐹)) ∗ (𝑔(x2)− 𝑔(𝑋𝐶𝐹)) < 0). In case the CF
does not find a better position while generating a number
of sparks, it is likely that 𝐴𝐶𝐹 ⩾ 𝜀. We cannot expect the
property of region 𝑇 = {x∣𝜀 ⩽ ∣x−𝑋𝐶𝐹 ∣ ⩽ 𝐴𝐶𝐹 } that in
region 𝑇 whether there exists a position with better fitness
compared to the CF, thus, if the CF generates sparks with
uniform distribution in each dimension, the probability 𝑝′ that
a spark is located in 𝑆 is 𝑝′ = ∥𝑆∥

∥𝑆∥+∥𝑇∥ , where ∥∥ denotes
the hypervolume of this region. If the CF does not find a
better position, the explosion amplitude 𝐴𝐶𝐹 is reduced in
order to increase the probability 𝑝′ that the CF can generate a
spark in region 𝑆 thus to increase the probability that finding
a point with smaller fitness than CF.

C. Explosion Amplitude for the Second Group (non-CF)

The explosion amplitudes for non-CF fireworks are cal-
culated based on Eq. 2, i.e., similar to EFWA but without
the minimum explosion amplitude check strategy. Compared
to the CF, these non-CF fireworks can only create a smaller
number of explosion sparks within a larger explosion am-
plitude in order to perform the global search for the swarm.
In situations where the CF gets stuck in local minima, this
group of fireworks may be able to allow the algorithm to
escape from premature convergence, since these fireworks
continue the search in different areas of the search space.

D. Elimination of the Gaussian Sparks Operator

The motivation behind the Gaussian sparks (cf. [4]) is
to further increase the diversity of the swarm. In EFWA,
the Gaussian sparks are calculated by 𝑋𝑘

𝑖 = 𝑋𝑘
𝑖 + (𝑋𝑘

𝑏 −
𝑋𝑘

𝑖) × 𝑒, where 𝑋𝑏 is the location of the currently best
firework(denoted), and 𝑒 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 1) (cf. Section II-
D). From Figure 3, it can be seen that the newly generated
sparks will be located along the direction between a selected
firework 𝑖 and the CF. Any newly generated Gaussian sparks
will be either 1) close to the CF, 2) close to firework 𝑖, or
3) located along the direction between the CF and firework

3226

0 100 200 300 400 500 600 700 800 900 1000

Reduction

0

Amplification

Iteration Number

Fig. 2. The reduction and amplification of CF’s explosion amplitude (using function 𝑓1 (sphere function) from [17], cf. Section V)

𝑖, however, with some distance to both, the CF and firework
𝑖. In the first two situations, the operator will have similar
performance as the explosion sparks generated by the CF and
firework 𝑖, respectively. In the third situation, the Gaussian
spark can be interpreted as an explosion spark generated by
a firework with large explosion amplitude. Thus, based on
the above analysis it can be stated that in many situations
Gaussian sparks will not be able to effectively increase the
diversity of the swarm.

Selected Firework i

Gaussian mutation operator in EFWA

Currently best firework

Fig. 3. Gaussian sparks operator in EFWA

E. Framework of dynFWA

Based on the operators discussed in the previous subsec-
tions, the final algorithm called Dynamic Search Fireworks
Algorithm (dynFWA) is presented in Algorithm 4.

Algorithm 4 Framework of dynFWA
1: Initialize 𝑁 fireworks and evaluate the quality
2: Initialize the explosion amplitude for CF
3: while termination criteria are not met do
4: Calculate number of explosion sparks (cf. Eq 1)
5: Calculate explosion amplitude for non-CF (cf. Eq. 2)
6: for each firework do
7: Generate explosion sparks (cf. Section II-B)
8: Map sparks at invalid locations back to search space

(cf. Section II-C)
9: Evaluate quality of explosion sparks

10: end for
11: Update explosion amplitude of CF (cf. Alg.3)
12: Select 𝑁 fireworks for next iteration (cf. Section II-E)
13: end while

V. EXPERIMENTS

To investigate the performance of the proposed dynFWA
algorithm as well as the performance of the Gaussian mu-
tation operator (i.e., the performance after removing this
operator), we compare two EFWA variants and two dyn-
FWA variants. Each algorithm is tested with and without
Gaussian mutation operator, respectively. Besides comparing
dynFWA and EFWA, the most recent version of SPSO
(SPSO2011, [18]) is used for performance comparison. In
the following we briefly describe the five algorithms used
for experimental evaluation:

∙ EFWA – the baseline algorithm as presented in [5] 2;
∙ EFWA-NG – in this algorithm, the Gaussian sparks

operator has been removed from EFWA;
∙ dynFWA-G – this algorithm implements the dynFWA

algorithm as described in Section IV including the
Gaussian mutation operator.

∙ dynFWA – similar as dynFWA-G but without Gaussian
mutation operator.

∙ SPSO2011 – the most recent SPSO variant. Compared
to earlier versions of SPSO it features an improved
velocity update by exploiting the idea of rotational
invariance for the velocity update instead of sequential
dimension-by-dimension update of older versions of
SPSO (cf. [18]). 3

A. Experimental Setup

Similar to EFWA, the number of fireworks in dynFWA
is set to 5, but in dynFWA, the maximum number of
explosion sparks (𝑀𝑒 in Eq. 1) in each iteration is set to
150. The reduction and amplification factors 𝐶𝑟 and 𝐶𝑎 of
dynFWA are empirically set to 0.9 and 1.2, respectively,
and 𝐴𝐶𝐹 is initially set to the size of the search space
in order to maintain a high exploration capability at the
beginning. All other parameters for dynFWA and all EFWA
parameters are identical to [5], SPSO2011 parameters are
listed in [18]. For each algorithm we performed 51 runs
on each optimization function; the final mean results after
300 000 function evaluations are presented. As experimen-
tal platform we used MATLAB 2011b (Windows 7; Intel
Core i7-2600 CPU @ 3.7 GHZ; 8 GB RAM). To validate
the performance of the proposed algorithms we used the
recent CEC 2013 benchmark suite that includes 28 different
benchmark functions as listed in [17].

B. Experimental Results

In this section, we first evaluate the influence of removing
the Gaussian sparks operator as discussed in Section IV-
D. After that we evaluate the performance of dynFWA and
compare its performance to EFWA and also SPSO2011.

2 We note that experimental results in the EFWA paper [5] are un-
intentionally based on the dimension selection method of conventional
FWA [4], which varies the number of adapted dimensions uniformly among
all dimension. More details can be found at http://www.cil.pku.
edu.cn/research/FWA/index.html. All results and pseudo-codes
in this paper are based on the published pseudo-code in [5].

3 In addition to the results (median, maximum, minimal) in [18], detailed
results of SPSO2011 which include the results of each single run were
also submitted to the CEC2013 competition held by P. N. Suganthan. These
results are available at http://goo.gl/pXB1WH. The mean fitness error
results in our paper are computed based on the results in the folder “1534”
of file “Results-of-22-papers.zip”

3227

TABLE I

WILCOXON SIGNED-RANK TEST RESULTS FOR EFWA 𝑣𝑠 EFWA-NG

AND DYNFWA-G 𝑣𝑠 DYNFWA (BOLD VALUES INDICATE THE

PERFORMANCE DIFFERENCE IS SIGNIFICANT).

F.
EFWA 𝑣𝑠 EFWA-NG dynFWA-G 𝑣𝑠 dynFWA

EFWA EFWA-NG 𝑝-value dynFWA-G dynFWA 𝑝-value

𝑓1 -1.3999E+03 -1.3999E+03 2.316E-03 -1.4000E+03 -1.4000E+03 1.000E+00
𝑓2 6.8926E+05 6.5258E+05 4.256E-01 7.6981E+05 8.6937E+05 1.801E-01
𝑓3 7.7586E+07 6.4974E+07 8.956E-01 1.2007E+08 1.2317E+08 6.393E-01
𝑓4 -1.0989E+03 -1.0989E+03 7.858E-01 -1.0863E+03 -1.0896E+03 3.183E-02
𝑓5 -9.9992E+02 -9.9992E+02 4.290E-02 -1.0000E+03 -1.0000E+03 1.463E-01
𝑓6 -8.5073E+02 -8.4462E+02 1.654E-01 -8.6524E+02 -8.6995E+02 9.156E-02
𝑓7 -6.2634E+02 -6.2991E+02 9.552E-01 -6.9946E+02 -7.0010E+02 6.663E-01
𝑓8 -6.7907E+02 -6.7906E+02 9.776E-01 -6.7909E+02 -6.7910E+02 4.997E-01
𝑓9 -5.6846E+02 -5.6889E+02 5.178E-01 -5.7435E+02 -5.7587E+02 1.711E-01
𝑓10 -4.9916E+02 -4.9918E+02 3.732E-01 -4.9994E+02 -4.9995E+02 3.591E-01
𝑓11 5.8198E+00 3.5430E+01 5.830E-02 -2.9978E+02 -2.9589E+02 6.127E-01
𝑓12 3.9944E+02 4.1107E+02 6.193E-01 -1.4993E+02 -1.4222E+02 4.762E-01
𝑓13 2.9857E+02 2.8909E+02 8.220E-01 5.4523E+01 5.3830E+01 8.513E-01
𝑓14 2.7240E+03 2.9344E+03 4.101E-02 2.8909E+03 2.9180E+03 8.147E-01
𝑓15 4.4595E+03 4.5515E+03 6.869E-01 3.9186E+03 4.0227E+03 4.879E-01
𝑓16 2.0063E+02 2.0056E+02 2.811E-01 2.0056E+02 2.0058E+02 7.358E-01
𝑓17 6.2461E+02 6.3152E+02 9.179E-01 4.5397E+02 4.4261E+02 1.197E-01
𝑓18 5.7361E+02 5.6953E+02 6.938E-01 5.8801E+02 5.8782E+02 8.660E-01
𝑓19 5.1022E+02 5.1012E+02 9.402E-01 5.0750E+02 5.0726E+02 6.193E-01
𝑓20 6.1466E+02 6.1457E+02 1.559E-02 6.1309E+02 6.1328E+02 3.632E-01
𝑓21 1.1178E+03 1.1362E+03 6.910E-04 9.9532E+02 1.0102E+03 6.431E-01
𝑓22 6.3181E+03 6.3674E+03 9.776E-01 4.1463E+03 4.1262E+03 9.402E-01
𝑓23 7.5809E+03 7.5707E+03 7.217E-01 5.6661E+03 5.6526E+03 9.402E-01
𝑓24 1.3452E+03 1.3611E+03 1.079E-02 1.2738E+03 1.2729E+03 8.586E-01
𝑓25 1.4426E+03 1.4435E+03 8.734E-01 1.3964E+03 1.3970E+03 8.882E-01
𝑓26 1.5461E+03 1.5400E+03 2.687E-01 1.4744E+03 1.4607E+03 1.337E-01
𝑓27 2.6210E+03 2.5780E+03 3.534E-01 2.2721E+03 2.2804E+03 8.147E-01
𝑓28 4.7651E+03 4.9949E+03 6.460E-01 1.7686E+03 1.6961E+03 3.555E-01

Evaluation of Gaussian sparks operator. To evaluate
whether the results of EFWA and dynFWA improve or
deteriorate after removing the Gaussian sparks operator we
compare the results of EFWA and EFWA-NG, and the results
of dynFWA-G and dynFWA, respectively. In order to validate
the improvement between any two algorithms, the Wilcoxon
signed-rank test is conducted (cf. Section V-B). Assume that
data𝑋 , 𝑌 are single fitness results for a given number of runs
of two different algorithms. If the mean value of 𝑋 is smaller
than the mean value of 𝑌 and the Wilcoxon signed-rank test
under 5% significance level is true, then it is believed that
the results of 𝑋 are significant better than 𝑌 . A comparison
between EFWA 𝑣𝑠. EFWA-NG and dynFWA-G 𝑣𝑠. dynFWA
are given in Table I:

∙ EFWA-NG performs slighty better than EFWA on 16
functions, while it performs slightly worse than EFWA
on 12 functions. However, for 5 functions the Wilcoxon
signed-rank test indicates that EFWA is significantly
better than EFWA-NG, while for 1 function EFWA-NG
is significant better than EFWA. Hence, for EFWA these
results suggest that the Gaussian sparks operator should
not be removed, although EFWA-NG is faster in terms
of runtime (see next section).

∙ In general, the performance of dynFWA and dynFWA-G
is very similar. Only for function 𝑓4 dynFWA performs
significantly better than dynFWA-G. This indicates that
dynFWA without the Gaussian sparks operator achieves
slightly better results than dynFWA-G, and is also faster
in terms of runtime (see next section).

In the rest of this paper we use the best EFWA variant (EFWA
with Gaussian sparks operator) and the best dynFWA vari-
ant (dynFWA without Gaussian sparks operator) for further

TABLE II

MEAN FITNESS ON THE BENCHMARK FUNCTIONS AND MEAN FITNESS

RANK OF SPSO2011, EFWA AND DYNFWA.

F. SPSO2011 Rank EFWA Rank dynFWA Rank

𝑓1 -1.4000E+03 1 -1.3999E+03 3 -1.4000E+03 1
𝑓2 3.3719E+05 1 6.8926E+05 2 8.6937E+05 3
𝑓3 2.8841E+08 3 7.7586E+07 1 1.2317E+08 2
𝑓4 3.7543E+04 3 -1.0989E+03 1 -1.0896E+03 2
𝑓5 -1.0000E+03 1 -9.9992E+02 3 -1.0000E+03 2
𝑓6 -8.6210E+02 2 -8.5073E+02 3 -8.6995E+02 1
𝑓7 -7.1208E+02 1 -6.2634E+02 3 -7.0010E+02 2
𝑓8 -6.7908E+02 2 -6.7907E+02 3 -6.7910E+02 1
𝑓9 -5.7123E+02 2 -5.6846E+02 3 -5.7587E+02 1
𝑓10 -4.9966E+02 2 -4.9916E+02 3 -4.9995E+02 1
𝑓11 -2.9504E+02 2 5.8198E+00 3 -2.9589E+02 1
𝑓12 -1.9604E+02 1 3.9944E+02 3 -1.4222E+02 2
𝑓13 -6.1406E+00 1 2.9857E+02 3 5.3830E+01 2
𝑓14 3.8910E+03 3 2.7240E+03 1 2.9180E+03 2
𝑓15 3.9093E+03 1 4.4595E+03 3 4.0227E+03 2
𝑓16 2.0131E+02 3 2.0063E+02 2 2.0058E+02 1
𝑓17 4.1626E+02 1 6.2461E+02 3 4.4261E+02 2
𝑓18 5.2063E+02 1 5.7361E+02 2 5.8782E+02 3
𝑓19 5.0951E+02 2 5.1022E+02 3 5.0726E+02 1
𝑓20 6.1346E+02 2 6.1466E+02 3 6.1328E+02 1
𝑓21 1.0088E+03 1 1.1178E+03 3 1.0102E+03 2
𝑓22 5.0988E+03 2 6.3181E+03 3 4.1262E+03 1
𝑓23 5.7313E+03 2 7.5809E+03 3 5.6526E+03 1
𝑓24 1.2667E+03 1 1.3452E+03 3 1.2729E+03 2
𝑓25 1.3993E+03 2 1.4426E+03 3 1.3970E+03 1
𝑓26 1.4861E+03 2 1.5461E+03 3 1.4607E+03 1
𝑓27 2.3046E+03 2 2.6210E+03 3 2.2804E+03 1
𝑓28 1.8013E+03 2 4.7651E+03 3 1.6961E+03 1

Mean Rank
SPSO2011 1.75 EFWA 2.68 dynFWA 1.54

comparison.

Comparison of dynFWA and EFWA. Table II shows the
mean fitness value over 51 runs for each function for the
three algorithms SPSO2011, EFWA and dynFWA, and the
corresponding rank of each algorithm. Moreover, at the
bottom of Table II we present the mean fitness rank for each
algorithm. Table IV shows the runtime of each algorithm –
the runtime of the fastest algorithm (dynFWA) is set to 1,
for all other algorithms, the proportional runtimes compared
to dynFWA are presented.

A comparison between the proposed dynFWA and EFWA
reveals that dynFWA outperforms EFWA in terms of mean
fitness, mean fitness rank and runtime. In can be seen that
dynFWA achieves better mean fitness results than EFWA
on 23 functions except function 𝑓2, 𝑓3, 𝑓4, 𝑓14, 𝑓18. The
mean fitness rank results suggest that dynFWA gains great
advantages over EFWA. To test whether the improvement
of dynFWA over EFWA is significant or not, a number of
Wilcoxon signed-rank tests were conducted and the corre-
sponding 𝑝-values are presented in Table III. The results
indicate that the improvement of dynFWA is significant
compared to EFWA for 22 benchmark functions. Moreover,
in terms of computational complexity it can be seen that
dynFWA significantly reduces the runtime of EFWA for the
same number of function evaluations. This is mostly caused
by the removal of the Gaussian sparks operator, which is
computationally rather expensive (this is further indicated by
a comparison of the runtimes of EFWA vs. EFWA-NG).

Comparison of dynFWA and SPSO2011. A comparison
between the proposed dynFWA and the most recent SPSO

3228

TABLE III

WILCOXON SIGNED-RANK TEST RESULTS FOR DYNFWA vs. EFWA

(BOLD VALUES INDICATE THE SIGNIFICANT IMPROVEMENT).

F. 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7
p-value 0.00E+00 6.94E-03 9.90E-02 0.00E+00 0.00E+00 1.58E-03 0.00E+00

F. 𝑓8 𝑓9 𝑓10 𝑓11 𝑓12 𝑓13 𝑓14
p-value 1.73E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.41E-01

F. 𝑓15 𝑓16 𝑓17 𝑓18 𝑓19 𝑓20 𝑓21
p-value 5.10E-05 3.20E-01 0.00E+00 6.35E-02 1.41E-04 0.00E+00 0.00E+00

F. 𝑓22 𝑓23 𝑓24 𝑓25 𝑓26 𝑓27 𝑓28
p-value 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

TABLE IV

RUNTIME COMPARISON.

SPSO2007 1.01 EFWA 1.30 dynFWA-G 1.17
SPSO2011 – EFWA-NG 1.03 dynFWA 1

variant indicates dynFWA is able to achieve a better mean
rank compared to SPSO2011 (cf. Table II). In total, dynFWA
achieves better results (smaller mean fitness) than SPSO2011
on 17 functions, while SPSO2011 is better than dynFWA on
10 functions. For one function the results are identical. In
terms of computational complexity we measured the runtime
of SPSO2007, however, since the SPSO2011 results are
adopted from the literature (see beginning of Section V)
we cannot compare the runtimes as they depend on the
implementation and the infrastructure. Table IV shows that
compared to SPSO2007, dynFWA has almost the same
runtime. Since the SPSO2011 operators (new velocity update
strategies) appear to be more complex and therefore probably
at least as time-consuming as the SPSO2007 operators (cf.
[18], [19]), we expect SPSO2011 to have a similar or slightly
higher computationally complexity compared to initial ver-
sion of SPSO2007.

VI. CONCLUSION

In this paper, we have presented the dynamic search Fire-
work Algorithm (dynFWA), an improvement of the recently
developed Enhanced Fireworks Algorithm (EFWA). dynFWA
uses a dynamic explosion amplitude for the core firework
(CF), i.e., the firework at the currently best position. This
dynamic explosion amplitude depends on the quality of the
current local search around the CF. The main task for the
CF is to perform a local search, while the responsibility for
all other fireworks are to maintain the global search ability.
Additionally, we have analyzed the possibility to remove the
rather time-consuming Gaussian sparks operator of EFWA.
From result of our experimental evaluation we conclude the
following observations:

1) The proposed dynFWA algorithm significantly im-
proves the results of EFWA and also reduces the
runtime by more than 20%.

2) Compared with SPSO2011, dynFWA achieves a better
mean rank among 28 benchmark functions with similar
computational cost.

3) The Gaussian sparks operator of EFWA should not be
removed in EFWA. However, removing this operator in

dynFWA significantly reduces the runtime of dynFWA
without loss in optimization accuracy.

In future work, we plan to further extend this work by
incorporating different strategies to balance between the
global and local search abilities of dynFWA. Currently, only
the fitness is considered to calculate the number of explosion
sparks and the explosion amplitude. Moreover, we will focus
on designing new interaction strategies between fireworks
in the swarm in order to further accelerate the convergence
speed of dynFWA.

REFERENCES

[1] A. P. Engelbrecht, Fundamentals of Computational Swarm
Intelligence. John Wiley & Sons, 2006.

[2] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in Swarm Intelligence Symposium, 2007. SIS 2007.
IEEE. IEEE, 2007, pp. 120–127.

[3] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,”
Computational Intelligence Magazine, IEEE, vol. 1, no. 4, pp. 28–39,
2006.

[4] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” Advances
in Swarm Intelligence, pp. 355–364, 2010.

[5] S. Zheng, A. Janecek, and Y. Tan, “Enhanced fireworks algorithm,” in
Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE,
2013, pp. 2069–2077.

[6] Y. Zheng, X. Xu, and H. Ling, “A hybrid fireworks optimization
method with differential evolution,” Neurocomputing, 2012.

[7] Y. Pei, S. Zheng, Y. Tan, and T. Hideyuki, “An empirical study
on influence of approximation approaches on enhancing fireworks
algorithm,” in Proceedings of the 2012 IEEE Congress on System,
Man and Cybernetics. IEEE, 2012, pp. 1322–1327.

[8] J. Liu, S. Zheng, and Y. Tan, “The improvement on controlling
exploration and exploitation of firework algorithm,” in Advances in
Swarm Intelligence. Springer, 2013, pp. 11–23.

[9] Y.-J. Zheng, Q. Song, and S.-Y. Chen, “Multiobjective fireworks
optimization for variable-rate fertilization in oil crop production,”
Applied Soft Computing, vol. 13, no. 11, pp. 4253–4263, 2013.

[10] K. Ding, S. Zheng, and Y. Tan, “A gpu-based parallel fireworks
algorithm for optimization,” in Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation Conference,
ser. GECCO 2013. New York, NY, USA: ACM, 2013, pp. 9–16.
[Online]. Available: http://doi.acm.org/10.1145/2463372.2463377

[11] H. Gao and M. Diao, “Cultural firework algorithm and its appli-
cation for digital filters design,” International Journal of Modelling,
Identification and Control, vol. 14, no. 4, pp. 324–331, 2011.

[12] A. Janecek and Y. Tan, “Using population based algorithms for
initializing nonnegative matrix factorization,” in Proceedings of the
second international conference on Advances in swarm intelligence,
ser. ICSI’11. Springer-Verlag, 2011, pp. 307–316.

[13] ——, “Iterative improvement of the multiplicative update nmf al-
gorithm using nature-inspired optimization,” in Natural Computation
(ICNC), 2011 Seventh International Conference on, vol. 3. IEEE,
2011, pp. 1668–1672.

[14] ——, “Swarm intelligence for non-negative matrix factorization,”
International Journal of Swarm Intelligence Research (IJSIR), vol. 2,
no. 4, pp. 12–34, 2011.

[15] S. Zheng and Y. Tan, “A unified distance measure scheme for orienta-
tion coding in identification.” in Information Science and Technology,
2013 IEEE Congress on. IEEE, 2013, pp. 979–985.

[16] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space,” Trans. Evol.
Comp, vol. 6, no. 1, pp. 58–73, 2002.

[17] J. Liang, B. Qu, P. Suganthan, and A. G. Hernández-Dı́az, “Problem
definitions and evaluation criteria for the cec 2013 special session on
real-parameter optimization,” 2013.

[18] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas, “Standard particle
swarm optimisation 2011 at cec-2013: A baseline for future pso
improvements,” in Evolutionary Computation (CEC), 2013 IEEE
Congress on, 2013, pp. 2337–2344.

[19] M. Clerc, “Standard particle swarm optimization, from 2006 to 2011,”
Particle Swarm Central, 2011.

3229

