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ABSTRACT

Inspired from the immune cooperation (IC) mechanism in biological immune system (BIS), this paper
proposes an IC mechanism based learning (ICL) framework. In this framework, a sample is expressed as
an antigen-specific feature vector and an antigen-nonspecific feature vector at first, respectively,
simulating the antigenic determinant and danger features in the BIS. The antigen-specific and
antigen-nonspecific classifiers score the two vectors and export real-valued Signal 1 and Signal 2,
respectively. With the cooperation of the two signals, the sample is classified by the cooperation
classifier, which resolves the signal conflict problem at the same time. The ICL framework simulates the
BIS in the view of immune signals and takes full advantage of the cooperation effect of the immune
signals, which improves the performance of the ICL framework. It does not involve the concept of the
danger zone and further suggests that the danger zone is considered to be unnecessary in an artificial
immune system (AIS). Comprehensive experimental results demonstrate that the ICL framework is an
effective learning framework. The ICL framework based malware detection model outperforms the
global concentration based malware detection approach and the local concentration based malware

detection approach for about 3.28% and 2.24% with twice faster speed, respectively.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the development of the biological immunology, more and
more immune mechanisms become clear. One of the most impor-
tant achievements is the danger theory (DT) which overcomes the
drawback of the traditional self-nonself (SNS) model in defining
the harmfulness of self and nonself [1,2]. The DT believes that the
immune system reacts to danger instead of nonself, and the
internal conversation between the tissues and the cells in the
immune system controls immunity. It explains the autoimmunity
problem perfectly and has been one of the most important immune
theories.

Many immune based artificial immune systems (AIS) have been
proposed and applied to the field of computer security in the past
few years. Forrest et al. applied the immune theory to computer
abnormality detection for the first time in 1994. They proposed a
negative selection algorithm on the basis of the SNS model to
detect the abnormal modification of protected data [3], and later
to monitor UNIX processes [4]. In the last decade, lots of the DT
based learning approaches were proposed with some success,
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most of which involved a danger zone. The danger zone defines
the spread range of a danger signal and the way of different signals
to interact with each other. It has been one of the most important
components in the DT based artificial immune systems.

According to the study of the adaptive immune system, a
danger signal is considered to spread in the global space of the
immune system rather than a local zone in this paper. Although an
immune signal could spread only among adjacent cells physically,
the cells are able to move in the immune system. This mechanism
breaks the assumption of a danger zone which limits the spread
range of a danger signal in a local zone. Hence this paper suggests
that the danger zone is considered to be unnecessary in AlS.

The immune cooperation (IC) mechanism in the biological
immune system (BIS) is crucial for producing an effective immune
response to an antigen precisely and avoiding the autoimmunity.
Introducing this mechanism into AIS is considered to be helpful for
improving the performance of AIS. Taking inspiration from the IC
mechanism and simulating BIS in the view of immune signals
provide new ideas for constructing better AIS. Now how to
introduce the IC mechanism into AIS and make full advantage of
the cooperation effect of the immune signals become valuable
works.

Malware is a general term for all the malicious codes that is a
program designed to harm or secretly access a computer system
without the owners' informed consent, such as computer virus,
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Trojan and worm. It has been one of the most terrible threats to
the security of the computers worldwide [5]. How to detect
malware efficiently is one of the hottest research points.

A variety of malware detection approaches have been proposed
so far, which can be classified into two categories: static techni-
ques and dynamic techniques. As the static techniques usually
work on the binary string or application programming interface
(API) calls of a program without running the program, they are
portable and can be deployed on personal computers. The
dynamic techniques keep watch over the execution of every
program during run-time and stop the program once it tries to
harm the system. The dynamic techniques bring too much extra
loads and significantly degrade the performance of the computer
system, so they are usually used to analyze malware in companies
instead of detecting malware in personal computers.

Inspired from the BIS, an IC mechanism based learning (ICL)
framework is proposed in this paper. This framework expresses a
sample as an antigen-specific feature vector and an antigen-
nonspecific feature vector at first, respectively, simulating the
antigenic determinant and danger features in the BIS. The
antigen-specific and antigen-nonspecific classifiers score the two
vectors and export real-valued Signal 1 and Signal 2, respectively,
corresponding to the signals in the BIS. With the cooperation of
the two signals, the sample is classified by the cooperation
classifier, which resolves the signal conflict problem at the same
time. In order to incorporate the ICL framework into the whole
procedure of malware detection, an ICL framework based malware
detection (ICL-MD) model is further proposed in this paper.

The ICL framework simulates the BIS in the view of immune
signals. And it introduces the IC mechanism into the AIS success-
fully and makes full use of the cooperation effect of the immune
signals. What is more, it does not involve the concept of the
danger zone and further suggests that the danger zone is con-
sidered to be unnecessary in the AIS. Experimental results suggest
that the ICL framework is an effective learning framework.

The remainder of this paper is organized as follows. In Section
2, the related works are introduced. Section 2 describes the
proposed ICL framework in detail. In Section 4, the ICL-MD model
is presented. Section 5 gives the detailed experimental setup and
results. Finally, we conclude the paper with some discussions.

2. Related work

The SNS model has been accepted to describe how the immune
system works for over 50 years. Although it fails to explain a
plenty of new findings, the SNS model based AIS were still applied
to a wide range of fields successfully.

Li proposed an immune based dynamic detection model for
computer viruses [6]. Through dynamic evolution of ‘self, an
antibody gene library and detectors, this model reduces the size
of the ‘self set, raises the generating efficiency of detectors, and
resolves the problem of detector training time being exponential
with respect to the size of ‘self’.

A malware detection model based on a negative selection
algorithm with penalty factor (NSAPF) was proposed [7]. The
NSAPF punishes the features of nonself which match the features
of self instead of deleting them directly. It tries to overcome the
drawback of the SNS model in defining the harmfulness of self and
nonself by retaining all the nonself features in this way. Later they
further proposed a danger feature based negative selection algo-
rithm which divides the danger feature space into four parts and
reserves all the self and nonself danger features [8]. Both the two
models gave good results.

Tan et al. proposed a global concentration (GC) based feature
construction (CFC) approach for spam detection by taking inspiration

from the human immune system [9,10]. The GC is defined as a two-
element concentration vector, consisting of ‘self concentration and
‘nonself concentration. The experimental results suggested that the
GC was effective to characterize a sample. The GC was latter applied
to detect malware [11] and achieved good results.

A feature named the local concentration (LC) was proposed
based on the GC which was considered to be able to extract
position-correlated information from a sample and brought down
the dilute risk of the GC to a certain extent [12,13]. The LC based
feature extraction (LCFE) approach works on the local areas in a
sample to collect the detailed local information of the sample.
Experimental results suggested that it outperformed the GC based
approaches. The LCFE approach for malware detection is imported
in for comparison.

The DT believes that the immune system is more concerned
with danger than nonself [2]. It explains a lot of new findings
successfully, therefore many researchers have tried to introduce
this new theory into AIS which has developed into a new branch of
AIS [14].

Aickelin et al. proposed the concept of the danger zone to
translate the DT into the field of computer security for the first
time [15,16]. From then on, many DT based AIS have been
proposed [17].

A DT inspired artificial immune algorithm for online supervised
two-class classification problem was proposed [18]. The size of the
danger zone in this algorithm is decreased with the increase of the
accumulated intensity of the antibody. The better antibodies
would proliferate and live longer by using the clonal selection
algorithm, while a suppression mechanism is utilized to control
the antibody population. Experimental results suggested that this
algorithm performed well with good generalization capability.

Zhu and Tan proposed a DT based learning model for combin-
ing classifier and applied it to detect spam [19]. There are three
components in this model: binary-valued Signal 1, Signal 2 and
danger zone. If the Signal 1 and Signal 2 make the same
classification for a sample, the sample is classified directly. Other-
wise, a self-trigger process has to be done to solve the signal
conflict problem. The classifiers used to emit immune signals are
supposed to be conditionally independent, in order to get different
trained classifiers from the same data source.

An agent-based intrusion detection system (ABIDS) inspired by
the DT was proposed [20], where agents coordinate one another to
calculate mature context antigen value and update activation
threshold for security responses. The ABIDS works on the dual
detection of dendritic cell agents for signals and T-cell agents for
antigens. It combines advantages from the dendritic cell algorithm,
multi-agent systems and AIS to provide a better intrusion detec-
tion mechanism for unknown host behaviors.

Kolter and Maloof proposed a method to detect malware based
on the relevant N-Grams selected by the IG [21], and achieved
good results. They clearly identified that using the techniques from
machine learning and data mining to detect malware is feasible.
Later they extended this method to classify malware based on the
function of their payload [22]. This method is in fact the method
M, involved in the proposed ICL-MD model which will be
introduced in Section 4.

3. Immune cooperation mechanism based learning
framework
3.1. Immune cooperation mechanism

The adaptive immune system is one of the most important

parts of BIS. It allows for a stronger immune response as well as
immunological memory [23]. There are two kinds of immunities in
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the adaptive immune system, humoral immunity and cellular
immunity. The humoral immunity is mediated by antibodies
secreted in the B lymphocytes (B cell), which can be found in
the body fluids, while the cellular immunity is the immunity
mediated by cells, involving the macrophages, natural killer cells,
T lymphocytes (T cell), and cytokines [24].

In the adaptive immune system, the cooperation mechanism
between the first signal (Signal 1) and the second signal (known as
co-stimulation signal, referred to as Signal 2 in this paper), which
are antigen specific and nonspecific respectively, is usually crucial
for BIS to produce an effective immune response to an antigen.
This mechanism is called the immune cooperation (IC) mechanism
in this paper. From the perspective of the IC mechanism, there are
not remarkable differences between the humoral immunity and
the cellular immunity in the procedure of antigen recognition.
Hence this paper illustrates the IC mechanism by using the
humoral immunity.

The danger model is shown in Fig. 1, which illustrates an
immune response in the humoral immunity [2]. Firstly, the naive B
cell recognizes the antigenic determinant of an antigen, which is
able to identify a specific kind of antigen, by using the antibody
molecule in its surface and sends Signal 1 to activate these kinds of
B cells. At the same time, the normal cells intruded by the antigens
die abnormally and release the intracellular products, which are
believed to be danger features. These danger features are con-
sidered to be able to send a danger signal, which is antigen
nonspecific, to their neighboring antigen present cells (APCs).
After receiving the danger signal, the APCs move into immune
tissues and transform it to corresponding helper T cells (Th, for
short), CD4+ Th1 in this case, as the co-stimulation signal,
referred to as Signal 2. Then the helper T cells release various
kinds of cytokines, which act as Signal 2, to activate the corre-
sponding B cells. Finally, under the cooperation of the two signals,
the B cell is fully activated and secretes antibodies to produce an
effective immune response.

It is easy to see that there are two signals acting on the
lymphocytes, B cell and T cell, in an effective immune response:
antigen-specific Signal 1 provided by the antibody molecular of B
cell or T cell receptor, and antigen-nonspecific Signal 2 which is
able to stimulate the antigen-specific lymphocytes to proliferate
and differentiate. Since both the signals are considered to own two
states, presence or absence, in an immune response, the two
signals are regarded as binary-valued signals. A lymphocyte could
be fully activated if and only if the two signals cooperate with each
other and work on it. Although there are many differences

Antigen
Recognition Destruction
Naive B cell Distressed cell
Signal 1 Danger
Signal
Beell |la— NPT g 1 apc
T cell
Signal 2 Signal 2
(Co-stimulation Signal)
Mature B cell i e
antibodies

Fig. 1. The danger model.

between the danger signal and Signal 2, taking different senders
and receivers as an example, Signal 2 is considered to come from
the danger signal and could be regarded as a danger signal in
another form. Hence this paper merges the danger signal into
Signal 2. The IC mechanism drops down the probability of the
autoimmunity in BIS, and helps us to recognize and clear antigens
more precisely. It is one of the most important mechanisms to
keep BIS working stably and effectively.

Many researches have shown that Signal 2 plays an important
role in an adaptive immune response [25-28]. It is necessary for
the proliferation, differentiation and survival of the lymphocytes.
It is also able to increase the immunological effect dramatically in
an adaptive immune response.

It is important to note that the APCs send Signal 2 to corre-
sponding helper T cells by moving in BIS, rather than its neighbor-
ing helper T cells physically. For example, after receiving a danger
signal, an APC delivers itself to the lymphatic tissue through
lymphatic channels in cellular immunity. In the lymphatic tissue,
it transforms the danger signal to corresponding helper T cells in
the form of Signal 2. The helper T cells further transform this signal
to corresponding effector T cells to activate these T cells.

Many DT based AIS assumed that there is a danger zone in an
AIS. It indicates the spread range of a danger signal and defines a
specific way for a danger signal to interact with other signals.
According to the BIS, this assumption is considered to be unrea-
sonable. As we know, the APC, which is antigen nonspecific and
could engulf a wide range of antigens, has lower diversity. It is
different from the B cells and T cells, which are antigen specific
and own lots of classes. As there are plenty of APCs which could be
found everywhere in the BIS, it is reasonable to assume that any
danger signal is able to be sent to any kind of APCs. After receiving
a danger signal, an APC would load the information of the antigen
into its major histocompatibility complex (MHC) molecule and
further send this information to corresponding helper T cells in the
form of Signal 2. As mentioned above, these helper T cells need not
come near the APC physically. The APC could move in the immune
system with the information of the antigen and find the appro-
priate helper T cells. That is to say, although the immune signals
only spread among adjacent immune cells, the immune cells with
the antigen information are able to move in the immune system.
This mechanism breaks the assumption of the danger zone which
suggests that the danger signal spreads itself in a local zone. Hence
this paper regards the danger signal, referred to as Signal 2, as a
global signal. There is no need to define a danger zone in AIS
which simplifies the framework of AIS dramatically.

Let us illustrate the above analysis using an example. When the
same antigens intrude an immune system from any position, the
immune system almost always produces an effective immune
response. This phenomenon suggests that there is not a danger
zone in the immune system and the danger signal, Signal 2 in this
paper, could be regarded to spread in the whole immune system.
In an AIS, every APC usually has only one copy, which represents a
kind of APC. No matter how far an antigen is from an APC logically,
a danger signal activated by the antigen is hoped to be sent to all
the APCs.

3.2. ICL framework

Inspired from the IC mechanism in BIS, this paper proposes a
novel IC mechanism based learning (ICL, for short) framework. The
definitions of the concepts used in the ICL framework are given
below:

® Antigen-specific feature is the antigen feature that only occurs in
antigens, simulating the basic unit of the antigenic determinant
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of a biological antigen. It is obviously antigen-specific and is
able to identify a kind of antigen.

® Antigen-nonspecific feature, also called danger feature, is able to
measure the danger of a sample and discriminate antigens from
non-antigens. As it appears in both antigens and non-antigens,
it is antigen-nonspecific, simulating the basic element of the
danger features in BIS.

The flowchart of the ICL framework is shown in Fig. 2. Firstly,
the ICL framework expresses a sample as an antigen-specific
feature vector by using the antigen-specific feature library L. This
feature vector simulates the antigenic determinant of a biological
antigen and is considered to contain the antigen-specific informa-
tion of the sample. It is taken as the input of the antigen-specific
classifier C;, in which the antigen-specific information contained
in the sample is measured. At the same time, the sample is further
expressed as an antigen-nonspecific feature vector based on the
antigen-nonspecific feature library L,. This feature vector simu-
lates the danger features in BIS, and is used to measure the danger
information of the sample by the antigen-nonspecific classifier Cs.

Secondly, the classifiers C; and C, score their input features.
The scores of the two features are taken as the real-valued Signal
1 and Signal 2 in this paper, corresponding to the binary-valued
Signal 1 and Signal 2 in BIS. The two signals here are real numbers
in the interval [0, 1]. They are taken as the input of the cooperation
classifier Cs.

Finally, according to the cooperation information of Signal
1 and Signal 2, the cooperation classifier Cs; classifies a sample
into a class. In this phase, the classifier C3 resolves the classifica-
tion problem and the immune signal conflict problem at the same
time on the basis of the knowledge learned in its training
procedure. It increases the efficiency of the ICL framework greatly.
Furthermore, the IC mechanism used here helps us to drop down
the false positive rate and the false negative rate, and improves the
performance of the proposed ICL framework.

A sample

Antigen-specific
feature extraction

( Antigen-specific O <Antigen—nonspeciﬁco

Antigen-nonspecific
feature extraction

feature library L, feature library L,

Immune cooperation

\ 4 \ 4

Antigen-specific Antigen-nonspecific
classifier C, classifier C,

Signal 1 Signal 2

Cooperation
classifier Cs
|

v

Classification

> «

Fig. 2. The flowchart of the ICL framework.

The mathematical model of the proposed ICL framework could
be written as

fVs,Vn) =fc,(fe,(Vs).fe,(V) (1

where Vs and Vy denote the antigen specific and nonspecific
feature vectors of a sample, respectively. And f¢ .fc, and fc,
represent the classifiers Cq,C, and Cs, respectively.

Different from the method proposed in [19], there is not
uncorrelated requirement for the machine learning classifiers used
in the classifiers C; and G, as their data sources are considered to
be independent. That is to say, any machine learning classifier is
able to be used in the classifiers C; and C,. Their training feature
vectors determine their properties, antigen-specific and antigen-
nonspecific.

The proposed ICL framework utilizes the real-valued signals
instead of the binary-valued signals in BIS. The real-valued signals
are believed to bring many advantages, which are listed below:

® The real-valued signals are able to transform the characteriza-
tion information of a sample more precisely to the cooperation
classifier C3 without information loss. Base on this property, the
real-valued signals have the potential ability to improve the
performance of the ICL framework.

® The ICL framework need not set the binary thresholds for the
classifiers C; and C,, which brings down the number of
parameters in this framework.

® With the help of the real-valued signals, there is no need to
resolve the immune signal conflict problem here, which further
simplifies the structure of this framework.

The Signal 1 and the Signal 2 in the proposed ICL framework
are emitted based on the antigen-specific and antigen-nonspecific
feature vectors of a sample by the classifiers C; and C,, respec-
tively. The data sources of the two signals almost exactly corre-
spond to those in BIS. It makes the emission of the signals more
natural. Table 1 lists the mapping between the BIS and the ICL
framework. Inspired from BIS, the ICL framework simulates the BIS
in the view of immune signals reasonably and makes full advan-
tage of the IC mechanism. It is believed to be able to measure the
danger of a sample more precisely and make a better classification.

In the ICL framework, Signal 1 and Signal 2 cooperate with each
other. The cooperation effect is considered to be able to help the ICL
framework express and measure the class information of a sample
more accurately and precisely. Actually the two branches in the ICL
framework, i.e. the classifiers C; and C, which emit Signal 1 and
Signal 2, could be regarded as two independent learning methods,
written as M; and M, respectively. The mathematical models of M,
and M, are f(Vs) = fc,(Vs) and f(Vy) = f ¢, (V). With the cooperation
of the immune signals, the ICL framework is expected to outperform
both M; and M,, and further exceed the sum of the two methods.
The sum of M; and M, is written as My, in this paper, the
mathematical model of which is f(Vs, V) =fc, (Vo)Uf ¢, (V).

Table 1
The mapping between the BIS and the ICL framework.

BIS ICL framework

Antigenic determinant
Danger feature

Binary-valued Signal 1
Binary-valued Signal 2

Antigen-specific feature vector
Antigen-nonspecific feature vector
Real-valued Signal 1

Real-valued Signal 2

B cell, T cell Antigen-specific classifier C;
APC, helper T cell Antigen-nonspecific classifier C,
B cell, T cell Cooperation classifier C3
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In this paper, F(M;) is used to denote the performance of the
method M;, where i=1,2,1(J2, 3. In particular, F(M5) indicates the
performance of the ICL framework. According to the IC mechan-
ism, we hope

F(M3) > F(M12) ()
F(My2) > =F(My) 3
F(Myj2) > =F(M>) 4)

The area under the receiver operating characteristic (ROC)
curve (AUC), which is widely used to evaluate the classification
performance in the field of machine learning, is utilized as the
performance evaluation criteria in this paper. Let fi(x) denote the
ROC curve of the method M;, where x is the false positive rate and
fi(x) is the true positive rate, then

1
F(M;) = / fix) dx ®)
0
We define
1
F(My ) = /O max(f; (x).f> ()} dx ®)

From the above definition of the F(M;j,), it is easy to see that
Formula (3) and Formula (4) are always true. We will verify
Formula (2) in the experiments, thereby proving that the IC
mechanism helps us to improve the performance of the ICL
framework.

4. ICL framework based malware detection model

In order to incorporate the ICL framework into the procedure
of malware detection, a novel ICL framework based malware
detection (ICL-MD) model is proposed in this paper. This model
involves two modules, feature extraction and classification. In
the malware detection problem, malware are taken as antigens,
while benign programs are non-antigens.

In the ICL-MD model, the 4-Grams are taken as the candidate
features which are binary strings of length 4 bytes. N-Gram is a
concept from text categorization, which indicates N continuous
words or phrases. Kolter and Maloof took 4-Grams as candidate
features in their previous works [21,22]. They believed that the 4-
Gram is able to capture not only binary strings of length 4 bytes,
but also longer strings.

The way to extract the feature libraries L, and L, is
introduced below. Firstly, the ICL-MD model collects the
statistical information of the 4-Grams by traversing the train-
ing set. It is the data basis to evaluate the goodness of a 4-
Gram. Secondly, the goodness of every 4-Gram is measured by
using a feature goodness criteria. The information gain (IG) is
taken as the feature goodness criteria in this paper. Other
feature goodness criteria such as document frequency, mutual
information, y? statistic and term strength [29] could also be
used. Then all the 4-Grams are sorted in the descending order
based on their IG values. Finally, the ICL-MD model traverses
the ordered 4-Grams orderly. If a feature f only occurs in
malware, it is considered to be antigen-specific and added to
Li. Otherwise, we regard it as an antigen-nonspecific feature
and add it to L,. Iterate this process until there are N; features
in the L; and N, features in L,. Until now, the two feature
libraries are generated.

It is easy to see that the features in L; only occur in malware
which are antigens, hence they are considered to be antigen-
specific. However, the features in the L, appear in both malware
and benign programs with high IG value, so they are believed to be

antigen-nonspecific features and have the ability to discriminate
malware from benign programs.

In the procedure of feature extraction, a sample is expressed as
a binary feature vector of length N;, which consists of 0 s for the
absence of the features in L, and 1s for the presence of the
features in Ly. This feature vector is the antigen-specific feature
vector which is taken as the input of the classifier C;. In a similar
way, the antigen-nonspecific feature vector of length N, is
extracted on the basis of L,.

In the classification module, the three classifiers C;,C, and Cs
adopt the same machine learning classifier: the support vector
machine (SVM) with the same parameters realized in LibSVM.
Other classifiers, such as k-nearest neighbor, naive Bayes and
decision tree, can also be used.

In the malware detection field, M, is actually the method
proposed in [21,22], which is imported in for comparison.

5. Experiments
5.1. Experimental setup

Comprehensive experiments are conducted on three public
malware datasets in this paper: CILPKUO8 dataset, Henchiri
dataset and VXHeanvens dataset, which can be download from
www.cil.pku.edu.cn/resources/.

The benign program dataset used here consists of the files in
portable executable format from Windows XP and a series of
applications, which are the main punching bag of malware.

This paper optimizes the following two parameters for the
SVM, the gamma g in kernel function and the cost c, by traversing
the whole combinations of g and ¢, where g =0.005,0.010,...,1
and c=1,2,...,64. According to the experimental results, the
parameters of the SVM used in this paper are finally set as follows:
g=0.125,c=4. We did not emphasize on optimizing the SVM
parameters because the parameters optimization of the SVM is not
our main focus.

In the experiments in Section 5.3, eight groups of experi-
ments are carried out on the three public malware datasets
using 5-fold cross validation, and the 95% confidence intervals
are computed to look into the stability of the proposed ICL-MD
model. As both the CILPKUO8 and Henchiri datasets mainly
consist of computer viruses, two experiments are exploited in
the two datasets, ignoring the categories of malware. There are
six categories of malware in the VXHeavens dataset, so it is split
into six smaller datasets: backdoor, constructor, trojan, virus,
worm and “Others”. The “Others” includes DoS, Nuker, Hacktool
and Flooder, while the malware in the other five smaller
datasets fall into a category. Six groups of experiments are
taken in the six smaller datasets.

There is no overlap between a training set and a test set in all
the experiments. For a training set, the malware in a test set are
the unseen malware. This setting increases the reliability of the
experiments.

In the experiments, we will verify that the IC mechanism
plays the cooperation effect and improves the performance of
the proposed ICL-MD model. What is more, the immune global
concentration based malware detection (GC-MD) approach [11]
and the immune local concentration based malware detection
(LC-MD) approach [13], which perform very well, are imported
in for comparison.

The average detecting time for a sample is very important for
a real-time system, hence it will be given and discussed in
Section 6.2. The detailed information of the experimental plat-
form is listed in Table 2.
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5.2. Selection of parameters

The two parameters in the ICL framework, N; and N, are
selected by using the grid search in this section, where
N1,N; =100,200,...,1000. The larger N; and N, are not con-
sidered as the higher dimension of the feature vectors.

The dataset used here consists of 1048 benign programs,
randomly selected from the benign program dataset, and 1048
computer viruses from the VXHeavens dataset. The benign
programs were randomly split into two sets with 524 programs
for each set, one for training and the other one for testing. The
same partition was done to the computer viruses. The 524
benign programs and 524 viruses made up the training set, and
the test set consisted of the remaining benign programs and
viruses.

The experimental results on the above dataset are further
processed using cubic spline interpolation method and plotted
in Fig. 3 which illustrates the influence of the two parameters,
N; and N, to the performance of the ICL-MD model. It is easy
to see that Ny has a greater influence on the performance of the
ICL-MD model, so selecting a proper N; would help the ICL-MD
model perform better. With the increase of Ny, more and more
discriminating antigen-specific features are included in L,
which are considered to help us to improve the performance
of the ICL-MD model, whereas more misleading information
are also brought which lead to the decrease of the performance
of the ICL-MD model at last. According to the experimental
results, N is set to 400 as the ICL-MD model performs well and
stably with this parameter. The influence of N is less than that
of N;. With N; =400, we set N, =400.

Table 2
The experimental platform.

CPU Core 2 Duo 3.00 GHz
RAM 8GB
Operating System Win 7 64-bit

0.98 —

0.975 —

0.97 —

0.965 —

AUC

0.96 —

0.955 —

0.95 —
Optimal N1

y

1000

%00 400

N, 300

5.3. Experimental results

Eight groups of experiments are conducted on the three public
malware datasets in this section. Table 3 lists the experimental
results of the M1, M3z, My )2, and the proposed ICL-MD model, in
which the bold font indicates the best results of the four models.

Table 3 suggests that the ICL-MD model outperforms both M;
and M, in all the experiments. It performs better than M; and M,
for about 13.46% and 0.58% on average in the experiments taken in
the VXHeavens dataset. Since both M; and M, achieved good
results in the CILPKUO8 and Henchiri datasets, the ICL-MD model
outperforms M; and M, slightly in the two datasets.

The ICL-MD model also outperforms My j;, which indicates the
sum of M; and M, with minor superiority in the experiments on
the CILPKUO8 and Henchiri datasets, while it is better than My,
for about 0.42% on average in the other six groups of experiments.
In the experiment to detect worm, the ICL-MD model outperforms
M;j, for about 0.92%, which proves that the IC mechanism in the
ICL framework plays the cooperation effect effectively.

The proposed ICL-MD model characterizes and analyzes a
sample from the antigen-specific perspective and the antigen-
nonspecific perspective at the same time, which lays a good
foundation for the classification later. The ICL-MD model achieves
excellent performance with the help of the cooperation of the two
immune signals, which are considered to help us to drop down the
false positive and false negative rates.

The experimental results of the GC-MD and LC-MD approaches
are given in Table 4. It is easy to see that the proposed ICL-MD
model outperforms the GC-MD and LC-MD approaches for about
3.28% and 2.24% on average, respectively, in the experiments taken
in the VXHeavens dataset, while it is a little better than the two
approaches in the other two experiments. These experimental
results suggest that the ICL framework is an effective immune
based learning framework and introducing the IC mechanism into
AIS has the potential ability to improve its performance.

The 95% confidence intervals in all the experiments of the ICL-
MD model are relatively small from Table 3, and they are less than
that of the M;,M; and M, j; in most cases. These results suggest
that the proposed ICL-MD model is very stable.
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Fig. 3. The AUC in the selection of parameters.
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Table 3

The AUCs of the My, M,, M2, and the ICL-MD model.
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Datasets M, M, M2 ICL-MD model

CILPKUOS 0.9564 + 0.003228 0.9992 + 0.000910 0.9995 + 0.000410 0.9997 + 0.000249
Henchiri 0.9606 + 0.006053 0.9990 + 0.000862 0.9994 + 0.000361 0.9995 + 0.000276
Backdoor 0.8509 + 0.004976 0.9794 + 0.003280 0.9825 + 0.003355 0.9846 -+ 0.002036
Constructor 0.8996 + 0.047044 0.9794 + 0.014825 0.9808 + 0.013594 0.9820 -+ 0.014933
Trojan 0.7741 + 0.036341 0.9644 + 0.005274 0.9665 + 0.005665 0.9702 + 0.004172
Virus 0.8439 + 0.023959 0.9770 + 0.004391 0.9775 + 0.004147 0.9833 + 0.002757
Worm 0.8691 + 0.035813 0.9708 + 0.006525 0.9726 + 0.006626 0.9818 -+ 0.002969
Others 0.8282 + 0.025178 0.9676 + 0.007042 0.9688 + 0.006974 0.9717 + 0.006097

Table 4 which affect the values of the D, and Dj,, the Di, and Dj, are

The AUCs of the GC-MD approach and LC-MD approach.

considered to be distributed normally, respectively. Suppose that
D, NN(/‘DH’GZDH)' i=1,2,...,6. Three hypothesis tests are needed

Datasets GC-MD approach LC-MD approach 5 o ;
to be exploited based on the samples D%, which are shown as

CILPKUOS 0.9976 + 0.000526 0.9973 + 0.000559 . _ )

Henchiri 0.9970 + 0.001283 0.9966 + 0.001944 Ho: pp, =0.Hy : pip, #0 @

Backdoor 0.9711 + 0.007953 0.9740 + 0.006196

Constructor 0.9651 + 0.011248 0.9672 + 0.009040 Ho : ptp,, <0,Hy : pp,, >0 8)

Trojan 0.9525 + 0.004842 0.9527 + 0.003589

Vi 0.9650 + 0.009839 0.9692 + 0.008283

\Al/l;)L;lSn 0.8942 f 0.032133 0.9322 + 0.016678 Ho : ptp, = 0, Hy < p, <0 ®

Others 09288 +0.014902 0.9438 +0.009501 According to the t-test, tgos/2(5)=2.5706, to05(5) = 2.0150,
the critical region of the three hypothesis tests are (—oo,
—2.5706]J]2.5706, +00),[2.0150, +00), (— 0o, —2.0150].

Table 5 As ty, = —2.7839, t,, refuses the hypothesis Hp in (7) and (9),

The ANOVA/P-value Table.

Source SS df MS F P
Experiments 0.00338 2 0.00169 4.27 0.034
Error 0.00592 15 0.00039

Total 0.00930 17

The SS denotes the sums of squares, and the df is the degrees of freedom. The MS
represent the mean squares (SS/df) and the P is the P-value.

5.4. Statistical analysis

In order to ensure that the experimental results are reliable and
the proposed ICL-MD model outperforms the GC-MD and LC-MD
approaches statistically, an analysis of variance (ANOVA) has been
done followed by two t hypothesis tests (t-test).

As the malware in the CILPKUO8 and Henchiri datasets come
from the Disk Operating System (DOS) which are easier to be
detected, all the GC-MD approach, the LC-MD approach and the
proposed ICL-MD model perform well on the two datasets. Here
all the statistical analysis has been done with the six groups of
experiments on the VXHeavens dataset.

We regard the performances of the three malware detection
models as a random variable which is distributed normally with
the same variance. According to the six groups of independent
experimental results, the ANOVA/P-value table is given in Table 5.

Table 5 suggests that the P-value is 0.034, which is less than the
default a=0.05 significance level. It indicates that the perfor-
mances of the three malware detection models are not the same
statistically. Hence the null hypothesis that all the three models
have a common performance is rejected and the three models are
considered to perform statistically different.

In order to make sure that the proposed ICL-MD model out-
performs the GC-MD and LC-MD approaches statistically, two t-
tests have been further carried out. There are six groups of
independent experimental results, written as (X;, Y;,Z;) where
X;,Yi,Z; are the AUCs of the GC-MD, LC-MD and ICL-MD models
respectively, i=1,2,...,6. Let D{,=X;—Z; and D, =Y;—Z. As
there is only a factor, the different malware detection models,

but accepts the hypothesis Hy in (8). These results suggest that the
ICL-MD model outperforms the GC-MD approach at the @ =0.05
significance level. In a similar way, we know that t,, = —3.7712,
which also demonstrate that the ICL-MD model outperforms the
LC-MD approach at the o = 0.05 significance level. On the basis of
the above t-tests, the improvement of the ICL-MD model is
considered to be statistically significant, and the experimental
results in this paper are reliable.

6. Discussions
6.1. Advantages of the ICL framework

Inspired from BIS, the danger zone is considered to be unne-
cessary in AlS in this paper. Based on this idea, the proposed ICL
framework does not define a danger zone. It is different from the
previous danger theory based learning models which almost
always define a danger zone to limit the spread range of the
danger signal. Hence the ICL framework need not optimize the size
of the danger zone. It drops down the complexity of the ICL
framework. Compared to the BIS, the ICL framework without
danger zone is more natural.

The proposed ICL framework takes advantage of the real-
valued signals instead of the binary-valued signals in BIS. It makes
the ICL framework not to define the binarization thresholds for the
classifiers C; and C,, and not to resolve the signal conflict problem
here. The complexity of the ICL framework is brought down
dramatically in this way. What is more, the real-valued signals
are able to be sent to the cooperation classifier C; more precisely
without information loss which lay a good foundation for the
cooperation of the immune signals later.

The ICL framework defines a new way to emit the immune
signals. The antigen-specific classifier C; sends out Signal 1 based
on the antigen-specific feature vector of a sample, while Signal 2 is
emitted by the antigen-nonspecific classifier C; according to the
sample's antigen-nonspecific feature vector. The different proper-
ties of the two immune signals, that is, antigen-specific and
antigen-nonspecificc, do not rely on the uncorrelated machine
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learning classifiers used in the classifiers C;, C; and Cs. In fact,
they come from the two different and independent training data
sources: antigen-specific and antigen-nonspecific feature vector
sets.

The IC mechanism is introduced into AIS successfully by the ICL
framework in this paper. The ICL framework characterizes a
sample more precisely from the antigen-specific and antigen-
nonspecific perspectives with the help of the IC mechanism, which
is believed to help us to reduce the false positive and false negative
rates. With the cooperation effect of the immune signals, the ICL
framework outperforms the M;,M, and My 2, and it further
outperforms the GC-MD and LC-MD approaches statistically.

6.2. Time complexity

The time complexity of the ICL framework is the same as the
GC-MD and LC-MD approaches: O(N), where N is the length of a
sample. There are N 4-Grams at most in a sample of length N. In
the procedure of feature extraction, every 4-Gram needs to be
queried in a hash table, the capacity of which is a constant, N; + N,
in this context. The query complexity in the hash table is O(1).
Hence the time complexity to extract the antigen-specific and
antigen-nonspecific feature vectors of a sample is O(N). Compared
to the time complexity of the feature extraction, the time com-
plexity of the classification module in the ICL framework is very
low which could be ignored. Hence the time complexity of the
proposed ICL framework is O(N).

The average detecting time for a sample of the ICL-MD model is
measured in the virus dataset of the VXHeavens dataset, where
the average size of the samples is 104 KB. The average detecting
time is given in Table 6.

Table 6 shows that the average detecting time for a sample of
the four models is almost the same. In the feature extraction
procedure, the ICL-MD model and the My, store the feature
libraries L; and L, in a hash table, respectively, the capacity of
which is N; + N, while the capacity of the hash tables used in the
M, and M, are N, and N,, respectively. Actually a query in these
hash tables consumes nearly the same time. Compared to the time
used in the feature extraction procedure, the time of classification
is quite short. Hence the ICL-MD model runs as fast as the My, M,
and M; U2-

The proposed ICL-MD model is twice faster than the GC-MD
and LC-MD approaches which consume 0.16 and 0.15s for a
sample on average respectively. It basically meets the requirement
of a real-time system.

7. Conclusions

Inspired from BIS, this paper has proposed a novel IC
mechanism based learning framework. It characterizes a sam-
ple from both the antigen-specific and antigen-nonspecific
perspectives, and classifies the sample by using the immune
cooperation effect of the immune signals. Extended experi-
mental results suggest that the ICL framework is an effective
learning framework. The ICL-MD model outperforms the GC-
MD and LC-MD approaches for about 3.28% and 2.24% on
average, respectively, with twice faster speed. This work makes
two contributions:

Table 6
The average detecting time for a sample (seconds).

M, M, M2 ICL-MD model

0.07179 0.06968 0.07236 0.07256

® This paper introduces the IC mechanism into AIS and con-
structs an IC mechanism based learning framework.

® This paper illustrates that the danger zone is considered to be
unnecessary in AlS.

Future work includes strengthening the cooperation effect of the
immune signals by introducing different machine learning
classifiers.
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