
1

Attract-Repulse Fireworks Algorithm and its CUDA
Implementation Using Dynamic Parallelism

Ke Ding and Ying Tan

Abstract—Fireworks Algorithm (FWA) is a recently developed
Swarm Intelligence Algorithm (SIA), which has been successfully
used in diverse domains. When applied to complicated problems,
many function evaluations are needed to obtain an acceptable
solution. To address this critical issue, a GPU-based variant
(GPU-FWA) was proposed to greatly accelerate the optimization
procedure of FWA. Thanks to the active studies on FWA and GPU
computing, many advances have been achieved since GPU-FWA.
In this paper, a novel GPU-based FWA variant, Attract-Repulse
FWA (AR-FWA), is proposed. AR-FWA introduces an efficient
adaptive search mechanism (AFW Search) and a nonuniform
mutation strategy for spark generation. Compared to the state-
of-the-art FWA variants, AR-FWA can greatly improve the
performance on complicated multimodal problems. Leveraging
the edge-cutting dynamic parallelism mechanism provided by
CUDA, AR-FWA can be implemented on the GPU easily and
efficiently.

Index Terms—Fireworks Algorithm (FWA), Swarm Intelli-
gence Algorithms (SIAs), GPU Computing, Compute Unified
Device Architecture (CUDA), Dynamic Parallelism

I. INTRODUCTION

Fireworks Algorithm (FWA) is a novel swarm intelligence
algorithm (SIA) under active research. Inspired by the explo-
sion process of fireworks, FWA was originally proposed for
solving optimization problems [1]. Comparative study shows
that FWA is very competitive with respect to real-parameter
problems [2]. FWA has been successfully applied to many
scientific and engineering problems, such as non-negative
matrix factorization [3], digital filter design [4], parameter
optimization [5], document clustering [6], and so forth. New
mechanisms and analyses are actively proposed to further
improve the performance of FWA [7], [8].

Although FWA, as well as other SIAs, has achieved success
in solving many real-world problems where conventional arith-
metic and numerical methods fail, it suffers from the drawback
of intensive computation which greatly limits its applications
where function evaluation is time-consuming.

Facing technical challenges with higher clock speeds in
fixed power envelope, modern computer systems increasingly
depend on adding multiple cores to improve the performance
[9]. Initially designed for addressing highly computational
graphics tasks, the Graphics Processing Unit (GPU), from its
inception, has many computational cores and can provide mas-
sive parallelism (with thousands of cores) at a reasonable price.
As the hardware and software for GPU programming grow

The authors are with the Key Laboratory of Machine Perception (MOE),
Peking University and Department of Machine Intelligence, School of
Electronics Engineering and Computer Science, Peking University, Beijing,
100871 China (E-mail: {keding,ytan}@pku.edu.cn.)

mature [10], [11], GPUs have become popular for general
purpose computing beyond the field of graphics processing,
and great success has been achieved in various applications,
from embedded systems to high performance supercomputers
[12], [13], [14].

Based on interactions within population, SIAs are naturally
amenable to parallelism. SIAs’ such intrinsic property makes
them very suitable to run on the GPU in parallel, thus gain
remarkable performance improvement. In effect, GPUs have
been utilized to accelerated SIAs from the first days of GPU
computing, and significant progress has been achieved along
with the emergence of high-level programming platforms
such as CUDA (Compute Unified Device Architecture) and
OpenCL (Open Computing Language) [15], [16]. In the past
few years, different implementations of diverse SIAs were
proposed. Targeting on GPUs of various architectures and
specifications, many techniques and tricks were introduced
[17].

The first GPU-based FWA, named GPU-FWA, was pro-
posed in 2013 which targets on GPUs of Fermi Architec-
ture [18]. GPU-FWA modifies the original FWA to suit the
particular architecture of the GPU. It does not need special
complicated data structure, thus making it easy to implement;
meanwhile, it can make full use of the great computing power
of GPUs. In the last few years, however, many advances
have been achieved for both FWA and GPU computing. More
dedicated and efficient implementations are possible.

In this paper, a novel GPU-based FWA variant, Attract-
Repulse FWA (AR-FWA), is proposed and discussed in detail.
AR-FWA introduces an efficient adaptive firework search
strategy and a novel mutation mechanism for spark genera-
tion. Thanks to the dynamic parallelism provided by CUDA,
AR-FWA can be implemented on the GPU very easily and
efficiently.

The remainder of this paper is organised as follows. In
Section II, the related work, Fireworks Algorithm (FWA)
and General Purpose Computing on the GPU (GPGPU), is
presented briefly. Section III discusses the proposed algo-
rithm, Attract-Repulse Fireworks Algorithm (AR-FWA). The
Adaptive Firework Search (AFW Search) and Non-uniform
Mutation are presented in detail. Section IV describes how
AR-FWA can be implemented on the GPU using dynamic
parallelism. Key kernel codes are also given out in this
section. The experiments and analyses are given in Section
V. The performance of Non-uniform mutation against uniform
mutation is studied, as well as AR-FWA against the state-of-
the-art FWA variants and the speedup on the basis of extensive
experiments. Finally, we conclude the discussion in Section

2

Fig. 1: Framework of Fireworks Algorithm

VI.

II. RELATED WORK

A. Fireworks Algorithm (FWA)

The framework of FWA is illustrated by Fig. 1. FWA utilizes
n D-dimensional parameter vectors xGi as the basic population
in each generation. Parameter i varied from 1 to n and param-
eter G stands for the index of generations. Every individual
in the population explodes and generates sparks around it.
The number of sparks and the amplitude of each individual
are determined by certain strategies. Furthermore, a Gaussian
explosion is used to generate sparks to keep the diversity of
the population. Finally, the algorithm keeps the best individual
in the population and selects the rest n− 1 individuals based
on distance for next generation. More specific strategies of
fireworks algorithm are described as follows [2].

1) Spark Generation: Spark generation mimics the explo-
sion of fireworks and is the core mechanism in fireworks
algorithm. When a firework blasts, many sparks appear around
it. The explosion sparks strategy mimicking this phenomenon
is used to produce new individuals by explosion. In this
strategy, two parameters need to be determined.

The first one is the number of sparks:

si = Ŝ · ymax − f(xi) + ξ∑N
i=1(ymax − f(xi)) + n · ξ

. (1)

where Ŝ is a parameter controlling the total number of sparks
generated by the n fireworks, ymax = max(f(xi)) (i =
1, 2, . . . , n) is the maximum (worst) fitness value of the
objective function among the n fireworks, and ξ denotes
the machine precision. si is rounded to the nearest integer
(clamped if beyond a predefined range). (Note that, in the
original literature [1] and many following works, the ξ in the
denominator is not multiplied by n which will cause the sum
of all A surpasses Â when the finesses are very close. The
same argument holds for Eq. (2) as well).

Fig. 2: A firework with better fitness value can generate a
larger population of sparks within a smaller range (a), and
vice verse (b).

The second parameter in this strategy is the amplitude of
sparks:

Ai = Â ·

(
f(xi)− ymin + ξ∑N

i=1(f(xi)− ymin) + n · ξ
+ ∆

)
. (2)

where the predefined Â denotes the maximum explosion
amplitude, and ymin = min(f(xi)) (i = 1, 2, . . . , n) i.e. the
minimum (best) value of the objective function among the n
fireworks, and ξ , which denotes the machine precision. ∆ is
a small number to guarantee the amplitude is nonzero thus
avoid the search process getting stalled. In [19], a minimum
amplitude check is conducted instead of using ∆.

Eq. (1) and Eq. (2) guarantee that fireworks with better
fitness values generate more sparks within smaller range (cf.
Fig. 2). Via this mechanism, more computing resource can be
assigned to better space to enhance exploitation, and for the
worse space, the search trends to exploration.

2) Mapping Strategy: If an individual is close to the
boundary, the generated sparks may lie beyond the feasible
space. Therefore, some mapping method is needed to ensure
that all the individuals stay in the feasible space. If there are
some outlying sparks from the boundary, they will be mapped
to their allowable scopes.

A common strategy is mapping by clamping:

xi = xmini + |xi − xmini |%(xmaxi − xmini). (3)

where xi represents the positions of any sparks on the i-th
dimension that lie out of bounds, while xmaxi and xmini stand
for the upper and lower limits of a spark position. The symbol
% stands for the modular arithmetic operation.

Another mapping strategy is proposed in [19]. In this
strategy (cf. Eq. (4)), the value is clamped near the bound
randomly to enhance the search near boundaries.

xi =

 xmaxi − 0.2 ∗ (xmaxi − xmini) , if xi > xmaxi ,
xmini + 0.2 ∗ (xmaxi − xmini) , if xi < xmini ,

xi , otherwise.
(4)

3) Gaussian Mutation: Aside from the ordinary spark
generation, another way to generate sparks is proposed as
Gaussian mutation. Gaussian mutation is used to generate
sparks with Gaussian distribution in order to keep the diversity
of the population. Suppose the position of current individual
is stated as xjk, the Gaussian explosion sparks are calculated
as:

xjk = xjk · g. (5)

3

where g is a random number in Gaussian distribution:

g = Gaussian(1, 1). (6)

Parameter g obeys the Gaussian distribution with both mean
value and standard deviation being 1.

4) Selection Strategy: After normal explosions and Gaus-
sian explosions, a selection procedure is conducted to keep
n individuals for next generation. In the original literature
[1], a distance based selection method was suggested. In the
selection strategy, the distances between individuals need to
be calculated, which is very time-consuming.

To tackle this issue, a more efficient selection strategy,
named Elitism Random Selection (ERS), was proposed and
widely adopted in the following works [20]. In ERS, the
best individual is always preserved, while the other n − 1
individuals are selected randomly. In this way, the running
time for FWA is largely decreased.

A detailed discussion on selection strategy can be found in
[2] and [19] .

B. General-Purpose Computing on GPUs (GPGPU)

Driven by the insatiable demand for real-time high-
definition graphics, GPUs have evolved into highly parallel,
many-core processors and are able to execute tens of hundreds
threads concurrently. Today’s GPUs greatly outperform CPUs
in both arithmetic throughput and memory bandwidth (cf.
Fig. 3). GPUs can offer great performance at a very low price,
and meanwhile GPUs can also be integrated into High Per-
formance Computing (HPC) systems without much difficulty
[21], [22]. Moreover, GPUs also have great performance/watt,
which is key for achieving super computing performance. In
the latest (as of April 2015) Green500 list 1, nine of the top 10
systems on the Green500 are accelerated with GPUs. Much
effort has been made to harness the enormous power of GPUs
for general-purpose computing, and a great success has been
achieved.

Many platforms and programming models have been pro-
posed for GPU computing, of which the most important plat-
forms are CUDA (Compute Unified Device Architecture) [23]
and OpenCL [24]. Both platforms are based on C language and
share very similar platform model, execution model, memory
model and programming model.

CUDA, a proprietary architecture from NVIDIA, enjoys the
advantage of mature ecosystem and it is very easy to use as
far as programming procedure is concerned. CUDA comes
with a software environment that allows developers to use C
as a high-level programming language, thus makes it easier
for programmers to fully exploit the parallel feature of GPUs
without an explicit familiarity with the GPU architecture [23].

In CUDA programming, GPU computing is conducted by
kernels. A kernel is a function that explicitly specifies data
parallel computations to be executed on GPUs. When a kernel
is launched on the GPU, it is executed by a batch of threads.
Threads are organized into independent blocks, and blocks
in turn constitute a grid. Closely related to CUDA’s thread

1http://green500.org/lists/green201411

(a) Floating-Point Operations per Second for the CPU
and GPU

(b) Memory Bandwidth for the CPU and GPU

Fig. 3: GPUs greatly outperform CPUs in both arithmetic
throughput and memory bandwidth [23].

.

hierarchy is its memory model. CUDA threads may access
data from multiple memory spaces during their execution as
illustrated by Fig. 4. Each thread has private registers and local
memory. Each thread block has shared memory visible to all
threads of the block. All threads have access to the same global
memory. Register and shared memory are very fast on-chip
memory while global memory is off-chip and has very long
access latency.

III. ATTRACT-REPULSE FIREWORKS ALGORITHM
(AR-FWA)

In this section, the algorithm will be described in detail. We
leave the discussion about the GPU-based implementation in

Fig. 4: Memory Model of CUDA

4

Algorithm 1 AR-FWA

1: Initialize N fireworks
2: while terminated conditions not satisfied do
3: Calculate the fitness values of each firework
4: Calculate s according to Eq. (1)
5: Calculate A according to Eq. (2)
6: for i = 1 to n do
7: Search according to Algorithm 2
8: end for
9: Mutate according to Algorithm 4

10: end while

Algorithm 2 Adaptive Firework Search

1: For the k-th spark
2: for i = 1 to L do
3: Generate sk sparks according to Algorithm 3
4: Evaluate the fitness
5: Find the best spark, and replace it with the firework if

better
6: if firework is updated then
7: A = A ∗ α
8: else
9: A = A ∗ β

10: end if
11: end for

the next section.
The basic procedure of AR-FWA is depicted by Algorith-

m 1. In the remainder of this section, each component will be
discussed respectively.

A. Adaptive Firework Search (AFW Search)

In [18], a mechanism called Firework Search (FW Search)
is suggested for efficient local search. In FW search, each
firework generates a fixed number of sparks and the exact
number of sparks is determined in accordance with the specific
GPU hardware. It was argued that, this fixed encoding of
firework explosion is more suitable for parallel implementation
on GPUs. However, as the GPU architecture has evolved a lot
since then, the argument is not necessarily true any more. In
AFW search, the number of sparks is determine dynamically
according to Eq. (1). In Section IV, we will see how this can be
implemented efficiently using the novel dynamic parallelism
mechanism.

One of the key parameter in AFW search (as well as FW
search in [18]) is the explosion amplitude determined by
Eq. (2). Recently, the adaptive amplitude controlling is been
actively discussed. Many proposals have been come up with
to adjust the amplitude dynamically according to the history
information [7], [8]. Among these proposals, Zheng et al.
suggest a decent strategy for dynamic search for FWA [7]. In
their proposal, the core firework (i.e. the current best firework)
uses a dynamic explosion amplitude for the firework at the
currently best position. If the fitness of the best firework is
improved, the explosion amplitude increases in order to speed
up convergence. On the contrary, if the current position of

Algorithm 3 Spark Generation

1: Initialize the location: x̂ = x;
2: for i = 1 to D do
3: r = uniform(0, 1);
4: if r < 1

2 then
5: x̂i = x̂i +A ·RNG(·);
6: end if
7: end for

Algorithm 4 Attract-Repulse Mutation

1: For the k-th firework
2: Initialize the new location: x̂ = x;
3: for d = 1 to D do
4: r = rand(0, 1);
5: if r < 1

2 then
6: s = U(1− δ, 1 + δ);
7: x̂d = x̂d + (x̂d − xbest,d) · s;
8: end if
9: end for

the best firework is not be improved, the explosion amplitude
decreases to narrow the search area. Experiments show that
by using the dynamic strategy, the performance can be greatly
improved. Based on this insight, we apply the dynamic strategy
for all of the fireworks, instead of only for the core firework.

With all these considerations in mind, we end up with the
adaptive firework search. The pseudo-code of AFW Search is
listed in Algorithm 1, where α = 0.9, β = 1.2 according to
[7].

B. Attract-Repulse Mutation (AR Mutation)

While AFW search is leveraged to guide local search, other
strategies should be taken to keep the diversity of the firework
swarm, which is is crucial for the success of optimization
procedure. The mechanism, Attract-Repulse Mutation (after
which we name the proposed algorithm in this paper), pro-
posed in [18] is adopted in AR-FWA to achieve this aim
explicitly. AR mutation is described by Algorithm 4, where
xbest depicts the firework with the best fitness.

The philosophy behind AR Mutation, as illustrated by Fig. 5,
is that, for non-best fireworks, they either attracted by the
best firework to ’help’ exploit the current best location or
repulsed by the best firework to explore more space. The
choice between ’attract’ and ’repulse’ reflects balance between
exploitation and exploration.

For detailed discussion on AR mutation, readers can refer
to [18]. (Notice that in both Algorithm 2 and 4, the outrange
check and the corresponding mapping are omitted for the
purpose of clarity.)

C. Non-uniform Mutation

Sparks are generated following Algorithm 3. In the con-
ventional FWA, RNG(·) is uniform distributionc[18], [7]. To
be more general, it can be any distribution that meets the
following conditions:

5

Fig. 5: Schematic Diagram of Attract-Repulse Mutation

• symmetric with respect to the original
• distributed very close to 0.

There are many distributions satisfying these conditions.
Here, we only discus two of them, the Gaussian distribution
and the Cauchy distribution.

1) Gaussian Distribution: The probability distribution
function (PDF) of Gaussian distribution is illustrated by E-
q. (7).

gauss(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (7)

where µ is the expectation and σ is the standard deviation.
2) Cauchy Distribution: The PDF of Cauchy distribution

is illustrated by Eq. (8).

cauchy(x) =
1

πγ[1 + (x−µγ)2]
(8)

where µ is the location parameter which determines the
location of the peak of the distribution (the mode of the
distribution); γ is the scale parameter, specifying half the
width of the PDF at half the maximum height. Similar to the
Gaussian distribution the Cauchy distribution has a symmetric
bell shaped probability density function, however it is more
peaked at the center and has fatter tails than a Gaussian
distribution.

Fig. 6 shows the probability density functions of uniform
distribution, the standard Gaussian distribution and the stan-
dard Cauchy distribution. Fig. 7 illustrates a 2-D simulation
results of standard Cauchy distribution (µ = 0, γ = 1),
standard Gaussian distribution (µ = 0, σ = 1) and uniform
distribution s.t. [−1, 1]. In the simulation, up to 100 points
are drawn independently from each distribution. As can be
seen, the points from uniform distribution are only located
between [−1, 1], while Gaussian and Cauchy distributions are
more scattered. Most of the points are within the range of 3 σ
for Gaussian distribution, and more outliers are generated for
Cauchy distribution.

We expect that Gaussian and Cauchy distributions can result
in better diversity for the firework swarm, which will be
verified by experiments in Section V.

Fig. 6: Probability Density Functions of Uniform Distribution,
Gaussian Distribution and Cauchy Distribution

Fig. 7: 2-D Simulation Results

IV. IMPLEMENTATION

A. Dynamic Parallelism

Dynamic Parallelism in CUDA is supported via an extension
to the CUDA programming model that enables a CUDA
kernel to create and synchronize new nested work (cf. Fig. 8).
Basically, a child CUDA kernel can be called from within
a parent CUDA kernel and then optionally synchronize on
the completion of that child CUDA kernel. The parent CUDA
kernel can consume the output produced from the child CUDA
kernel, all without CPU involvement [23].

Dynamic parallelism enjoys many advantages. Firstly, with
dynamic parallelism, additional parallelism can be exposed
to the GPUs hardware schedulers and load balancers dy-
namically, adapting in response to data-driven decisions or
workloads (cf. Fig. 9). Secondly, algorithms and programming
patterns that had previously required modifications to eliminate
recursion, irregular loop structure, or other constructs that
do not fit a flat, single-level of parallelism can be more
transparently expressed. Besides, with dynamical parallelism,
top-level loops can be moved to GPU, thus reduce kernel
launch time

6

Fig. 8: Dynamica Parallel

Fig. 9: Dynamic parallelism allow allocating resource in
response to data-driven decisions or workloads.

B. Framework

AR-FWA is implemented by all-GPU parallel model [17]
and relies heavily on dynamic parallelism. The framework
based on dynamic parallelism is depicted by Fig. 10. Differing
form GPU-FWA, AR-FWA move both the outer and inner
loops to GPU side, thus releasing CPU from the scheduling.
The whole optimization procedure is totally dependent from
CPU.

In the following subsections, the implementation of the
key components of AR-FWA will be described in detail
respectively.

C. Random Number Generation

Random number generation is an integral component of
FWA, which should be disposed with care [25].

In [18], random numbers are generated by invoking cu-
RAND’s host API [26]. To avoid the overhead of kernel
launch, device API [26] is used in AR-FWA. Another advan-
tage of using device API is that the API calling can be easily
integrated with other operations to get diverse non-uniform
distributions. Listing 1 demonstrates how to use cuRAND’s
device API to get random numbers subject to cauchy distri-
bution from one single kernel call.

Fig. 11: Shared Memory based Reduction

D. Initialization

All fireworks are initialized within the whole feasible do-
main. Thus, the implementation can be based on the uniform
random number generation and a simple element-wise scaling,
which can be implemented in a fine-grained manner. To deal
with lareg scale (high dimension) problems, grid-stride loops
trick can be utilized. For a D dimension problem solved by n
fireworks, the CUDA code snippet is listed in Listing 2.

E. Reduction

Reduction is not a specific kernel in AR-FWA. It is a prim-
itive used by several different kernels instead. Reduction is
used for calculating the summation and finding the maximum
or minimum value of an array. Here, we discuss two methods
for efficient reduction operation.

1) Shared Memory Based Reduction: The procedure of
shared memory based reduction is as Fig. 11. This way, take
advantage of fast shared memory, and avoid bank conflict.

Listing 3 gives out the code snippet for a summation reduc-
tion. the extension to other reductions is obvious and is given
by the comment.

2) Shuffle Based Reduction: Shuffle (SHFL) is a new ma-
chine instruction introduced in Kepler architecture. The shuffle
intrinsics (index, up, down and butterfly) permit exchanging
of a variable between threads within the same warp without
use of shared memory. The exchange occurs simultaneously
for all active threads within the warp, moving 4 bytes of data
per thread. Refer to [23] B.14 for details.

Compared to shared memory based reduction, shuffle based
implementation can be faster. Fig. 12 compares these two
reduction implementations on NVIDIA GTX 970 GPU. As
can be seen, when used for reducing 10M data, shuffle can
achieve 30%∼40% improvement under various block sizes.

Code snippet for reduction using shuffle is given by List-
ing 4 whose intuition can be illustrated by Fig. 13. Listing 5
demonstrates how shuffle based reduction can be operated on
the block level. For larger scale problem, a two-path strategy
can be used with the help of global memory.

F. AFW Search

Each AFW search is executed by a single kernel which is
launched dynamically by the parent thread. The new kernel

7

Fig. 10: Framework of GPU-based AR-FWA

Listing 1 Cauchy Distribution Random Number Generation
__global__ void generate_cauchy(int num, float *result, float mu, float gamma) {

int tidx = threadIdx.x + blockIdx.x * blockDim.x;
for (; tidx < num; tidx += blockDim.x * gridDim.x) {

// Fetch a random number subject to uniform distribution
float r = curand_uniform(&state[blockIdx.x]);
// Transform r into Cauchy distribution using inverse transform methods
result[tidx] = mu + gamma * tanf(PI * (r - 0.5f));

}
}

Listing 2 Intialization
__global__
void initialize(float *fireworks, // fireworks to be initialized

float *rng, // random number pool
float upper, // upper bound for search
float lower // lower bound for search
) {

int tidx = threadIdx.x + blockIdx.x * blockDim.x;
float t;
for (; tidx < n * D; tidx += blockDim.x * gridDim.x) {

t = rng[tidx]; // uniform random number
t = lower + (upper - lower) * t; // scale to (lower, upper)
fireworks[tidx] = t; // write back to memory

}
}

8

Listing 3 Parallel Reduction Based on Shared Memory (Summation)
__inline__ __device__
float reduceSum(float *arr, int num) {

// Reduction for finding maximum is followed as comments.
__shared__ float sdata[];

int tidx = threadIdx.x;
sdata[tidx] = 0; // sdata[tidx] = -inf;

// Read all data to be reduced into shared memory
for (int i = tidx; i < num; i += blockDim.x) {

sdata[tidx] += arr[i]; // sdata[tidx] = max(sdata, arr[i]);
}
__syncthreads();

// Reduce using shared memory by the 1st warp
for (int s = blockDim.x / 2; s > 0; s >>= 1) {

if (tid < s) {
sdata[tid] += sdata[tid + s]; // sdata[tid] = max(sdata[tid], sdata[tid + s]);

}
__syncthreads();

}

return sdata[0];
}

Fig. 12: Shared memory based reduction vs. shuffle based
reduction

Fig. 13: Principal Diagram of Shuffle Based Reduction

Listing 4 Parallel Reduction Using Shuffle (Warp)
__inline__ __device__
int warpReduceSum(int val) {

// Reduce using shuffle (cf. Fig. 13)
for (int m = warpSize/2; m > 0; m >>= 1)

val += __shfl_xor(val, m);
return val;

}

Listing 5 Parallel Reduction Using Shuffle (Block)
__inline__ __device__
int blockReduceSum(int val) {
// Shared memory for 32 partial sums
static __shared__ int shared[32];
int lane = threadIdx.x % warpSize;
int wid = threadIdx.x / warpSize;

// Each warp performs partial reduction
val = warpReduceSum(val);

// Write reduced value to shared memory
if (lane == 0) shared[wid]=val;

// Wait for all partial reductions
__syncthreads();

// read only if that warp existed
val = (lane < blockDim.x / warpSize) ?

shared[lane] : 0;

// Final reduce within first warp
if (wid == 0) val = warpReduceSum(val);

return val;
}

launches its own child kernel, dynamically, for spark genera-
tion, objective evaluation and update.

G. AR Mutation and Spark Generation

The implementation of AR mutation is very similar to
initialization. The random numbers are drawn from the random

9

numbers pool in a fine-grained manner. The code snippet is
illustrated by Listing 6.

The implementation of spark generation is very similar to
that of AR mutation. So the code is omitted here.

H. Objective Function Evaluation
In the implementation, the fine-grained strategy is adopted

to parallelized function evaluation [17]. The code snippet is
given by Listing 7.

Listing 7 Fine-grained Function Evaluation (Sphere Function)
__inline__ __device__
float evaluate(float *x) {

// Shared memory
extern __shared__ float sdata[];

// Initialize shared memory to 0
int tidx = threadIdx.x;
sdata[tidx] = 0;

// Read all data into shared memory
float tmp;
for (int i = tidx; i < D; i += blockDim.x) {

tmp = x[i];
sdata[tidx] += tmp * tmp;

}
__syncthreads();

// Reduce using shared memory by the 1st warp
for (int s = blockDim.x / 2; s > 0; s >>= 1) {

if (tidx < s) {
sdata[tidx] += sdata[tidx + s];

}
__syncthreads();

}

return sdata[0];
}

1) Firework Update: To update the firework using the best
spark, the spark with best fitness value should be located. This
can be implemented by reduction operation, which we have
discussed in the previous subsection. Having the best spark,
the update can be conducted in a fine-grained way (each thread
for a dimension), which is very similar to the initialization AR
mutation and spark generation.

V. EXPERIMENTS AND ANALYSIS

A. Benchmark functions
In our experiments, the GPU-based benchmark, cuROB,

is used [27]. cuROB is implemented with CUDA and can
support any dimension within the limit of hardware. The
current release of cuROB includes 37 single objective real-
parameter optimization functions. The test functions fall into
four categories: unimodal functions (No. 0∼6), basic multi-
modal functions (No. 7∼22), hybrid functions (No. 23∼28)
and composition functions (No. 29∼36). The summary of the
suit is listed in Tab. I. Detailed information for each function
is given in [27].

B. Algorithm Performance
In the experiments, all algorithm are implemented using

the Naive Parallel Model [17] with double precision float
operation.

1) Uniform Mutation vs. Non-uniform Mutation: To ver-
ify the feasibility of non-uniform mutation, we implement
Algorithm 3 using uniform distribution s.t. [−1, 1], standard
Gaussian distribution and Cauchy distribution, respectively.
The test functions are all with dimension of 30 (D = 30),
and up to D ∗ 10000 function evaluations are conducted for
each run. The number of firework is n = 5, and the number
of sparks s = 150, A = 40, ∆ = 0.00001. For AFW search,
L = 100, α = 1.2, β = 0.9, and for AR mutation δ = 0.5.
151 independent runs are conducted for each test function.
The finally results are listed in Tab. IV.

The experimental results are listed in Tab. II.

TABLE II: Results for AR-FWA with Uniform and Non-
uniform Mutation

NO.
Uniform Gaussian Cauchy

Mean Std. Mean Std. Mean Std.

0 1.00E+02 1.32E-14 1.00E+02 2.26E-14 1.00E+02 3.55E-14
1 1.00E+02 1.93E-13 1.00E+02 4.03E-12 1.00E+02 5.25E-07
2 5.28E+05 2.14E+05 5.42E+05 2.44E+05 1.03E+06 4.35E+05
3 8.97E+02 4.14E+02 8.02E+02 4.01E+02 3.09E+03 1.55E+03
4 6.97E+03 7.67E+03 7.21E+03 6.87E+03 9.86E+03 8.37E+03
5 1.00E+02 2.13E-05 1.00E+02 2.60E-05 1.00E+02 5.41E-05
6 1.01E+02 1.04E+00 1.01E+02 1.40E+00 1.02E+02 2.20E+00

7 1.00E+02 5.46E-01 1.00E+02 5.12E-01 1.00E+02 4.04E-01
8 1.10E+02 2.17E+00 1.09E+02 2.16E+00 1.11E+02 2.43E+00
9 1.00E+02 2.57E-03 1.00E+02 3.38E-03 1.00E+02 4.34E-03

10 1.84E+02 1.48E+01 1.73E+02 1.36E+01 1.05E+02 3.00E+00
11 1.86E+02 1.43E+01 1.77E+02 1.17E+01 1.82E+02 1.37E+01
12 1.28E+02 6.62E+00 1.17E+02 4.44E+00 1.16E+02 4.40E+00
13 1.05E+02 1.27E+00 1.05E+02 1.46E+00 1.06E+02 1.62E+00
14 1.19E+02 2.65E+00 1.19E+02 2.81E+00 1.22E+02 2.62E+00
15 2.48E+03 3.41E+02 2.14E+03 3.27E+02 2.65E+02 1.16E+02
16 2.54E+03 3.60E+02 2.35E+03 3.37E+02 2.50E+03 3.79E+02
17 1.00E+02 7.02E-02 1.00E+02 7.43E-02 1.00E+02 8.98E-02
18 1.30E+02 4.79E-01 1.30E+02 4.76E-01 1.30E+02 6.71E-01
19 1.20E+02 6.36E-04 1.20E+02 1.47E-04 1.20E+02 4.06E-04
20 1.00E+02 6.26E-02 1.00E+02 5.70E-02 1.00E+02 6.28E-02
21 1.00E+02 6.13E-02 1.00E+02 3.73E-02 1.00E+02 9.74E-02
22 1.11E+02 4.68E-01 1.11E+02 3.92E-01 1.10E+02 3.82E-01

23 4.62E+04 1.70E+04 4.59E+04 1.47E+04 3.84E+04 1.25E+04
24 4.10E+04 8.01E+03 4.14E+04 9.11E+03 7.94E+03 5.78E+03
25 1.16E+02 6.86E+00 1.19E+02 1.84E+01 1.17E+02 1.83E+01
26 7.53E+03 5.31E+03 7.58E+03 4.87E+03 5.57E+03 3.04E+03
27 2.57E+04 1.03E+04 2.70E+04 1.12E+04 3.55E+04 3.29E+04
28 1.22E+02 5.45E-01 1.22E+02 5.71E-01 1.21E+02 6.48E-01

29 3.76E+02 2.58E-06 3.76E+02 2.84E-06 3.76E+02 2.41E-02
30 4.17E+02 1.80E+01 4.07E+02 1.47E+01 4.05E+02 1.44E+01
31 3.23E+02 4.82E+00 3.24E+02 4.04E+00 3.22E+02 3.48E+00
32 2.01E+02 5.75E-02 2.01E+02 5.46E-02 2.01E+02 6.68E-02
33 4.62E+02 4.41E+00 4.61E+02 4.72E+00 4.63E+02 4.46E+00
34 1.62E+03 1.52E+02 1.49E+03 1.36E+02 1.30E+03 1.12E+02
35 2.42E+07 2.55E+06 2.31E+07 2.40E+06 1.90E+07 3.81E+05
36 5.05E+06 1.04E+06 4.39E+06 7.46E+05 3.02E+06 3.18E+05

Via t-test, the comparison results are listed in Tab III.
Obviously, Non-uniform mutation gains no benefit on the
simple unimodal problems. However, for the more complicated
multimodal problems, both Gaussian and Cauchy distributions
improve the performance in some degress. Cauchy (11 better)
can achieve more significant improvement compared to Gaus-
sian (9 better).

2) Compared to the State-of-the-Art FWA variants: In
this part, we compare AR-FWA to the-state-of-the-art FWA
variants, dynFWA [7] and EFWA [19].

The experimental results are listed in Tab. IV, which is
the mean on 151 independent runs with D ∗ 10000 function

10

Listing 6 AR Mutation
__global__ void AR_Mutate(floatX *fireworks, floatX* best_position, floatX *rng) {

// Move pointer to the proper locations
int tidx = threadIdx.x;
fireworks += blockIdx.x * D;
rng += blockIdx.x * D * 2;

// for thread 0 to thread D - 1, each for one dimension
if (tidx < D) {

floatX c = best_position[tidx];
floatX t = fireworks[tidx];

// Mutate accordingly
c += (t - c) * (rng[tidx] * 2 * delta + 1 - delta);
fireworks[tidx] = rng[tidx + dim] < 0.5 ? c : t;

}
}

TABLE I: Summary of cuROB’s Test Functions

No. Functions ID Description

Unimodal
Functions

0 Rotated Sphere SPHERE Optimum easy
to track1 Rotated Ellipsoid ELLIPSOID

2 Rotated Elliptic ELLIPTIC

Optimum hard
to track

3 Rotated Discus DISCUS
4 Rotated Bent Cigar CIGAR
5 Rotated Different Powers POWERS
6 Rotated Sharp Valley SHARPV

Basic
Multi-modal

Functions

7 Rotated Step STEP
With

adepuate
global

structure

8 Rotated Weierstrass WEIERSTRASS
9 Rotated Griewank GRIEWANK

10 Rastrigin RARSTRIGIN U
11 Rotated Rastrigin RARSTRIGIN
12 Rotated Schaffer’s F7 SCHAFFERSF7
13 Rotated Expanded Griewank plus Rosenbrock GRIE ROSEN
14 Rotated Rosenbrock ROSENBROCK

With
weak
global

structure

15 Modified Schwefel SCHWEFEL U
16 Rotated Modified Schwefel SCHWEFEL
17 Rotated Katsuura KATSUURA
18 Rotated Lunacek bi-Rastrigin LUNACEK
19 Rotated Ackley ACKLEY
20 Rotated HappyCat HAPPYCAT
21 Rotated HGBat HGBAT
22 Rotated Expanded Schaffer’s F6 SCHAFFERSF6

Hybrid
Functions

23 Hybrid Function 1 HYBRID1
With different
properties for

different variables
subcomponents

24 Hybrid Function 2 HYBRID2
25 Hybrid Function 3 HYBRID3
26 Hybrid Function 4 HYBRID4
27 Hybrid Function 5 HYBRID5
28 Hybrid Function 6 HYBRID6

Composition
Functions

29 Composition Function 1 COMPOSITION1
Properties similar

to particular
sub-function

when approaching
the corresponding

optimum

30 Composition Function 2 COMPOSITION2
31 Composition Function 3 COMPOSITION3
32 Composition Function 4 COMPOSITION4
33 Composition Function 5 COMPOSITION5
34 Composition Function 6 COMPOSITION6
35 Composition Function 7 COMPOSITION7
36 Composition Function 8 COMPOSITION8

Search Space: [−100, 100]D , fopt = 100

TABLE III: Performance Comparison between Uniform and Gaussian & Cauchy Distributions (better/inconclusive/worse)

Unimodal Basic Multimodal Hybrid Composition Summary

Uniform vs Gaussian 3/3/1 2/6/8 3/2/1 3/3/2 11/14/12
Uniform vs Cauchy 3/4/0 3/8/5 1/1/4 2/0/5 9/14/14

11

evaluations. The parameters of dynFWA and EFWA are as
in the original paper. Considering the better performance of
Cauchy distribution (cf. the last subsection), for AR-FWA,
Cauchy distribution is adopted. The parameters are the same
as in the previous subsection.

TABLE IV: AR-FWA vs. dynFWA and EFWA

ID
AR-FWA dynFWA EFWA

Mean Std. Mean Std. Mean Std.

0 1.000E+02 3.551E-14 1.000E+02 7.965E-14 1.000E+02 3.764E-04
1 1.000E+02 5.250E-07 1.000E+02 2.282E-13 1.004E+02 1.378E-01
2 1.034E+06 4.351E+05 8.128E+05 3.858E+05 7.552E+05 2.803E+05
3 3.092E+03 1.555E+03 6.621E+02 3.104E+02 1.005E+02 2.011E-01
4 9.860E+03 8.371E+03 9.365E+03 1.112E+04 4.814E+03 4.843E+03
5 1.000E+02 5.413E-05 1.000E+02 1.479E-05 1.000E+02 9.879E-05
6 1.018E+02 2.198E+00 1.070E+02 1.060E+01 1.092E+02 9.949E+00

7 1.002E+02 4.039E-01 1.109E+02 3.725E+00 1.023E+02 1.825E+00
8 1.110E+02 2.434E+00 1.291E+02 4.527E+00 1.330E+02 3.489E+00
9 1.000E+02 4.340E-03 1.000E+02 1.243E-02 1.000E+02 1.287E-02

10 1.045E+02 3.000E+00 2.682E+02 4.835E+01 2.689E+02 3.461E+01
11 1.823E+02 1.374E+01 3.243E+02 4.638E+01 3.115E+02 4.713E+01
12 1.155E+02 4.404E+00 1.632E+02 9.136E+00 1.634E+02 9.270E+00
13 1.060E+02 1.615E+00 1.179E+02 1.315E+01 1.170E+02 5.887E+00
14 1.223E+02 2.625E+00 1.285E+02 2.327E+01 1.418E+02 3.055E+01
15 2.648E+02 1.162E+02 2.332E+03 6.405E+02 3.226E+03 6.073E+02
16 2.500E+03 3.794E+02 4.184E+03 6.845E+02 4.424E+03 6.520E+02
17 1.002E+02 8.980E-02 1.006E+02 2.719E-01 1.004E+02 2.221E-01
18 1.301E+02 6.709E-01 1.300E+02 2.794E-13 1.300E+02 8.733E-04
19 1.200E+02 4.057E-04 1.200E+02 1.480E-04 1.200E+02 4.465E-04
20 1.004E+02 6.281E-02 1.006E+02 1.443E-01 1.005E+02 1.326E-01
21 1.002E+02 9.736E-02 1.005E+02 2.860E-01 1.003E+02 1.140E-01
22 1.104E+02 3.820E-01 1.117E+02 5.439E-01 1.121E+02 5.059E-01

23 3.836E+04 1.246E+04 8.773E+04 5.074E+04 4.546E+04 1.677E+04
24 7.937E+03 5.784E+03 6.564E+03 8.112E+03 4.564E+03 5.273E+03
25 1.171E+02 1.834E+01 8.852E+02 2.876E+03 5.610E+02 1.540E+03
26 5.568E+03 3.038E+03 2.912E+04 3.473E+04 6.446E+03 9.266E+03
27 3.548E+04 3.289E+04 7.684E+04 9.194E+04 2.835E+04 2.076E+04
28 1.213E+02 6.476E-01 2.647E+02 1.866E+02 1.328E+02 4.867E+01

29 3.764E+02 2.410E-02 3.768E+02 4.146E+00 3.764E+02 7.962E-04
30 4.048E+02 1.443E+01 6.162E+02 8.352E+01 7.539E+02 9.603E+01
31 3.222E+02 3.483E+00 3.401E+02 2.623E+01 3.684E+02 1.768E+01
32 2.014E+02 6.678E-02 2.115E+02 5.037E+01 2.032E+02 2.299E+01
33 4.634E+02 4.461E+00 5.045E+02 1.996E+01 5.181E+02 1.375E+01
34 1.304E+03 1.120E+02 1.154E+03 8.460E+02 3.569E+03 6.951E+02
35 1.897E+07 3.813E+05 2.257E+02 5.844E+02 1.409E+07 9.768E+06
36 3.016E+06 3.181E+05 1.889E+03 3.020E+03 2.573E+03 2.263E+03

a) Unimodal Functions: The convergence trends on u-
nimodal functions for the three algorithms are depicted by
Fig. 14. Over all, AR-FWA has slower convergence rate on
unimodal functions campared to dynFWA and EFWA.

The t-test results are listed in Tab. V, and the comparison
results are listed in Tab. VI, where +1 denotes significantly
better and −1 significant worse, 0 inconclusive.

AR-FWA is significantly worse on function NO. 2 ∼ 4, and
for 2 and 3, the disparity is as mush as an order of magnitude.
The result is no surprise. As dynFWA and EFWA select the
next generation using the ERS strategy (cf. II-A4), population
converge to a location quickly due to the high competition
pressure. Therefor dynFWA and EFWA can outperform AF-
FWA unimodal functions.

Despite the poor performance on unimodal functions, we
expect AR-FWA can achieve better results for complicated
multi-modal functions. In the following subsection, we will
verify this hypothesis with experiments.

b) Basic Multimodal Functions: Similar to the analysis
on unimodal functions, the t-test and comparison results are
listed by Tab. VII and Tab. VIII respectively. Out of the 18
functions, AR-FWA outperforms dynFWA on 13 and 1 not

statistic significant. AR-FWA outperforms EFWA on 11 func-
tions and 4 not statistic significant. Obviously, AR-FWA can
achieve better performance than dynFWA and EFWA do on
the basic multimodal functions.

TABLE VIII: AR-FWA v.s. EFEA and dynFWA (Basic Mul-
timodal)

7 8 9 10 11 12 13 14

dynFWA +1 0 +1 +1 +1 +1 +1 +1
EFWA +1 +1 +1 +1 0 +1 +1 +1

15 16 17 18 19 20 21 22

dynFWA +1 +1 +1 -1 -1 +1 +1 +1
EFWA +1 0 +1 -1 +1 +1 0 0

c) Hybrid Functions: Hybrid functions are more compli-
cated than basic multimodal functions, thus can simulate the
complicated real world scenarios better. The results on hybrid
functions are listed by Tab. IX and Tab. X, respectively. Out of
the 6 hybrid functions, AR-FWA outperforms dynFWA on 5 of
them, and get worse result on 1 of them. AR-FWA outperforms
EFWA on 3 functions, worse on 2, and 1 inconclusive. Overall,
AF-FWA performs better than EFWA and dynFWA for hybrid
functions.

TABLE X: AR-FWA v.s. EFEA and dynFWA (Hybrid)

23 24 25 26 27 28

dynFWA +1 -1 +1 +1 +1 +1
EFWA +1 -1 +1 +1 -1 0

TABLE XII: AR-FWA v.s. EFEA and dynFWA (Composition)

29 30 31 32 33 34 35 36

dynFWA +1 +1 +1 +1 +1 -1 -1 -1
EFWA -1 +1 +1 +1 +1 +1 -1 -1

d) Composition Functions: Composition functions are
more complicated than basic multimodal and hybrid functions.
The results on composition functions are listed by Tab. XI
and Tab. XII. Out of the 8 composition functions, AR-FWA
outperforms dynFWA on 5 of them, get worse result on 3 of
them. AR-FWA outperforms EFWA on 5 functions, worse on
3. At least AF-FWA performs no worse than dynFWA and
EFWA.

All comparison results are summarized by Tab. XIII. AR-
FWA is worse than dynFWA and EFWA on unimodal func-
tions, but outperforms the other tow algorithms on multimodal
functions generally.

TABLE XIII: Summary of Comparison Results

better inconclusive worse

AR-FWA vs. dynFWA 24 2 11
AR-FWA vs. EFWA 23 5 9

12

Fig. 14: Convergence on Unimodal Functions

TABLE V: p Values of t-test (Unimodal)

0 1 2 3 4 5 6

dynFWA 1.00E+00 1.55E-109 1.00E-06 1.43E-96 4.70E-06 1.85E-10 1.50E-52
EFWA 3.07E-02 8.30E-03 2.45E-54 4.09E-53 9.04E-19 4.38E-26 6.89E-16

TABLE VI: AR-FWA v.s. EFWA and dynFWA (Unimodal)

0 1 2 3 4 5 6

dynFWA 0 -1 -1 -1 -1 -1 +1
EFWA +1 +1 -1 -1 -1 +1 +1

TABLE VII: p Values of t-test (Basic Multimodal)

7 8 9 10 11 12 13 14

dynFWA 3.08E-70 6.64E-1 6.33E-10 3.58E-53 9.48E-131 1.61E-08 7.39E-17 6.70E-108
EFWA 4.24E-72 2.77E-101 7.4E-26 4.05E-05 9.25E-2 2.51E-07 1.20E-3 4.8E-4

15 16 17 18 19 20 21 22

dynFWA 3.46E-34 1.15E-130 9.09E-176 8.37E-19 1.05E-16 5.11E-126 5.73E-165 9.00E-111
EFWA 4.29E-15 2.71E-1 3.9303E-07 2.55E-2 1.33E-18 4.1132E-3 2.17E-1 1.52E-1

TABLE IX: p Values of t-test (Hybrid)

23 24 25 26 27 28

dynFWA 1.97E-99 3.08E-164 2.50E-163 6.21E-24 2.05E-64 1.28E-03
EFWA 4.53E-94 5.80E-133 4.00E-15 7.80E-97 1.43E-02 3.19E-01

13

TABLE XI: p Values of t-test (Composition)

29 30 31 32 33 34 35 36

dynFWA 9.95E-14 3.15E-119 2.03E-166 4.60E-80 2.66E-96 2.60E-48 1.33E-20 2.77E-02
EFWA 5.84E-74 1.13E-138 3.22E-02 1.23E-120 0.00E+00 3.02E-09 2.74E-251 2.91E-251

Fig. 15: Speedup with Different Population Size (D = 30)

C. Parallel Performance

In this part, we study the parallel performance of the
GPU-based implementation of AR-FWA. All experiments are
conduct on Windows 7 x64 with 8G DDR3 memory and
Intel core I5-2310 and NVIDIA GeForce GTX 970 GPU.
The programs are compiled with VS 2013 with CUDA 6.5.
Single precision float number is adopted by both CPU and
GPU implementation.

In practice, the speedup is closely related with the character-
istics of the objective function. Here, we use Sphere function
as benchmark for evaluating the speedup under different
conditions. In the experiments, the total number of sparks (Ŝ)
are set to 20 fold of the number of fireworks (n).

1) Speedup against Population Size: Fig. 15 illustrates the
speedup achieved by GPU-based AR-FWA with respect to its
CPU-based counterpart, under various population sizes. In this
experiment, the dimension of the test function is set to 30
(D = 30).

Even with small population (n = 5), the GPU-based version
can achieve up to 3x speedup. As the population size goes
larger, the speedup become more significant (∼9x with n =
20).

2) Speedup against Parallelism: Besides population size,
parallelism of the objective function is one of the key factors
impacting the overall speedup. In our implementation, the
objective function is parallelized in a fine-grained way. There-
fore, by controlling the dimension, we can alter the parallelism
of the test function. Fig. 16 compares the speedups under
various dimensions. Similar to the impact of population size,
the speedup is increasingly larger along with the dimensions.
With high parallelism, AR-FWA can achieve approximately
40x speedup.

Fig. 16: Speedup with Different Dimensions

VI. CONCLUSIONS

In this paper, an efficient FWA variant, AR-FWA, is pro-
posed. AR-FWA leverages the recently developed techniques
from both FWA study and GPU computing, ending up with
an adaptive firework search mechanism and a novel non-
uniform mutation strategy. Compared to the state-of-the-art
FWA variants, dynFWA and EFWA, AR-FWA can improve
the performance greatly with respect to the complicated mul-
timodal functions. AR-FWA relies heavily on the cutting-edge
CUDA techiques, e.g. dynamic parallelism, shuffle instruction,
et al. Compared to the CPU-based implementation, the GPU-
based AR-FWA can achieve significant speedup under differ-
ent population sizes and objective function parallelisms.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation
of China (NSFC) under grant no. 61375119, 61170057 and
60875080, and partially supported by National Key Basic
Research Development Plan (973 Plan) Project of China with
grant no. 2015CB352300.

REFERENCES

[1] Y. Tan and Y. Zhu, “Fireworks Algorithm for Optimization,” in Ad-
vances in Swarm Intelligence, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, vol. 6145, pp. 355–364.

[2] Y. Tan, C. Yu, S. Zheng, and K. Ding, “Introduction to Fireworks Al-
gorithm,” International Journal of Swarm Intelligence Research, vol. 4,
no. 4, pp. 39–70, October 2013.

[3] A. Janecek and Y. Tan, “Using Population Based Algorithms for
Initializing Nonnegative Matrix Factorization,” in Advances in Swarm
Intelligence, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, vol. 6729, pp. 307–316.

[4] H. Gao and M. Diao, “Cultural Firework Algorithm and its Application
for Digital Filters Design,” International Journal of Modelling, Identifi-
cation and Control, vol. 14, no. 4, pp. 324–331, January 2011.

14

[5] W. He, G. Mi, and Y. Tan, “Parameter Optimization of Local-
Concentration Model for Spam Detection by Using Fireworks Algorith-
m,” in Advances in Swarm Intelligence, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, vol. 7928, pp. 439–450.

[6] X. Yang and Y. Tan, “Sample Index Based Encoding for Clustering
Using Evolutionary Computation,” in Advances in Swarm Intelligence,
ser. Lecture Notes in Computer Science. Springer International
Publishing, 2014, vol. 8794, pp. 489–498.

[7] S. Zheng, A. Janecek, Y. Tan, and J. Li, “Dynamic Search in Fireworks
Algorithm,” in Evolutionary Computation (CEC), 2014 IEEE Congress
on, 2014, pp. 3222–3229.

[8] J. Li, S. Zheng, and Y. Tan, “Adaptive Fireworks Algorithm,” in
Evolutionary Computation (CEC), 2014 IEEE Congress on, July 2014,
pp. 3214–3221.

[9] P. Ross, “Why CPU Frequency Stalled,” Spectrum, IEEE, vol. 45, no. 4,
p. 72, april 2008.

[10] D. B. Kirk and W. mei W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach. Beijing, China: Tsinghua University
Press, 2010.

[11] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg, OpenCL
Programming Guide. Addison-Wesley Professional, 2011.

[12] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.
Lefohn, and T. J. Purcell, “A Survey of General-Purpose Computation
on Graphics Hardware,” Computer Graphics Forum, vol. 26, no. 1, pp.
80–113, 2007.

[13] AMD Inc., “Application Showcase.” [Online]. Available: http://
developer.amd.com/community/application-showcase/

[14] NVIDIDA Corp., “CUDA in Action - Research & Apps.” [Online].
Available: https://developer.nvidia.com/cuda-action-research-apps

[15] Y. Zhou and Y. Tan, “GPU-Based Parallel Particle Swarm Optimization,”
in Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, May
2009, pp. 1493–1500.

[16] W. Zhu and J. Curry, “Parallel Ant Colony for Nonlinear Function
Optimization with Graphics Hardware Acceleration,” in Systems, Man
and Cybernetics, 2009. SMC 2009. IEEE International Conference on,
2009, pp. 1803–1808.

[17] Y. Tan and K. Ding, “Survey of GPU-Based Implementation of Swarm
Intelligence Algorithms,” Cyber, IEEE Trans. on (TBA).

[18] K. Ding, S. Zheng, and Y. Tan, “A GPU-based Parallel Fireworks
Algorithm for Optimization,” in Proceeding of the fifteenth annual
conference on Genetic and evolutionary computation conference, ser.
GECCO ’13. New York, NY, USA: ACM, 2013, pp. 9–16.

[19] S. Zheng, A. Janecek, and Y. Tan, “Enhanced Fireworks Algorithm,” in
Evolutionary Computation (CEC), 2013 IEEE Congress on, 2013, pp.
2069–2077.

[20] Y. Pei, S. Zheng, Y. Tan, and H. Takagi, “An Empirical Study on Influ-
ence of Approximation Approaches on Enhancing Fireworks Algorith-
m,” in Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on, 2012, pp. 1322–1327.

[21] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep Learning with COTS HPC Systems,” in Proceedings of the 30th
International Conference on Machine Learning (ICML-13), S. Dasgupta
and D. McAllester, Eds., vol. 28, no. 3. JMLR Workshop and
Conference Proceedings, May 2013, pp. 1337–1345.

[22] K. Ballou and N. Mohammad Mousa, “OpenCUDA+MPI,” Student
Research Initiative, Tech. Rep. Paper 14, 2013.

[23] NVIDIA Corp., CUDA C Programming Guide v7.0,
March 2015. [Online]. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/

[24] Khronos OpenCL Working Group, The OpenCL 1.2 Specification,
November 2011. [Online]. Available: http://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf

[25] K. Ding and Y. Tan, “Comparison of Random Number Generators in
Particle Swarm Optimization Algorithm,” in the Proceeding of 2014
IEEE Congress on Evolutionary Computation, (IEEE CEC 2014), 2014,
pp. 2664–2671.

[26] NVIDIA Corp., CURAND Library Programming Guide v7.0, March
2015. [Online]. Available: http://docs.nvidia.com/cuda/curand/

[27] K. Ding and Y. Tan, “cuROB: A GPU-Based Test Suit for Real-
Parameter Optimization,” in Advances in Swarm Intelligence, ser. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp.
66–78.

Ke Ding is currently majoring in Computer Sci-
ence and working towards the Ph.D. degree at the
Key Laboratory of Machine Perception (MOE) and
School of Electronics Engineering and Computer
Science, Peking University, China. His research in-
terests are related to Swarm Intelligence, GPU com-
puting, parallel programming and machine learning.

Ying Tan is a full professor and PhD advisor at
the School of Electronics Engineering and Computer
Science of Peking University, and director of Com-
putational Intelligence Laboratory at Peking Univer-
sity (PKU). He received his PhD from Southeast
University in 1997. From 1997, he was a postdoc-
toral fellow then an associate professor at University
of Science and Technology of China (USTC), then
served as director of Institute of Intelligent Infor-
mation Science and a full professor since 2000. He
worked with the Chinese University of Hong Kong

(CUHK) in 1999 and 2004-2005. He was an electee of 100 talent program
of the Chinese Academy of Science (CAS) in 2005. He is the inventor of
Fireworks Algorithm (FWA). He serves as the Editor-in-Chief of International
Journal of Computational Intelligence and Pattern Recognition (IJCIPR), the
Associate Editor of IEEE Transaction on Cybernetics (Cyb), International
Journal of Artificial Intelligence (IJAI), International Journal of Swarm
Intelligence Research (IJSIR), International Journal of Intelligent Information
Processing (IJIIP), IES Journal B, Intelligent Devices and Systems, and
Advisory Board of International Journal on Knowledge Based Intelligent
Engineering (KES), and The Editorial Board of Journal of Computer Sci-
ence and Systems Biology (JCSB), Journal of Applied Mathematics (JAM),
Applied Mathematical and Computational Sciences (AMCOS), International
Journal of Advance Innovations, Thoughts and Ideas, Immune Computing
(ICJ), Defense Technology (DT), CAAI Transactions on Intelligent Systems.
He also served as an Editor of Springers Lecture Notes on Computer Science
for more than 10 volumes, and Guest Editors of several referred Journals,
including Information Science, Softcomputing, Neurocomputing, IJAI, IJSIR,
BB, etc. He is a member of Emergent Technologies Technical Committee
(ETTC), Computational Intelligence Society of IEEE since 2010. He is/was
the general chair of the International Conference on Swarm Intelligence (ICSI
2010-14) and joint general chair of 1st BRICS CCI, program committee co-
chair of WCCI 2014, ICACI2012, ISNN 2008 and so on. His research interests
include computational intelligence, swarm intelligence, data mining, pattern
recognition, intelligent information processing for information security. He
has published more than 280 papers in refereed journals and conferences in
these areas, and authored/co-authored 8 books and 10 chapters in book, and
received 3 invention patents.

