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Abstract—Inspired by the collective behavior of natural swarm,
swarm intelligence algorithms (SIAs) have been developed and
widely used for solving optimization problems. When applied to
complex problems, a large number of fitness function evalua-
tions are needed to obtain an acceptable solution. To tackle this
vital issue, graphical processing units (GPUs) have been used to
accelerate the optimization procedure of SIAs. Thanks to their
inherent parallelism, SIAs are very suitable for parallel imple-
mentation under the GPU platform which have achieved a great
success in recent years. This paper presents a comprehensive
review of GPU-based parallel SIAs in accordance with a newly
proposed taxonomy. Critical concerns for the efficient parallel
implementation of SIAs are also described in detail. Moreover,
novel criteria are also proposed to evaluate and compare the
parallel implementation and algorithm performance universally.
The rationality and practicability of the proposed optimization
methodology and criteria are verified by careful case study.
Finally, our opinions and perspectives on the trends and prospects
on the relatively new research domain are also presented for
future development.

Index Terms—Compute unified device architecture (CUDA),
GPU computing, heterogeneous computing, open computing
language (OpenCL), population-based algorithms, swarm intel-
ligence algorithms (SIAs).

I. INTRODUCTION

SWARM intelligence (SI) is the collective behavior of
decentralized and self-organized systems. A typical SI

system consists of a population of simple agents which can
communicate with each other by acting on their local environ-
ments. Though the agents in a swarm follow very simple rules,
the interactions between such agents can lead to the emergence
of very complicated global behavior, far beyond the capability
of single individual agent [1], [3], [4]. Examples in natural sys-
tems of SI include bird flocking, ant foraging, fish schooling,
just to name a few.

Inspired by such behavior of a swarm, a class of algo-
rithms have been proposed for tackling optimization problems,
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usually under the title of SI algorithms (SIAs) [2], [5]. In
SIAs, a swarm is made up of multiple artificial agents. The
agents can exchange heuristic information in the form of local
interaction. Such interaction, in addition to certain stochastic
elements, generates the behavior of adaptive search, and finally
leads to global optimization.

The most respected and popular SIAs are particle swarm
optimization (PSO) which is inspired by the social behavior
of bird flocking or fish schooling [6], [7], and ant colony opti-
mization (ACO) which simulates the foraging behavior of ant
colony [8], [9]. PSO is widely used for real-parameter opti-
mization while ACO has been successfully applied to solve
combinatorial optimization problems. Very recently, inspired
by explosion of fireworks in air, a novel SIA, so-called fire-
works algorithm (FWA) was proposed in 2010 for efficiently
solving complex optimization problems and had received
extensive attention [2], [3], [10].

Although SIAs achieve success in solving many real-
world problems where conventional arithmetic and numerical
methods fail, they suffer from the drawback of intensive com-
putation which greatly limits their applications where function
evaluation is time-consuming.

Facing technical challenges with higher clock speeds in
fixed power envelope, modern computer systems increas-
ingly depend on adding multiple cores to improve perfor-
mance [11], [12]. The multicore revolution, along with other
factors, encourages the community to start looking at heteroge-
neous solutions: systems which are assembled from different
subsystems, each of which is optimized for different work-
load scenarios [13]. Nowadays, all computing systems, from
mobile to supercomputers, are becoming heterogeneous, mas-
sively parallel computers for higher power efficiency and
computation throughput [14].

Heterogeneous computing, which refers to systems that use
more than one kind of processor, has entered computing’s
mainstream. Systems with diverse heterogeneous combinations
have been applied in the scientific domain [15]. General pur-
pose computing on the graphical processing unit (GPGPU) is
one of most important the heterogeneous solutions.

Initially designed for addressing highly computational
graphics tasks, the graphical processing unit (GPU), from
its inception, has many computational cores and can pro-
vide massive parallelism (with thousands of cores) at a
reasonable price. As the hardware and software for GPU
programming grow mature [16], [17], GPUs have become
popular for general purpose computing beyond the field of
graphics processing, and great success has been achieved in
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diverse domains, from embedded systems to high performance
supercomputers [18]–[20].

Based on interactions within population, SIAs are naturally
amenable to parallelism. SIAs’ such intrinsic property makes
them very suitable to run on the GPU in parallel, thus gain
remarkable performance improvement.

Although the attempt on leveraging GPUs’ massively par-
allel computing power can date back to the first day of
GPGPU [21], [22], significant progress had not been achieved
until the emergence of high-level programming platforms such
as compute unified device architecture (CUDA) and open com-
puting language (OpenCL) [23], [24]. In the past few years,
different implementations of diverse SIAs were proposed.
Targeting on GPUs of various architectures and specifica-
tions, many techniques and tricks were introduced. Some
variants were designed specifically to suit for GPUs particular
architecture such as [25]–[27].

With the excellence in performance, GPU-powered SIAs
have been applied to many complex real-world problems, such
as image processing [28]–[30], computer vision [31]–[34],
machine learning [35]–[37], data mining [38], [39], param-
eter optimization [40]–[42], economy [43]–[45] as well as
many other problems (see [46]–[49]). Thanks to the signif-
icant speedup, SIAs now can be used to solve many tasks
which are previously unmanageable by the original algorithm
in a reasonable time.

Although much effort has been made, research of
GPU-based SIAs is still in its infancy and rising phase, espe-
cially good and convincible performance criteria are yet to be
developed. In order to better understand what achievements
have been made and obtain a useful insight on the future
development, we perform an exhaustive literature review of
the published works in this field. Hopefully, lights can be shed
on the trends of SIAs on the GPU, a relatively new member
of general-purpose hardware platform.

The remainder of this paper is organized as follows.
Section II gives a brief introduction of general-purpose com-
puting based on GPU. In Section III, a novel taxonomy is
proposed and established, then used to review literature in
detail. The subsequent section is dedicated to the detailed
parallelization implementation techniques, including efficient
parallel algorithm and refining memory access. In Section V,
we discuss the evaluation criterion used for measuring the ben-
efit of parallelization and comparing different implementations
and present our proposed criteria for that purpose. The verifica-
tion of the proposed criteria will be presented in Section VI-B1
with detailed case study. Finally, this paper is concluded with
our insights and opinions on the trends and perspectives in the
field of GPU-based SIAs.

II. GENERAL-PURPOSE COMPUTING ON GPUS

Driven by the insatiable demand for real-time high-
definition graphics, GPUs have evolved into highly paral-
lel, many-core processors and are able to execute tens of
hundreds threads concurrently. Today’s GPUs greatly out-
perform CPUs in both arithmetic throughput and memory
bandwidth (see Fig. 1). GPUs can offer great performance

Fig. 1. GPUs greatly outperform CPUs in both arithmetic throughput and
memory bandwidth [52]. (a) Floating-point operations per second for the CPU
and GPU. (b) Memory bandwidth for the CPU and GPU.

at a very low price, and meanwhile GPUs can also be inte-
grated into high performance computing systems without
much difficulty [50], [51]. Moreover, GPUs also have great
performance/watt, which is key for achieving super comput-
ing performance. In the latest (as of April 2015) Green500
list,1 nine of the top ten systems on the Green500 are accel-
erated with GPUs. Much effort has been made to harness the
enormous power of GPUs for general-purpose computing, and
a great success has been achieved.

Many platforms and programming models have been pro-
posed for GPU computing, of which the most important
platforms are CUDA [52] and OpenCL [53]. Both platforms
are based on C language and share very similar platform
model, execution model, memory model and programming
model.

CUDA, a proprietary architecture from NVIDIA, enjoys the
advantage of mature ecosystem and it is very easy to use as
far as programming procedure is concerned. CUDA is just like
conventional C/C++ except adding a few of GPU platform
specific key words and syntax. Also, there exist interfaces with
other high-level languages. With pyCUDA and Jacket toolbox,
programmer can accelerate Python and MATLAB Codes uti-
lizing CUDA under the hood, respectively. By now, CUDA is a
dominant platform for GPU-targeted SIAs as well as GPGPU.

1http://green500.org/lists/green201411
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Fig. 2. Framework of SIAs.

OpenCL is an open, royal-free specification aimed at het-
erogeneous programming platforms. OpenCL is portable and
supported by diverse computing devices, including GPUs (both
NVIDIA and AMD), CPUs, accelerators (e.g., Intel Phi),
FPGA, and so forth [15]. As smart phones, tablets, and wear-
able devices are increasingly popular, there are good chances
that OpenCL will be used on these novel embedded computing
devices [54]–[56].

Besides OpenCL and CUDA, other easy-to-use program-
ming tools are also available for leveraging the computational
power of GPUs, e.g., OpenACC and C++ accelerated mas-
sive parallelism. A detailed description on GPGPU is out of the
scope of this paper. For a systematic and completed knowledge
on GPU computing, readers can refer to [17] and [57].

III. SWARM INTELLIGENCE ALGORITHMS

BASED ON GPUS

In essence, SIAs are iterative-based stochastic search algo-
rithms where heuristic information is shared in order to guide
the search in the following iterations. A simplified general
framework of SIAs is depicted in Fig. 2. For a particular SI
algorithm, the sequence of each phase may be different and
some phases can be included several times in a single iteration.

For a particular SIA, each phase is with parallelism of var-
ious degree, thus should be mapped onto the most suitable
processors (CPU or GPU) for optimal performance. In accor-
dance with how each phase is mapped onto processors (the
CPU or the GPU), the GPU-based implementations can be
categorized into four major categories.

1) Naive parallel model.
2) Multiphase parallel model.
3) All-GPU parallel model.
4) Multiswarm parallel model.

A. Comparison With Related Work

Before starting the literature survey by the proposed tax-
onomy, we take a brief comparative review of the related
work in literature and show how our proposal differs from
the previous ones.

Krömer et al. [58] provided a brief overview of the
research on the design, implementation, and applications of

GPU-based PSO. Works published in 2012 and 2013 were
reviewed chronologically, and each proposal was described
independently.

Augusto et al. [59] presented and discussed different paral-
lelization strategies for implementing ACO on GPU. Special
attention was given to OpenCL by the authors.

Extending the work in [60], Krömer et al. [61] provided
a brief survey of recent studies dealing with GPU-powered
genetic algorithm (GA), differential evolution, PSO, and sim-
ulated annealing (SA) as well as the applications of these
algorithms to both research and real-world problems. In this
review, each group of algorithms were independently reviewed
instead of under a uniform framework.

Valdez et al. [62] implemented on the GPU a set of bio-
inspired optimization methods (PSO, GA, SA, and pattern
search). However, implementation details were not described.
Reviewed several evolutionary computation (EC) methods,
respectively, Majd and Sahebi [63] summarized four general
frameworks for the parallelization of EC methods. However,
no real implementation or specific hardware was involved.

Though these previous works are helpful for our understand-
ing of GPU-based SIAs in particular way, they have their own
shortcomings. None of them can serve as a framework which
both enables us studying GPU-based SIAs in a universally way
and guides the hands-on implementation of SIAs on the GPU.
In [61] and [62], no framework was built to discuss differ-
ent SIAs and related algorithms. While some framework was
used in [59] and [63], respectively, the former proposal targets
only on GPU-based ACO and the later one provides no discus-
sions about implementation. Different implementations were
discussed in [58], however, no discussion about how these
implementations are related to each other and what are their
pros and cons. The four proposed taxonomies are mainly aim-
ing at CPU-based parallel platforms [60], which is not suitable
for GPU-based SI algorithms.

Inspired by all those previous works, we come up with a
new taxonomy for parallel implementation of SIAs based on
the principals of parallel optimization [64]. With the proposed
taxonomy, GPU-based implementation of diverse SIAs can be
studied and compared under a uniform framework. Besides
a high-level taxonomy, critical implementation considerations
are presented in sufficient detail for the purpose of real-world
implementation. We think the proposed taxonomy will be help-
ful for those who want to leverage GPUs’ enormous parallel
computing power for accelerating SIAs of specific kind as well
as more practical for real-world applications.

With the taxonomy, SIAs of different kinds are classified
and surveyed extensively in the remainder of this section.

B. Naive Parallel Model

SIAs are suitable for black-box optimization problems, i.e.,
the algorithms need not to know the structure of the objec-
tive function, only require that giving a trail solution, and the
corresponding fitness value (cost) can be returned. For non-
trivial problems, evaluating a fitness function for every agent
is usually very time-consuming. Typically, each fitness is eval-
uated in a parallel, independent way. Thus, according to the
Amdahl’s Law [65], significant speedup can be obtained by
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Fig. 3. Naive parallel model.

Fig. 4. Example for (a) coarse-grained and (b) fine-grained parallel.

parallelized fitness evaluation. By a breakdown timing of each
part of the algorithm, the potential speedup can be derived
easily before real-parallelization begins.

So by considering the basic principle in parallel
programming—locate the bottleneck and optimize it, the
straightforward optimization strategy to accelerate SIAs is to
offload the fitness evaluations onto the GPU for paralleling
running. Compared to other more complicated strategies (as
will be discussed later) which can utilize more parallelism in
specific algorithms, such an implementation is relatively naive
and can be used by almost any SIA, so we name it naive
parallel model as illustrated in Fig. 3.

Implementation using naive parallel model can be coarse-
grained (task parallel) or fine-grained (data parallel).

When fitness function lacks parallelism or there are many
independent evaluations to be performed simultaneously, the
coarse-grained parallel can be adopted. Under this condition,
each evaluation task is mapped onto one thread [see Fig. 4(a)].

Naive parallel model is particularly interesting when the
fitness function can be parallelized. In that case, the function
can be viewed as an aggregation of a certain number of partial
functions that can be run in parallel, i.e., a fine-grained imple-
mentation [see Fig. 4(b)]. Many implementations for optimiz-
ing benchmark functions fall into this category [66], [67], so
do many real-world applications [68], [69].

Naive as this parallel model is, it can be very useful in
both academic research and industrial applications. As only fit-
ness evaluation is selected for parallel implementation, legacy

Fig. 5. Multiphase parallel model.

serial codes need little change, thus simplify the programming
and debugging process while greatly reducing the running
time of the program. Besides, the parallelized fitness evalu-
ation component is “pluggable.” Researchers can implement
different SIAs without worrying too much about the perfor-
mance, and plug the GPU-parallelized fitness evaluation for
fast execution. This can greatly accelerate the process of com-
paring different algorithms and developing novel algorithms.
For this purpose, a GPU-based benchmark has been proposed
and reported in [70].

C. Multiphase Parallel Model

Naive parallel model offers a useful starting point when
considering GPU-based parallelization of SIAs, and is pop-
ular due to its easy implementation. However, an acceptable
acceleration may not be obtained with this model.

Once the explicit parallel part is parallelized and highly opti-
mized, the percentage of the serial part of the program (scaled
serial ratio) will increase correspondingly [71]. In these cases,
further exploiting the parallelism of the remainder parts (e.g.,
velocity and position update in PSO and more generally find-
ing the top n maximum/minimum values, sorting, etc.) can be
beneficial. With reasonable design, more efficient implemen-
tation is possible, thus able to fully leverage GPUs computing
power.

In the multiphase parallel model, attempts are made to
offload computation from different phases with explicit or
implicit parallelism onto GPUs (see Fig. 5).

Unlike the case of naive parallel model which is universal
for all SIAs, multiphase parallel model is algorithm dependent.
Multiple kernels can be implemented for parallelizing differ-
ent phases, and different kernels can take different parallel
strategies and granularity to best fit to the specific task.

1) Vector Operations: Many operations in SIAs can be for-
mulated as vector operations, such as velocity and position
update in PSO [23], movement and feeding operators in Fish
School Search (FSS) [72] and spark generation in FWA [10],
[25]. Usually, vector operations can be implemented in a very
fine-grained data parallel way, i.e., each entry of the vector is
updated by a single thread. Such a technique is very straight-
forward and trivial, so adopted by all SIA implementations
reviewed.

2) Reduction: Reduction is a core building block for
parallel computing. Finding minimal or maximal values in
FWA [10], [25], calculate the sum in FSS [72], and dis-
tance calculation in firefly algorithm and some PSO vari-
ants [73]–[75] are all instances of reduction primitive. For
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GPUs of older architectures (fermi or older), reductions
can be implemented efficiently using share memory and
atomic operators. For Kepler or newer GPUs, more effective
implementations are available via the register-based shuffle
operator [52].

3) Sorting: Sorting is a basic block for many SIAs, such as
Bees algorithm [26] and Cuckoo algorithm [27]. Though not
the best for the GPU, it may be desirable to have a GPU imple-
mentation especially when data is already resident in the GPU.
Efficient algorithms for GPU sorting can be found in [76].
For Kepler or newer GPUs, more efficient implementations
have been proposed in [77], where an alternative sorting enac-
tor designed specifically for small problem sizes is described.
In some cases, reduction can be utilized to replace partially
sorting, which functions similarly with respect to the final
results [27].

4) Path Construction: One of the hottest research top-
ics is efficiently parallelizing the roulette-wheel selection for
path construction in ACO. Instead of simply porting from
CPU to GPU [22], [78], fine-grained data-parallel approaches
were proposed in [79] and [80]. More complicated data struc-
tures and memory usage were also introduced for better
performance [81], [82]. Based on parallel prefix-sum, some
authors proposed to exploit fast shared memory [83] and
reduce the use of random numbers [84] to further improve
the performance.

Cecilia et al. [80] observed the existence of redundant com-
putation and thread divergences in such task-parallel approach
used in [22]. A fine-grained data-parallel approach was used
to enhance construction performance for solving the travelling
salesman problem (TSP). A new method called independent
roulette (I-Roulette) was proposed to replicate the classic
roulette wheel while improving GPUs parallelism. In this
design, Intercity probabilities need to be calculated only
once and stored into additional memory to avoid repeated
computation. A tiling technique was proposed to scale this
method to problems with large numbers of cities [80].
Experiments showed that the quality of solution obtained by I-
Roulette ACO was comparable to roulette-wheel-based ACO
for solving TSP. More details on data structures and mem-
ory usage were discussed in [81] and [82]. Before the work of
Cecilia et al. [80], Fu et al. [79] implemented the same method
which the authors called all-in-roulette by using MATLAB
Jacket.

Following the work in [80], Dawson and Stewart [83] pro-
posed a novel parallel implementation of roulette-wheel selec-
tion algorithm (Double-Spin Roulette, DS-Roulette) to tackle
some drawbacks of I-Roulette. DS-Roulette, in effect, is a
two-phase prefix-sum-based implementation of roulette-wheel
selection by leveraging the fast shared memory. Experiments
showed that it greatly reduced the execution time for con-
structing paths.

Uchida et al. [84] described a group of implementation
strategies for path construction. Different from [80], only one
random number is needed and a straightforward roulette-wheel
based on prefix-sum is adopted for city selection. A com-
pressed mechanism was proposed to remove the visited cities
before prefix-sum. To avoid performing prefix-sum for every

selection (as the case of the former two methods and [83]),
stochastic trial was proposed. In this proposal, before path
construction starts, the prefix sums for each city are calcu-
lated. When selecting city, regular roulette wheel selection
is performed until an unvisited city is picked out. Finally, a
hybrid method of the three methods was proposed for better
performance.

As roulette-wheel selection is widely used for other
population-based heuristic algorithms, so the proposed tech-
niques may be used in this areas such as GA and artificial bee
colony [85].

5) Pheromone Update: Pheromone update in ACO is also
an active research topic. Pheromone update comprises two
major tasks: a) pheromone evaporation and b) pheromone
deposition. While the parallelization of pheromone is trivial,
pheromone deposition is kind of problematic, as different ants
may try to depot pheromone onto the same edge at the same
time. Both atomic operation-based [84] and atomic-free [80]
strategies have been proposed.

The straightforward solution to parallelize pheromone depo-
sition is to prevent race conditions when accessing the
pheromone matrix. In this manner, Cecilia et al. [80] imple-
mented pheromone update directly on GPU. Another imple-
mentation based on atomic operation was proposed by
Uchida et al. [84]. In this design, the atomic operations hap-
pen in shared memory instead of in the global memory as the
case of [80].

Cecilia et al. [80] proposed a scatter to gather transfor-
mations technique to perform pheromone deposition without
atomic operations, at the cost of drastically increasing the
number of accesses to device memory [O(n4) in compar-
ison with O(n2) in the atomic-instruction implementation].
Experimental results in [80] and [82] showed that this imple-
mentation is significantly inefficient (∼tenfold slower) than the
atomic operation-based implementation.

6) Other Parallelism: For a particular SI algorithm, spe-
cial consideration is necessary for the GPU-based parallel
implementation.

Local search is an optional component for ACO. This mech-
anism can improve the solution quality greatly at the cost
for enormous computation time. As each solution is being
improved independently of others, this step is very suitable
for task parallel. Tsutsui and Fujimoto [86]–[88] proposed
an ACO variant with tabu search and 2-opt search as local
search component, respectively. A technique called move-cost
adjusted thread assignment was introduced to further acceler-
ate calculating the cost in the process of local search at the
cost of extra memory space.

D. All-GPU Parallel Model

Compared to the fast computational speed of GPU, the
communication between GPU and CPU is very slow. The over-
head of frequent kernel launch is also a potential factor that
may harm GPUs overall efficiency. So it may be beneficial
to combine multiple kernels into single one thus run a whole
program on the GPU only (see Fig. 6). In this case, serial
code is deported onto the GPU. Though it is not the priority
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Fig. 6. All GPU parallel model.

of GPU, compared to the communication and kernel launch
overhead, the offload will pay off if the serial code is not too
computational intensive, thus the overall performance can get
improved.

1) Coarse-Grained Strategy: One difficulty that prevents
kernel from merging is the data synchronization. Data depen-
dency may exist between different phases. Before a phase
starts, the previous phase must complete and the data must
be written back correctly. For instance, in PSO with global
topology, only until particles have completed updating their
private best (position and velocity) and all data are written
back to the proper memory, the operation of finding the best
particle can start.

However, GPU cannot synchronize between different thread
blocks, so we must stop the kernel to explicitly make sure the
synchronization just as in the common cases of multiphase
parallel model.

To tackle this issue, a direct way is to organize all thread into
one single block, i.e., the swarm is mapped onto one thread
block, and each particle is mapped onto one thread [89], [90].
A bonus of such a coarse-grained design is that fast shared
memory can be used for communication thus better perfor-
mance can be obtained.

However, as a block must be assigned to one single stream-
ing multiprocessors (SM) and one SM can only support limited
threads and blocks. This strategy is only reasonable for small
swarm size. So, coarse-grained all-GPU parallel strategy is
oftentimes adopted as a component of multiswarm parallel
model, which will be discussed below.

2) Fine-Grained Strategy: As aforementioned, if fitness
function can be implemented in parallel, fine-grained paral-
lel can be taken, in which case each particle is mapped onto
one thread block. Each thread execute some part of function
evaluation and the partial results are reduced to give the final
value.

As the hardware synchronization is not supported by GPU,
two solutions can be used to tackle the issue: a) remove
data-dependency and b) utilize software synchronization. An
implementation of the former idea is from [91] where the
authors proposed PSO without interparticle communication.
To the best of our knowledge, there is no published work
using software synchronization. But, we notice that persistent
thread [92] is a handy tool for this purpose.

Fig. 7. Multiswarm parallel model.

E. Multiswarm Parallel Model

SIAs can be plagued by a rapid deterioration of their opti-
mization capabilities as the problem scale and dimensionality
of the search space increases. The effective approach con-
sists of decomposing the problem in smaller subproblems and
then running on them multiple search instances, which cor-
porate with each other by sharing information. Meanwhile,
as a computing device with hundreds, even thousands of pro-
cessing cores, GPU can support enormous number of threads
at the same time, thus is able to run thousands of agents
simultaneously.

So for high-dimensional, large-scale problems, multiswarm
parallel model comes as a natural way not only to reduce the
search time but also to improve the quality of the solutions
provided. Instead of running one single swarm, in multiswarm
parallel model, the swarm is divided into a few subswarms, and
each of them evolves separately utilizing different thread or
group of threads (see Fig. 7). In literature, multiswarm island
model can be called as island model alternatively. Compared
to a single swarm with a large population, algorithms using
multiple smaller swarms may perform better in terms of both
solution quality and running time [93].

Multiswarm model can be divided into two groups:
1) autonomous multiswarm model, where multiple indepen-
dent copies of the same algorithm execute in parallel and
swarms are free to converge toward different suboptima and
2) collaborative multiswarm model, where communication of
certain form is allowed among swarms.

1) Autonomous Multiswarm Model: Multiswarm imple-
mentations can be memory bounded, thus introduce challenges
for GPU platform.

One strategy to address this issue is to run multiple
subswarms independently, and choose the best solution of
all [94], [95]. This strategy can be helpful for better main-
taining the multimodal distribution [96]. Another approach
is to divide the original problems into multiple nonoverlap-
ping subproblems and utilize multiple swarms to tackle each
subproblems, respectively, [97]–[100].

2) Collaborative Multiswarm Model: Although suffering
from the drawbacks of data transfer and synchronization over-
head, it may be beneficial for multiple swarms cooperation
instead of total independence.

Much attention is focused on efficient immigration strate-
gies. The immigration can be in the form of regrouping
of the whole population [101] or more typically, replac-
ing the some individuals (e.g., the worst ones) with the
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particular individuals (e.g., better ones) from other swarms.
The immigrated individuals can maintain their critical infor-
mation (like velocities for PSO) [102], [103] or discard such
information [104], [105]. In some proposals, no individual
immigrating happens, instead of the global best information
interchanged among swarms [106], [107]. Some proposed that
swarms communicate through a master swarm [108], which
leads to a more implicit communication mechanism.

The cooperation can also be in the form of space par-
tition. By occupying nonoverlapping space, the whole pop-
ulation can search the solution space more efficiently. The
space can be partitioned in a determinant way [26], [73] or
stochastically [25].

IV. SOME CONSIDERATIONS IN IMPLEMENTATION

In this section, we briefly describe several important opti-
mization techniques concerned when implementing SIAs
on GPU.

A. Float Numbers: Double Precision or Single Precision

Initially designed for graphics tasks which just need a low
precision, GPUs own enormous computing capability for sin-
gle precision (SP) float operations. The support to double
precision (DP) float operations is a relative new thing in recent
few years. DP float operations can be 1/3 to 1/16 slower on var-
ious particular hardware, and double memory space are needed
for storage.

So if SP float operation can satisfy the precision require-
ment, running algorithms on SP float can fully leverage GPUs’
whole computing power. For the same reason, if low precision
is acceptable, then the faster native math functions can be used
as possible as it can. Some mathematical operators (such as
powf, sin) can drastically affect the overall performance of
GPUs [109], fast low-precision native implementation (usu-
ally several fold faster than the conventional implementation)
can improve the performance greatly but the precision loss
depends on the specific device [82].

In one word, SP float operation and native functions should
be the first consideration issue whenever the precision can
satisfy the task at hand.

B. Memory Accesses

The GPU has a hierarchical memory structure as illustrated
by Fig. 8. Threads may access data from multiple memory
spaces during their execution. Each thread has private local
memory. Each thread block has shared memory visible to all
threads of the block and with the same lifetime as the block.
All threads have access to the same global memory. Texture
and constant memories are read-only, and are cached for fast
access.

Different memories are quite different with respect to band-
width (see Table I for the theoretical peak bandwidth). GPU
can access host’s memory via system bus (Table I lists the peak
bandwidth for PCIe 2.0 bus with 16 lanes, which is widely
used for today’s PC). Global memory are off-chip DRAM
which is usually connected to the GPU via GDDR5. Shared
memory, in effect, is a block of programmable on-chip L1

Fig. 8. Memory hierarchy of GPU.

TABLE I
DATA TRANSFER RATES FOR GPU (NVIDIA GEFORCE

560 TI, PCIE 2.0 X16)

cache with limited capacity. Local memory is the register, thus
can be accessed without latency.

In summary, each memory obeys its specific access pattern,
so memory traffic must be carefully tuned to exploit the full
bandwidth from all memory controllers.

C. Random Number Generation

In early proposals such as [23], all random numbers were
generated on the CPU and then transfer to graphics memory.
Random numbers can be efficiently generated directly on the
GPU in highly parallel manner [110], and handy library is also
available [111], [112]. In the common CPU-based implemen-
tations, random numbers are typically generated as needed.
In the case of GPUs, it is much more efficient to generate a
bunch of random numbers once. For fast access, the random
numbers can be stored in read-only memory.

D. Branch Divergence

All GPU threads are organized into multiple groups (warps
or wavefronts). Threads in the same group execute the same
instruction when selected [52]. Divergence between threads
within the same group can cause significant performance bot-
tlenecks for GPU applications. So when designing algorithms
for the GPU platform, divergence should be avoided whenever
possible.

Irregular loops and conditional instructions are the major
sources of thread divergence. Thus, the sequential code, in
practice, needs to be restructured delicately to eliminate diver-
gence. Some techniques are proved to be very useful to
reduce branch divergence [113]. The iteration delaying trick
improves performance by executing loop iterations that take
the same branch direction and delaying those that take the
other direction until later iterations. The trick called branch
distribution reduces the length of divergent code by factoring
out structurally similar code from the branch paths.
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Divergence can be eliminated by forcing all threads in a
warp to take the same control path. The result is an implemen-
tation that does not agree with the corresponding sequential
version. In particular circumstances where the applications
can tolerate errors to some extent, such implementation can
still produce acceptable outputs. To safely and efficiently sup-
port this strategy, a whole framework and methodology are
proposed in [114].

V. EVALUATION CRITERIA

Once an implementation is proposed, a critical question is
how well such a proposal performs and what the advantages
it has over other implementations. In this section, we discuss
the criteria used in literature and give our comments on the
rationalities and irrationalities. Based on these observations,
we propose our criteria for general fair comparison.

A. Parallel Performance Metrics

Speedup and efficiency are the most common metrics used
by the parallel computing community. Speedup can be defined
as the ratio of the execution time of parallel implementa-
tion (Tp) and the execution time of the sequential one (Ts) (1),
and efficiency is a normalized value of the speedup regarding
the number of cores (m) executing a parallel algorithm (2)

S = Ts

Tp
(1)

E = S

m
. (2)

In conventional parallel computing, the speedup allows to
evaluate how faster a parallel algorithm is compared to a cor-
responding sequential algorithm while the efficiency gives a
platform-independent metric of different parallel implementa-
tions. But, in GPU computing, the two metrics have different
meanings.

As the execution times are tested on hardware platforms
with totally different architectures—the CPU and the GPU,
different researchers can use different GPUs and different
CPUs, thus making the comparison of different implementa-
tions very hard if not impossible. Similarly, the efficiency is
not as a useful metric as in CPU parallel analysis.

In some cases, the speedup is calculated on an unfair base.
Considerable effort is spent to optimize the code on the GPU
while no effort whatsoever is made to optimize the sequential
code on the CPU. In such case, inflating speedups by compar-
ing to an unoptimized sequential code, happens too often and
has led to unrealistic expectations of the benefits of moving
from a CPU to a GPU [115]. Fortunately, the issue of speedup
inflation has been noticed and framework for fair comparison
has been proposed in [116] and [117].

B. Algorithm Performance Metrics

In conventional framework of CPU-based algorithms, there
are two major ways to compare the performance of two algo-
rithms. One way is to compare the accuracy of two algorithms
to solve the same problem for a fixed number of function eval-
uations. Another way is to compare the numbers of function

evaluations required by two different algorithms for a given
accuracy. An implicit assumption underlying such a method
is that, the number of function evaluations roughly reflect the
running time of the algorithms.

However, such assumption does not hold when paralleliza-
tion gets involved and abuse of the two methods leads to some
confusions in the study.

In literature, solution quality achieved by GPU-based imple-
mentation is always compared with the CPU counterpart with
the same population size and evaluation times. If the prob-
lem to be solved is very complex, a normal population size
can fully exploit the computational power, then this compar-
ison makes sense. However, oftentimes the fitness function
is not computationally intensive enough or problem scale is
moderate. In such case, significant speedup is obtained only
when population size is very large. Such a large population
size is usually far from the reasonable one for conventional
CPU configuration. For many swarm algorithms, the reason-
able population size is relatively moderate. For instance, PSOs
population size is usually between 20 to 100 [7].

The conventional iteration-oriented comparison is problem-
atic in the context of GPU computing. In a viewpoint of
practice (this is what SIAs are all about), the speedup calcu-
lated with this assumption cannot reflect its usage in real-world
application. Subsequently, we will present our opinions for a
practical criterion for comparison.

C. Proposed Criteria

As the established comparison methods have drawbacks, we
propose new criteria to improve the evaluation.

To evaluate the parallel performance, we propose a rectified
efficiency to evaluate the parallel performance across different
CPU and GPU platforms. To calculate the modified efficiency,
we need the theoretical processing power ratio (denoted as R)
of the target CPU and GPU. R is defined as

R = Pgpu

Pcpu
(3)

where Pgpu and Pcpu are the theoretical peak processing power
(number of float operations per second) of GPU and CPU,
respectively.

Rectified efficiency (RE) can be calculated as follows:

RE = S

R
(4)

where S is the speedup defined by (1). The larger RE is, the
more efficient the parallel implementation is.

Notice that in the scenario of symmetric multicore CPU,
R = (m ∗ Pcpu)/Pcpu = m. so the rectified RE can be viewed
as a generalization of efficiency E, thus play a similar role as
E for parallel performance evaluation.

We suggest that the rectified efficiency can be used with
efficiency to compare the parallel performance. On one
hand, the efficiency (multithreaded implementation against
single-threaded implementation) functions as the quality of
the CPU-based parallel implementation. On the other hand,
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Fig. 9. Breakdown timing.

the rectified efficiency (GPU implementation against multi-
threaded implementation) monitors the GPU-based parallel
implementation.

As for the algorithm performance, it is more reasonable to
compare the accuracy under limited time or compare the con-
sumed time before a given accuracy is achieved. The benefit
GPU brings is either accuracy improvement (within limited
time) or acceleration (with given accuracy). For insightfulness
and practical comparison, both CPU and GPU implementa-
tions should be fully optimized. Based on that, we can observe,
how good the solution is with limited time or how long it will
take to reach a particular quality.

VI. CASE STUDY

In this section, the parallel models and performance metrics
proposed in this paper are studied further with experiments.

Without a specific note, the experiments are conducted
with the following setting: a PC running 64-bit Windows 7
Professional with 8G DDR3 Memory and Intel core I5-2310
(@2.9 GHz 3.1 GHz) and NVIDIA GeForce GTX 970. The
program was implemented with C and compiled with visual
studio 2013 and CUDA 6.5.

A. Case Study on GPU Implementation

In this case study, we will optimize the Weierstrass func-
tion (5) using PSO. Following the optimization methodology
and parallel models introduced in Section III, we will see how
we can achieve significant speedup at the end.

Weierstrass function is defined as follows:

f (x) =
D∑

i=1

kmax∑

k=0

ak cos
(

2πbk(xi + 0.5)
)

(5)

where a = 0.5, b = 3, kmax = 20, and D denotes the dimen-
sion. Weierstrass function is a widely used benchmark function
for optimization. It is multimodal and continuous everywhere
but differentiable on no point.

In our case, we use standard PSO with ring topology [7]
with a fixed size population (100) to optimize Weierstrass
function. Fig. 9 illustrates the ratio of function evaluations
and other operations. As can be seen, in all setup, the function
evaluation takes up around 99% of the running time.

Obviously, the hotspot of this task is about the function
evaluation. Thus by following the naive model, we port the

Fig. 10. Overall speedup achieved by GPU-based implementation using naive
model.

Fig. 11. Overall speedup achieved by GPU-based implementation using
multiphase model.

evaluation onto the GPU side with a fine-grained implemen-
tation. Fig. 10 presents the speedup achieved. Up to 16×
speedup is obtained. (Note that the CPU version is paral-
lelized using OpenMP which is about 3.5 times fast than the
sequential version.)

Observing Fig. 10, after parallelizing the function evalua-
tion, the ratio of function evaluation takes up only about 60%
of the overall running time. The time consumed by other oper-
ations cannot be ignored any more. Following the multiphase
model, we parallelize the velocity update and position update
on the GPU side. The speedup achieved by this implementa-
tion is illustrated in Fig. 11. The speedup increase from the
naive model’s 16× to about 30×. (Note that in our case, by
using multiphase model, the running time of function evalua-
tion is reduced further. This improvement is due to the fact that
by using the multiphase model, all data are stored on the GPU
side, thus the overhead of data transfer between CPU and GPU
is eliminated.) By the definition of rectified efficiency, the mul-
tiphase implementation achieves an RE value of around 0.7.
The result implies that the multiphase implementation is very
efficient with the given hardware and task.

In this case study, multiphase model is sufficient for the
task. In some cases, a fine-tuned parallelization of the objec-
tive function alone may result in a speedup that is sufficient
enough. In other cases, say, with more time-consuming task
and more powerful devices (e.g., multiple GPUs or GPU clus-
ters), multiswarm model combining with all-GPU model might
be used for further exploiting the power of parallelization.

B. Case Study on Criteria

In this section, we will revisit a pioneering work on
GPU-based PSO [23] with the criteria introduced in Section V
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TABLE II
SPEEDUP AND RECTIFIED EFFICIENCY WITH VARIOUS

POPULATION SIZES (f 1, DIMENSION = 50)

to verify their rationality in evaluating GPU-based SIAs. It
will be clear very soon that with the help of the proposed RE
concept, this early implementation was not efficient enough.
Based on the observation, we come up with an improved ver-
sion. Thanks to the new criteria, we can prove that is more
efficient than the original one despite of the fact that we used
a very different hardware with respect to our task at hand.

1) Case Study on Parallel Performance: Zhou and Tan [23]
proposed one of the earliest GPU-based PSO implementation
and discussed the speedup with respect to three benchmark
functions (f 1 ∼ f 3). The speedups (S) measured in this paper
are listed in Table II (case 1). The speedups were tested on f 1
(sphere function) with dimension 50 and various population
sizes (rows). We calculate the RE according to the hardware
specification (NVIDIA 8600 GT and Intel Core Duo 2).

If only speedup is considered, the GPU implementation
seems quite good as considering the used GPU is relatively
less powerful than the updated GPUs. However, two fac-
tors make this conclusion susceptible and unreliable. First,
although CPU of two cores was used in the experiments, only
single thread implementation was used for comparison. As
aforementioned, this was an unfair comparison, and speedup
is overestimated. Second, as the rectified efficiency implies
(notice that the RE is also overestimated due to the inflat-
ing speedups), the power of GPU was not fully exploited in
comparison with CPU. The inefficiency could be caused by at
least two obvious factors: a) one critical component of PSO,
random number generator, is implemented by the CPU, which
is much less efficient than its GPU-based counterparts [110]
and b) another factor is that, the CUDA driver then was not
as efficient as nowadays.

To address these issues, we improve this implementation by
generating random numbers on the GPU directly. Besides, in
order to conduct a fair comparison, we implement CPU version
with both single thread and multiple threads (using OpenMP)
with different hardware (NVIDIA 560 Ti and Intel i5). The
results are listed in Table II [case 2(A) for speedups against
single-threaded while case 2(B) for multithreaded].

Comparing the REs of cases 1 and 2(A), it is easy to
conclude that the new implementation improved the origi-
nal implementation greatly, while such a conclusion cannot
be achieved if only speedup is concerned. According to the
RE of case 2(B), the efficiency of the new implementation is
still not very plausible, thus more dedicated implementation
can be expected.

These analyses hold for other experimental settings, as
illustrated by Figs. 12 and 13. As f 2 and f 3 are more

Fig. 12. Speedup and rectified efficiency with various population sizes
( f 2, dimension = 50).

Fig. 13. Speedup and rectified efficiency with various population sizes
( f 3, dimension = 50).

computationally intensive than f 1, the GPU achieved better
speedup and higher rectified efficiency.

2) Case Study on Algorithm Performance: To show how
GPU can significantly improve SIAs’ performance, in this case
study, we try to utilize PSO to find the minimal of Weierstrass
function defined by (5) and Ackley function [see (6)] with
D = 50

f (x) = −20 exp

⎛

⎝−0.2

√√√√ 1

D

D∑

i=1

x2
i

⎞

⎠− exp

(
1

D

D∏

i=1

cos(2πxi)

)
.

(6)

Multithreaded and GPU-based PSO implementations in the
last case study are reused here, and the testbed is also identical.
For the CPU case, 10 000 function evaluations were conducted
with different population sizes, for each of which 35 inde-
pendent trials were run. The GPU-based algorithm ran for
roughly the identical time (around 11 s for each population
size). Results are illustrated in Fig. 14. It can be seen that
GPU-based PSO could obtain better or comparative solutions
in comparison with its CPU-based counterpart, even when the
population size is relatively small.

Based on the above results, we can make some insightful
conclusions below.

a) For CPU-based PSO, it is better to choose population of
moderate size (for instance 50 in our case), which agree
with the conventional empirical rule.

b) However, this rule of thumb is invalid for the GPU case.
In our case, the best solution was achieved when the
population size is 200 and 1000 for Ackely function
and Wierstrass function, respectively.
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Fig. 14. Solutions obtained under different conditions.

c) The speedup achieved by using GPU can lead to perfor-
mance improvement, which is very important for GPUs
applications in real-world problems.

d) Cares should be taken when pursuing high speedup
because high speedup with very large population may
deteriorate performance badly, just as our case when
population size is 2000.

As seen from the case study above, the new criteria
can result in more objective and insightful evaluation
for GPU-based implementation, thus help us deploying
GPU-based SIAs in practical applications. For more details,
please visit the FWA forum at our CIL@PKU at http://
www.cil.pku.edu.cn/research/fwa/index.html.

VII. CONCLUSION

In this paper, an extensive literature review of GPU-based
SIAs was presented. All proposals have been grouped into
four categories in a viewpoint of optimization. Several impor-
tant concerns in implementation were described in detail along
with the discussion of metrics evaluating parallelization and
algorithm performance.

As we have come into an era of multi- and many-core era,
single thread is not a reasonable assumption any more. Parallel
implementation will dominate the design and implementation
of SIAs both on CPU and GPU. Little interest and attention
will the sequential version have both for academic research
and industrial applications.

Although performance measures are key in evaluating and
improving GPU-based parallel algorithms, good performance
criteria are yet to be developed. A rectified efficiency was
proposed in this paper to measure parallel performance. As for
the algorithm performance, it is more reasonable and practical
to compare solution quality under limited time or compare the
consumed time given accuracy.

Multiobjective optimization (MOO) is always a hot topic
in SI community, however, only few implementations (several
proposals can be found in [36], [75], [118], and [126]) lever-
aged GPUs computational powers. Because MOO problems

are, usually, much more computationally intensive than single-
objective ones, thus accelerating these MOO problems will be
very useful and beneficial for algorithms and applications.

As GPUs have been used to solve large-scale problems
successfully, multi-GPU and GPU cluster will become pop-
ular for implementations of SIAs in future. Several prelimi-
nary works have been reported [42], [119]. Fortunately, the
hardware infrastructure is mature and software is ready for
use [120], [121].

Although CUDA is the dominate platform for GPU-based
implementation of SIAs, it suffers from the drawback of closed
environment as only NVIDIAs GPUs were supported. Since
diverse hardware platforms are at hand for accelerating SIAs,
from embedded systems [122], [123], [125] to super comput-
ers, a more universal solution will be applaudable. OpenCL
could be a good option to address this need and a com-
petitive alternative for CUDA. OpenCL can be as efficient
and productive as CUDA is [124]. Besides, supported by
multiple vendors, OpenCL also enjoys the advantage of porta-
bility. Without modification, a program written in OpenCL
can run on all these hardware. In future, more researches and
applications would be based on OpenCL platform.

Finally, it would be pointed out that there is no discus-
sion on energy consumption in literature, to the best of our
knowledge. Although GPU was reported more energy-efficient
compared to CPU for supercomputers, it is still an open ques-
tion, i.e., how GPU performs in the scenario of low power
system (e.g., embedded and mobile devices).
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