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Abstract—The fireworks algorithm (FWA) is a newly proposed
nature-inspired swarm intelligence algorithm. In this paper, two
novel mechanisms are proposed to enhance the exploration
capability by means of interaction among fireworks in the FWA.
The dynamic resource allocation allows the algorithm to allocate
the resource (the number of sparks) adaptively according to the
search results and fitness ranking of the fireworks. The fitness-
based crowdedness-avoiding strategy is proposed to improve
the diversity of the fireworks population by sharing the fitness
information among the fireworks. Experimental results on a large
variety of test functions indicate that the proposed measures
significantly improve the performance of the FWA, especially on
complex objective functions.

I. INTRODUCTION

The fireworks algorithm (FWA) is a newly proposed swarm
intelligence algorithm which has proven to be very useful in
many applications, such as multilevel image thresholding [1],
RFID network planning [2], multi-satellite control resource
scheduling [3], constrained portfolio optimization [4], regional
seismic waveform [5], modern web information retrieval [6],
gamma-ray spectrum fitting for radioisotope identification [7],
de novo motif prediction [8], thermal unit commitment [9],
privacy preserving [10], etc.

The FWA searches for the optimal solution(s) in the feasible
space by generating sparks around the fireworks and selecting
fireworks from the sparks. Previous works include improving
the explosion ampilitude [11]-[13], the mutation operator [14]
and the selection operator [11], [15], [16].

As a swarm algorithm, the performance of the FWA relies
also largely on the interaction or information interchange
among these fireworks. Some research works have been con-
ducted to enhance the interaction in the FWA [16]-[18].

A recent study [15] has revealed by detailed experimental
analyses that the cooperation among fireworks is not efficient
enough in the previous FWA versions and proposed a co-
operative framework to improve the information inheritance
and interchange of the fireworks. The cooperative framework
greatly promoted the efficiency of the fireworks, especially of
these non-core fireworks.

In this paper, two novel mechanisms are proposed to
further enhance the interaction among fireworks so that the
exploration capability of the FWA can be improved. Dynamic
resource allocation is adopted for letting more promising

fireworks have more resource, i.e., the number of sparks.
Fitness-based crowdedness-avoiding strategy is adopted for
reinitializing these hopeless fireworks. By these two mecha-
nisms, the odds of finding the global optimal solution is greatly
improved.

The remainder of this paper is organized as follows. The
previous resource allocation mechanism in the FWA is ana-
lyzed and the new dynamic resource allocation is proposed in
Section II. The distance based crowdedness-avoiding strategy
is analyzed and the new fitness-based crowdedness-avoiding
strategy is proposed in Section III. The complete framework
of the new fireworks algorithm is described in Section IV.
Experimental results and discussions are presented in Section
V. Finally, Section VI concludes this paper.

II. DYNAMIC RESOURCE ALLOCATION

In most of the previous FWA versions [19]-[21], the number
of explosion sparks for each firework is calculated by the
following formula:

max(f(X;)) = F(Xi)
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where X is the location of the ¢th firework, \ is a constant
parameter which controls the total number of explosion sparks
in one generation.

The idea behind this formula was to make fireworks with
better fitness have more explosion sparks to search the local
area more thoroughly.

However, a previous work [22] has already analyzed and
pointed out some problems of this equation:

1) The number of explosion sparks for the fireworks are not
stable. The fitness values fluctuate fiercely with different
objective functions and different locations. As a result,
there is no regularity in the number of explosion sparks
according to Eq. (1).

2) The number of explosion sparks for the firework with
the best fitness has no significant advantage over other
fireworks. Suppose the worst fitness among these fire-
works mjax( f(X;)) is very large, then the resource of

the best firework is in the worst case only a quarter of
the total resource.



It is concluded that, the number of explosion sparks for each
firework should rather depend on the ranking of its fitness
value than the fitness value itself.

In this paper, we adopt the power law distribution [23],
which is simple and very common in nature and human
society, to determine the number of sparks for each firework:
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where r is the fitness ranking of this firework, p is the
total number of the fireworks, and o > 1 is a parameter to
control the shape of the distribution. The larger « is, the more
explosion sparks good fireworks generate.

Based on this distribution, a dynamic resource allocation is
proposed. Although the fireworks with better fitness deserve
more resource, once they approach the local optimal point and
cannot make further improvement, there is no need to give
them more resource. In this case, the algorithm should spare
their resource to other hopeful fireworks.

Algorithm 1 Dynamic Resource Allocation

Require: fireworks’ number
1: fori=1 to u do

2 if f(XY) >= f(X97") then
3: ci+c+1

4: else

5: c;+—0

6: end if

7. if A\; — 2% > 1 then

8: A — A\ — 26

9: spare <— 2¢

10:  else

11: N1

12: spare < \; — 1

13:  end if

14:  for j =1 to p do

15: if 7 <> i then

16: Aj < Aj + spare/(p—1)
17: end if

18:  end for

19: end for

In Algorithm 1, X? is the position of the ith firework in
generation g. ¢; is the number of how many generations in a
row the ith firework failed to find a better solution. The spared
resource 2°* will be uniformly distributed to other fireworks.

If the rate of finding better solutions of a firework begin to
suffer, the resource of this firework will gradually reduce to
one. In this way, the algorithm won’t waste much resource on
hopeless fireworks.

Fig. 1 shows how the number of sparks for each firework
changes according to dynamic resource allocation on a mul-
timodal function (function 28 in Table I). Firework 3 was
not initialized in a promising area, and thus its number of
sparks was small. Then it was reinitialzed (cf. Section III) in

a promising area, and its number of sparks gradually increased.
Finally, when it arrived at the local minimal point, it ceased
to improve its fitness, thus its number of sparks gradually
decreased to one.

III. FITNESS-BASED CROWDEDNESS-AVOIDING
STRATEGY

In the cooperative framework for the fireworks algorithm
[15], a simple cooperative mechanism was proposed, which
is called the crowdedness-avoiding strategy. If the distance
between a certain firework and the best firework is smaller
than ten times the amplitude of the best firework, this firework
will be reinitialized. By such a mechanism, the algorithm can
avoid having multiple fireworks searching the same area.

However, this mechanism is still not efficient enough. The
explosion amplitude of the core firework is dynamic [24],
which is large at early phases and small at late phases. So,
at early phases the non-core fireworks have to be frequently
reinitialized which cannot search for promising areas and at
late phases they have no chance to be reinitialized which will
be easily trapped in local minimal areas.

Here we introduce a new kind of crowdedness-avoiding
strategy called fitness-based crowdedness-avoiding which uses
the fitness information of the fireworks to improve the proba-
bility of finding the global optimum. The idea is very simple: if
a certain firework cannot catch up with the best fitness among
fireworks with the current speed of improvement, it will be
reinitialized.

Algorithm 2 Fitness-Based Crowdedness-Avoiding

Require: maximal generation number g, fireworks num-
ber u
1: for : =1 to p do
2 if f(XY) < (X9 then
s impli) « FXIY) - F(X9)
4:  end if
5. i imp(i) - (gmaz — 9) < f(X]) —min(f(X7)) then
6 reinitialize the ith firework. !
7 end if
8: end for

Usually, the improvement reduces with the search process.
At early phases, the improvements of non-core fireworks
are comparatively large, so that they will not be frequently
reinitialized and can exploit deeper of a local area. While
at late phases, the improvements of non-core fireworks are
comparatively small, and the remaining generation is fewer,
so they will begin to be reinitialized to search new areas if the
current one is considered not promising by the algorithm.

In this way, the algorithm not only avoids searching the
same area with multiple fireworks but also avoids searching
unpromising areas.

Fig. 2 shows how the fitness of each firework changes using
fitness-based crowdedness-avoiding strategy on a multimodal
function (function 28 in Table I). Firework 3 was not initialized
in a promising area, and its fitness was large (bad) at the
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beginning and more importantly, its fitness improved slowly.
Thus the algorithm decided to reinitialize it. Fortunately, this
time it was reinitialized in a promising area, and gradually
achieved the best fitness among all the fireworks. Then other
fireworks began to be reinitialized if they cannot catch up with
its fitness value.

IV. FIREWORKS ALGORITHM WITH DYNAMIC RESOURCE
ALLOCATION AND FITNESS-BASED
CROWDEDNESS-AVOIDING STRATEGY

Besides the two proposed mechanisms introduced above,
there are several other operators adopted here to complete the

algorithm.

In previous works [24] [15], only the CF’s explosion
amplitude is dynamically controlled. Here, all the explosion
amplitudes of the fireworks are controlled in a dynamic way
since they are all selected independently.

A} g=1
Al ={ CATTY XY = FXETh 3)
C. AN f(XY) < f(XITH

where AY is the explosion amplitude of the ith. firework in
generation g. In the first generation, the amplitude is preset to
a constant number which is usually the diameter of the search



space. After that, if in generation g — 1, the algorithm found a
better solution than the best in generation g — 2, the amplitude
will be multiplied by an amplification coefficient C, > 1,
otherwise it will be multiplied by a reduction coefficient C, <
1. The best solution in generation g — 1 is always selected into
generation g as the new firework, so the right hand conditions
in Eq. (3) indicate whether the best solution found has been
improved.

The core idea of this dynamic explosion amplitude is
described as follows: if in one generation no better solution
is found, that means the explosion amplitude is too long
(aggressive) and thus need to be reduced to increase the
probability of finding a better solution, and otherwise it may be
too short (conservative) and cannot make the largest progress
and thus need to be amplified. By the dynamic control, the
algorithm can keep the amplitude proper for the search. That
is, the dynamic explosion amplitude is long in early phases
to perform exploration, and is short in late phases to perform
exploitation.

Algorithm 3 shows how the explosion sparks are generated
for each firework, which is simplified compared to conven-
tional versions [19], [20]. There was a dimension selection
mechanism in the explosion operator, but it is eliminated here
because it is not effective and it costs some extra time to
generate random numbers.

Algorithm 3 Generating Explosion Sparks for the ¢th. Fire-
work
Require: X;, A; and \;

1: for j =1to \; do

2:  for each dimension k£ = 1,2, ...

d do

3 sample 7 from U(—1,1)
4: SZ(-;?) — Xi(k) +n-A;

5:  end for

6: end for

7: return all the s;;

Algorithm 4 shows how the orienting mutation sparks are
generated for each firework [14]. Note that only one orienting

Algorithm 4 Generating the Orienting Mutation Spark for the
ith firework

Require: X;, s;;, A; and o
1: Sort the sparks by their fitness values f(s;;) in the
ascending order.

O'>\ri )\z
1
2 A 5 (Xsii— X si)
j=1 F=Xi—oXi+1
3 M; +— X; + A
return M,

mutation spark is generated for each firework.

Algorithm 5 shows the complete fireworks algorithm pro-
posed in this paper.

Algorithm 5 Fireworks Algorithm with Dynamic Resource
Allocation and Fitness-Based Crowdedness-Avoiding Strategy

1: Randomly initialize p fireworks in the search space.

2: Evaluate the fireworks’ fitness.

3: repeat

4. fori=1to pu do

5: Calculate \; according to Eq.(2) and Algorithm 1 .

6 Calculate A; according to Eq.(3).

7 Generate explosion sparks according to Algorithm 3.

8 Generate orienting mutation sparks according to Al-
gorithm 4.

9: Evaluate all the fitness of the sparks.

10: Select the best individual (including the :th. firework,
its explosion sparks and mutation sparks) as the ¢th.
firework of next generation.

11:  end for

12:  Perform the fitness-based crowdedness-avoiding strate-

gy according to Algorithm 2.
3: until termination criteria is met.
: return the position and the fitness of the best individual.
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V. EXPERIMENTS AND DISCUSSION

In this section, a set of experiments is conducted on
CEC13 single objective optimization benchmark suite [25].
This benchmark suite includes unimodal functions, multimodal
functions and composition functions, shown in Table I. In the
following experiments, the dimensionality of these functions is
D = 30. All the algorithms are run 51 times for each function
and the maximal number of evaluations of each run is 10000D.

TABLE I: 28 benchmark functions of IEEE CEC’2013

No. | Name
1 Sphere Function
. 2 Rotated High Conditioned Elliptic Function
Unimodal . .
Functions 3 Rotated Bc.ent Cigar Fpnctlon
4 Rotated Discus Function
5 Different Powers Function
6 Rotated Rosenbrocks Function
7 Rotated Schaffers F7 Function
8 Rotated Ackleys Function
9 Rotated Ackleys Function
10 Rotated Griewanks Function
11 Rastrigins Function
Basic 12 Rotated Rastrigins Function
Multimodal 13 | Non-Continuous Rotated Rastrigins Function
Functions 14 Schwefel’s Function

15 Rotated Schwefel’s Function

16 Rotated Katsuura Function

17 Lunacek Bi_Rastrigin Function

18 Rotated Lunacek Bi_Rastrigin Function

19 | Expanded Griewanks plus Rosenbrocks Function
20 Expanded Scaffers F6 Function

21 Composition Function 1 (Rotated)
22 Composition Function 2 (Unrotated)
23 Composition Function 3 (Rotated)
Composition 24 Composition Function 4 (Rotated)
Functions 25 Composition Function 5 (Rotated)
26 Composition Function 6 (Rotated)
27 Composition Function 7 (Rotated)
28 Composition Function 8 (Rotated)




Parameter setting: p = 5, A= 200,0 = 0.2, = 1.5,C, =
1.2,C, =0.9.

Basically, the new algorithm follows the cooperative frame-
work proposed in [15], so the cooperative framework fireworks
algorithm (CoFFWA) is adopted here for a comparison. In
[15], experimental results have indicated that the CoFFWA is
a state-of-the-art fireworks algorithm, which outperforms the
previous FWA versions on CEC13 benchmark suite, such as
the dynFWA [24], the AFWA [21] and the EFWA [20].

In order to test whether or not the dynamic resource allo-
cation is effective, the CoFFWA and the FWA with dynamic
resource allocation (FWA-DRA) are firstly compared. Table
IT shows the mean errors and standard deviations of the
CoFFWA and the FWA-DRA. A set of two-sided Wilcoxon
rank sum tests are also conducted to validate if their medians
are significantly different with confidence level at least 95%.
The p values are also shown in Table II. The significantly
better results are highlighted.

The FWA-DRA performs better than the CoFFWA on 18
functions, including 3 unimodal functions, 10 multimodal
functions and 5 composition functions. The dynamic resource
allocation is able to give the resource to the promising fire-
works and improve the efficiency of the search.

Similarly, in order to test whether or not the fitness-based
crowdedness-avoiding strategy is effective, the FWA-DRA
and the FWA-DRA with fitness-based crowdedness-avoiding
strategy (FWA-DRA-FBCAS) are compared. Table III shows
the mean errors and standard deviations of the FWA-DRA and
the FWA-DRA-FBCAS. A set of two-sided Wilcoxon rank
sum tests is also conducted to validate if their medians are
significantly different with confidence level at least 95%. The
p values are also shown in Table II. The significantly better
results are highlighted.

Although there is almost no difference between the FWA-
DRA and the FWA-DRA-FBCAS on unimodal functions,
it can be seen that the fitness-based crowdedness-avoiding
strategy can greatly improve the probability of finding the
global optimum on multimodal and composition functions.

The results of the FWA-DRA-FBCAS are also compared
with some other typical heuristic algorithms: standard particle
swarm optimization (SPSO) [26], artificial bee colony (ABC)
[27], differential evolution (DE) [28] and covariance matrix
adaptation evolutionary strategy (CMA-ES) [29]. The mean
error results of ABC and DE are taken from competition
session papers [30], [31] respectively. The mean error results
of SPSO are not reported in the competition paper [32], but
can be calculated from raw data [33]. The mean error results
of CMA-ES are based on the code from [34] using default
settings.

The mean errors and average rankings (AR) of the 6 algo-
rithm are presented in Table IV. The minimal mean errors on
each function and the minimal average ranking are highlighted.

The proposed algorithm outperforms other typical heuristic
algorithms in terms of average ranking and the times when it
gets the minimal mean error, which proves it a competitive and
adaptive optimization algorithm. DE takes the second place.

The performances of the CoOFFWA and the ABC are compara-
ble. As for the CMA-ES, although it performs extremely well
on unimodal functions, it suffers from premature convergence
on some multimodal and composition functions.

VI. CONCLUSION

In this paper, the drawbacks of previous sparks number cal-
culation mechanism are analyzed and a new dynamic resource
allocation is proposed to make sure the sparks are allocated
to the promising fireworks. The distance-based crowdedness-
avoiding strategy is also analyzed and a new fitness-based
crowdedness-avoiding strategy is proposed to enhance the
exploration capability by avoiding both searching overlapped
areas and searching unpromising areas. Experimental results
indicate that the fireworks algorithm with dynamic resource
allocation and distance-based crowdedness-avoiding strategy is
powerful in optimizing multimodal and composition functions,
which not only outperforms the state-of-the-art cooperative
framework fireworks algorithm but also beats some other
typical heuristic algorithms on CEC2013 single objective
benchmark suite.
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TABLE II: Comparison between CoOFFWA and FWA-DRA

COFFWA FWA-DRA
Mean Std. Mean Std. P

0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 NaN
8.80E+05 | 4.18E+05 | 5.78E+05 | 2.02E+05 | 3.97E-05
8.04E+07 | 8.88E+07 | 1.21E+07 | 1.35E+07 | 1.38E-10
2.01E+03 | 1.37E+03 | 2.34E-01 2.10E-01 | 3.30E-18
741E-04 | 9.82E-05 1.67E-03 1.99E-04 | 3.30E-18
247E+01 | 2.08E+01 | 1.15E+01 | 7.33E+00 | 3.05E-05
8.99E+01 1.78E+01 | 7.10E+01 | 2.08E+01 | 7.28E-03
2.09E+01 9.79E-02 | 2.09E+01 8.16E-02 | 6.73E-01
2.40E+01 | 4.04E+00 | 1.73E+01 | 3.19E+00 | 2.80E-12
10 | 4.10E-02 2.69E-02 2.94E-02 1.44E-02 | 2.22E-02
11 | 9.90E+01 | 2.36E+01 | 1.00E+02 | 2.47E+01 | 9.73E-01
12 | 1.40E+02 | 4.06E+01 | 9.78E+01 | 2.17E+01 | 4.73E-08
13 | 2.50E+02 | 5.93E+01 | 1.94E+02 | 3.51E+01 | 9.63E-07
14 | 2.70E+03 | 4.95E+02 | 3.16E+03 | 4.17E+02 | 4.85E-06
15 | 3.37E+03 | S5.01E+02 | 3.28E+03 | 4.46E+02 | 4.38E-01
16 | 4.56E-01 3.15E-01 1.07E-01 5.06E-02 | 2.70E-15
17 | 1.10E+02 | 2.16E+01 | 8.11E+01 | 1.52E+01 | 1.28E-09
18 | 1.80E+02 | 4.04E+01 | 8.54E+01 | 1.97E+01 | 1.90E-17
19 | 6.51E+00 | 2.08E+00 | 4.29E+00 | 9.92E-01 1.68E-08
20 | 1.32E+01 | 1.01E+00 | 1.31E+01 1.22E+00 | 6.47E-01
21 | 2.06E+02 | 6.14E+01 | 2.10E+02 | 3.61E+01 1.62E-02
22 | 3.32E+03 | 6.31E+02 | 3.79E+03 | 6.73E+02 | 5.27E-04
23 | 447E+03 | 7.90E+02 | 3.97E+03 | 5.73E+02 | 9.69E-04
24 | 2.68E+02 | 2.19E+01 | 2.50E+02 | 1.71E+01 | 5.10E-08
25 | 2.94E+02 | 1.28E+01 | 2.84E+02 | 9.01E+00 | 1.03E-05
26 | 2.13E+02 | 4.16E+01 | 2.00E+02 | 1.63E-02 | 7.73E-03
27 | 8.71E+02 | 2.10E+02 | 8.00E+02 | 8.25E+01 | 1.16E-05
28 | 2.84E+02 | 5.41E+01 | 2.76E+02 | 6.51E+01 | 3.44E-01
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TABLE III: Comparison between FWA-DRA and FWA-DRA-FBCAS

FWA-DRA FWA-DRA-FBCAS
Mean Std. Mean Std. D

0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 NaN
5.78E+05 | 2.02E+05 | 5.91E+05 | 2.20E+05 | 9.89E-01
1.21E+07 | 1.35E+07 | 1.66E+07 | 1.84E+07 | 2.01E-O1
2.34E-01 2.10E-01 2.31E-01 2.07E-01 6.93E-01
1.67E-03 1.99E-04 1.69E-03 1.78E-04 7.76E-01
1.15E+01 | 7.33E+00 | 1.13E+01 | 5.72E+00 | 9.20E-01
7.10E+01 | 2.08E+01 | 5.77E+01 | 1.15E+01 1.44E-03
2.09E+01 8.16E-02 | 2.09E+01 | 9.10E-02 | 9.60E-03
1.73E+01 | 3.19E+00 | 1.52E+01 | 2.55E+00 | 5.27E-04
10 | 2.94E-02 | 1.44E-02 | 3.87E-02 2.07E-02 2.10E-02
11 | 1.00E+02 | 2.47E+01 | 6.98E+01 | 1.17E+01 | 4.63E-11
12 | 9.78E+01 | 2.17E+01 | 7.39E+01 | 1.26E+01 | 8.97E-09
13 | 1.94E+02 | 3.51E+01 | 1.31E+02 | 2.46E+01 | 2.45E-13
14 | 3.16E+03 | 4.17E+02 | 2.57E+03 | 3.30E+02 | 4.26E-10
15 | 3.28E+03 | 4.46E+02 | 2.79E+03 | 3.65E+02 | 9.96E-08
16 | 1.07E-01 5.06E-02 | 6.72E-02 | 2.87E-02 1.49E-06
17 | 8.11E+01 1.52E+01 | 7.49E+01 | 1.23E+01 | 4.19E-02
18 | 8.54E+01 | 1.97E+01 | 7.78E+01 | 1.44E+01 | 4.06E-02
19 | 429E+00 | 9.92E-01 | 3.49E+00 | 7.50E-01 6.83E-05
20 | 1.31E+01 | 1.22E+00 | 1.31E+01 | 1.24E+00 | 1.00E+00
21 | 2.10E+02 | 3.61E+01 | 1.90E+02 | 3.00E+01 1.10E-01
22 | 3.79E+03 | 6.73E+02 | 3.04E+03 | 4.12E+02 | 2.89E-08
23 | 3.97E+03 | 5.73E+02 | 3.36E+03 | 3.86E+02 | 3.52E-07
24 | 2.50E+02 | 1.71E+01 | 2.38E+02 | 1.54E+01 | 7.02E-05
25 | 2.84E+02 | 9.01E+00 | 2.78E+02 | 1.40E+01 1.38E-02
26 | 2.00E+02 | 1.63E-02 | 2.00E+02 1.94E-02 1.29E-01
27 | 8.00E+02 | 8.25E+01 | 7.36E+02 | 1.04E+02 | 2.13E-03
28 | 2.76E+02 | 6.51E+01 | 2.33E+02 | 9.52E+01 1.74E-02
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[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

TABLE IV: Comparison with other heuristic algorithms

F. CMA-ES SPSO DE ABC CoFFWA | FWA-DRA-FBCA
1 0.00E+00 | 0.00E+00 1.89E-03 | 0.00E+00 | 0.00E+00 0.00E+00
2 0.00E+00 | 3.38E+05 | 5.52E+04 | 6.20E+06 | 8.80E+05 5.91E+05
3 1.41E+01 | 2.88E+08 | 2.16E+06 | 5.74E+08 | 8.04E+07 1.66E+07
4 0.00E+00 | 3.86E+04 1.32E-01 8.75E+04 | 2.01E+03 2.31E-01
5 0.00E+00 | 5.42E-04 2.48E-03 | 0.00E+00 | 7.41E-04 1.69E-03
6 7.82E-02 | 3.79E+01 | 7.82E+00 | 1.46E+01 | 2.47E+01 1.13E+01
7 1.91E+01 | 8.79E+01 | 4.89E+01 1.25E+02 | 8.99E+01 5.77E+01
8 2.14E+01 | 2.09E+01 | 2.09E+01 | 2.09E+01 | 2.09E+01 2.09E+01
9 4.81E+01 | 2.88E+01 1.59E+01 | 3.01E+01 | 2.40E+01 1.52E+01
10 1.78E-02 3.40E-01 3.24E-02 2.27E-01 4.10E-02 3.87E-02
11 4.00E+02 | 1.05E+02 | 7.88E+01 | 0.00E+00 | 9.90E+01 6.98E+01
12 9.42E+02 | 1.04E+02 | 8.14E+01 | 3.19E+02 | 1.40E+02 7.39E+01
13 1.08E+03 1.94E+02 | 1.61E+02 | 3.29E+02 | 2.50E+02 1.31E+02
14 4.94E+03 | 3.99E+03 | 2.38E+03 | 3.58E-01 | 2.70E+03 2.57E+03
15 5.02E+03 | 3.81E+03 | 5.19E+03 | 3.88E+03 | 3.37E+03 2.79E+03
16 5.42E-02 1.31E+00 | 1.97E+00 | 1.07E+00 | 4.56E-01 6.72E-02
17 7.44E+02 | 1.16E+02 | 9.29E+01 | 3.04E+01 | 1.10E+02 7.49E+01
18 5.17E+02 | 1.21E+02 | 2.34E+02 | 3.04E+02 | 1.80E+02 7.78E+01
19 3.54E+00 | 9.51E+00 | 4.51E+00 | 2.62E-01 | 6.51E+00 3.49E+00
20 1.49E+01 1.35E+01 1.43E+01 1.44E+01 1.32E+01 1.31E+01
21 3.44E+02 | 3.09E+02 | 3.20E+02 | 1.65E+02 | 2.06E+02 1.90E+02
22 7.97E+03 | 4.30E+03 | 1.72E+03 | 2.41E+01 | 3.32E+03 3.04E+03
23 6.95E+03 | 4.83E+03 | 5.28E+03 | 4.95E+03 | 4.47E+03 3.36E+03
24 6.62E+02 | 2.67E+02 | 2.47E+02 | 2.90E+02 | 2.68E+02 2.38E+02
25 4.41E+02 | 2.99E+02 | 2.80E+02 | 3.06E+02 | 2.94E+02 2.78E+02
26 3.29E+02 | 2.86E+02 | 2.52E+02 | 2.01E+02 | 2.13E+02 2.00E+02
27 5.39E+02 | 1.00E+03 | 7.64E+02 | 4.16E+02 | 8.71E+02 7.36E+02
28 4.778E+03 | 4.01E+02 | 4.02E+02 | 2.58E+02 | 2.84E+02 2.33E+02
AR. 4.11 4.11 3.36 3.54 3.54 2.00
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