

Communicated by Dr W Gao

Accepted Manuscript

A Two-Stage Imitation Learning Framework for the Multi-Target
Search Problem in Swarm Robotics

Jie Li, Ying Tan

PII: S0925-2312(19)30055-4
DOI: https://doi.org/10.1016/j.neucom.2019.01.035
Reference: NEUCOM 20339

To appear in: Neurocomputing

Received date: 31 March 2018
Revised date: 5 November 2018
Accepted date: 16 January 2019

Please cite this article as: Jie Li, Ying Tan, A Two-Stage Imitation Learning Framework
for the Multi-Target Search Problem in Swarm Robotics, Neurocomputing (2019), doi:
https://doi.org/10.1016/j.neucom.2019.01.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neucom.2019.01.035
https://doi.org/10.1016/j.neucom.2019.01.035

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• For the multi-target search problem in swarm robotics, most existing work

is about strategic design while this article focuses on strategy imitation.

• To our knowledge, it is the first time that the combination of deep learning

technologies and evolutionary algorithms is used for the problem.

• The strategy obtained from the framework is close to the target strategy

on multiple indicators.

• The two-stage imitation learning framework can also be used for other

swarm tasks.

• The network design and evolutionary algorithm settings can be a good

reference.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Two-Stage Imitation Learning Framework for the
Multi-Target Search Problem in Swarm Robotics

Jie Lia,1, Ying Tana,∗

aKey Laboratory of Machine Perception (Ministry of Education), Department of Machine
Intelligence, School of Electronics Engineering and Computer Science, Peking University,

Beijing, 100871, P.R. China.

Abstract

As a distributed system with a large number of individuals, swarm robotics is

particularly suitable for multi-target search problems. Most existing work is

about strategic design while this article focuses on strategy imitation. Some-

times we can observe the behavior of individuals and obtain a large amount of

data, but we do not know the specific details of the strategy behind the behavior.

Imitating the self-organizing behavior of organisms is of great significance for us

to design efficient swarm strategies and to reveal the underlying mechanisms.

The actual strategy adopted by individuals can be called the target strategy,

and in this article, a two-stage imitation learning framework is proposed to ap-

proach the target strategy. In the first stage, a deep neural network is trained

using the behavioral data of individuals, and in the second stage, the parameters

of the neural network are further fine-tuned using the evolutionary algorithm.

After two stages of learning and evolution, the resulting strategy RNSE is very

close to the target strategy in terms of multiple indicators, including search

efficiency, stability, parallel processing capability, and collaborative processing

capability. In addition to multi-target search, the framework can also be used

for other collective tasks such as aggregation and dispersion. In this paper, the

design of neural networks and the settings of the evolutionary algorithm are

∗Corresponding author
Email address: ytan@pku.edu.cn (Ying Tan)

1Email address: ustblijie@126.com

Preprint submitted to Journal of Neurocomputing January 22, 2019

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

discussed in detail, which is of great significance for the migration application

of the framework.

Keywords: Swarm robotics, Multi-target search, Swarm intelligence

optimization, Deep learning, Evolutionary algorithm, Strategy imitation

1. Introduction

Swarm robotics is a relatively new field, inspired by natural self-organizing

behaviors [1] such as ants foraging, bees nesting, and bird migration. In these

swarms, the ability of each individual is simple, but through local interactions

among individuals and between individuals and the environment, the system5

can emerge complex behaviors at the swarm level. Compared to single robot

or multi-robot systems, swarm robotics has some unique advantages, such as

robustness, scalability, and flexibility [2, 3]. In addition, due to the simplicity

and low cost of the individuals, swarm robotics has potential applications in

many fields, such as post-disaster rescue [4], intrusion detection [5], human10

interaction [6], and planetary exploration [7], etc.

As a distributed system, swarm robotics is very suitable for tasks involving

area coverage, such as collaborative mapping [8], target search [9], area moni-

toring [10], and so on. And the multi-target search problem of swarm robotics

studied in this paper is also such kind of a task [11], in which the entire swarm15

can search multiple targets in parallel, thereby improving the search efficiency.

Some practical scenarios can be abstracted as the problem, such as shipwreck

rescue, submarine search, search and destruction of battlefield targets.

There are various research directions in swarm robotics [12], one of which

is the system design. There are roughly two types of design approaches [13].20

One is the behavior-based approach, which is the most commonly used. It is

a bottom-up approach, achieving the desired collective behavior through the

realization, research and improvement of individual behaviors iteratively. And

the specific methods including probability finite state machine [14], artificial

potential field [15], etc. The other is the learning-based approach (also called25

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Data
acquisition

Data
preprocessing

An unknown
target strategy

Supervised
learning

 with a deep
neural network

Evolve the
network with
evolutionary
algorithms

A strategy from
imitation

First
Stage

Second
Stage

Figure 1: A two-stage imitation learning framework for the multi-target search problem in

swarm robotics.

the automatic design method), which is generally based on some global indi-

cators to adjust and improve individual behaviors from top to bottom. The

specific methods mainly include reinforcement learning [16] and evolutionary

robotics [17], both of which use the feedback from the environment to improve

the individual behaviors.30

The behavior-based design method is usually inspired by the observation of

individual behaviors. If we can obtain a large amount of behavioral data but

have no idea about specific details of the strategy followed by the individual,

such as the AlphaGo’s ignorance of the human expert’s strategy [18], then we

can learn the unknown target strategy through deep learning. Further, based35

on the metrics of the task, we can optimize the strategy to approach the perfor-

mance of the target strategy. Thus, a two-stage imitation learning framework

is proposed for the multi-target search problem in swarm robotics (Fig. 1), and

for the first time some relevant technologies of deep learning are used for this

task, including the ReLU [19], self-normalizing neural networks [20], stacked40

auto-encoders [21], dropout [22], etc. In the second stage, a recently proposed

evolutionary algorithm GFWA (Guided Fireworks Algorithm) [23] is selected

to optimize the strategy. After learning and evolution, the performance of the

final strategy is very close to the target strategy.

The rest of the article is organized as follows. In section II, the multi-target45

search strategies and some of the tools in deep learning are introduced. In

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

section III, the multi-target search problem in swarm robotics and the target

strategy are stated. In section IV, the two-stage imitation learning framework is

described in detail, which is based on deep learning and evolutionary computa-

tion. In section V, the simulation results and discussions are presented. Finally,50

section VI summarizes the whole article.

2. Related Work

Current multi-target search strategies in swarm robotics are generally behavior-

based, which can be roughly divided into two categories. One is inspired by

swarm intelligence optimization algorithms, such as particle swarm optimization55

algorithm (PSO) [24], bee swarm optimization algorithm (BSO) [25], glowworm

swarm optimization algorithm (GSO) [26], fireworks algorithm (FWA) [27], etc.

The other is inspired by random walk strategies, such as Lévy flight [28], inter-

mittent search [29]. There are still other search strategies, such as those based

on artificial potential field [30, 31] and formation-based search strategies [32].60

This section will introduce several strategies inspired by swarm intelligence op-

timization algorithms and a formation-based search strategy, some of which will

participate in the comparative experiments.

- RPSO: Robotic Particle Swarm Optimization (RPSO) [24] is an extended

version of the PSO algorithm, in which an obstacle avoidance component65

is considered in the velocity update formula. With the original RPSO, the

robots may fall into the local oscillatory motions during the search, so a

random component is introduced to alleviate the problem in this paper. It

is worth noting that some improved strategies are proposed recently, such

as the RDPSO (Robotic Darwinian PSO) [33] and RbRDPSO (Repulsion-70

based RDPSO) [34]. The RDPSO allows multiple dynamic swarms, and

in RbRDPSO a new component based on the repulsion between similar

ions is introduced to prevent robots to get too close to each other.

- A-RPSO: In the Adaptive Robotic PSO (A-RPSO) [35], the velocity up-

date formula of each robot is similar to that in RPSO, but the inertia75

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

weight is related to the individual and the number of iterations. In each

iteration, the inertia weight of each individual robot depends on the “evo-

lutionary speed” and “aggregation degree” [36]. The “evolutionary speed”

is described by the difference in the fitness values of the best individuals

in the adjacent two iterations. The “aggregation degree” is represented80

by the difference between the optimal fitness value and the average fitness

in the current iteration. The original A-RPSO algorithm focuses on the

single-target search problem. In this paper, the swarm is divided into mul-

tiple subpopulations by limiting the communication range of the robot, so

that it can better adapt to the multi-target search problem. The velocity85

update formula also introduces a random component to avoid trapping in

local oscillatory motions.

- GES: Group Explosion Strategy (GES) [27] borrowed some of the mecha-

nisms of the fireworks algorithm (FWA) [37]. FWA is a swarm intelligence

optimization algorithm inspired by fireworks explosion. In GES, the en-90

tire population is automatically divided into multiple groups according to

each individual’s perception range. The key coordination mechanism is to

move the geometric center of the group to one of the best individuals in the

group. In order to improve the parallelism of the strategy, the group will

split into two subgroups when the group size exceeds a certain threshold.95

- IGES: Improved Group Explosion Strategy (IGES) [38] is an improved

version of GES. In GES, if multiple individuals in a group have the same

optimal fitness values, randomly selecting one may let the group fall into

local oscillations or fall back to a worse region. In order to solve the

problems, IGES combines four simple sub-strategies to deal with different100

situations. There are two main improvements in IGES: first, the reference

position of the movement is no longer a random selection of an optimal

individual, but the center of all optimal individuals; second, if the size of

the group is greater than a certain threshold, or the group member share

the same fitness value, the robots will move away from the center of the105

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

group. The performance of IGES is much better than that of GES, so

only IGES is used in the comparative experiments in this paper.

- TFS: In the Triangle Formation Search strategy (TFS) [32], the entire

robot swarm is divided into three-robot formations as much as possible.

Each team is roughly formed into an equilateral triangle, including a leader110

and two members. The team leader is responsible for determining the

moving direction, and the team members will follow the team leader and

maintain the formation. In order to enhance the exploration ability of

the swarm, an initial diffusion stage is introduced in the strategy. During

the search process, a triangulation technique is proposed to estimate the115

gradient direction and enhances the team’s exploitation ability.

- PFSMS: This strategy serves as the target strategy in this paper, which

is a probabilistic finite state machine based strategy. This strategy con-

tains three states: diffusion, search, and target processing, and it will be

introduced in section 3.3.120

Most of the learning-based methods adopt evolutionary robotics, such as in

foraging [39], aggregation [40], and the area monitoring [41]. Due to the credit

assignment problem and large action space [13], the reinforcement learning is

faced with many challenges in multi-robot systems. It is even more difficult to

apply them to swarm robotics. In recent years, with the rapid development of125

deep learning technologies, some methods of multi-agent reinforcement learning

have been proposed one after another [42, 43], and deep neural networks have

also begun to be applied in the field of swarm robotics [44]. Next, we will

briefly introduce the key technologies and algorithms used in this paper for

deep learning and evolutionary computation.130

- ReLU [19]: Compared with the most commonly used sigmoid neurons and

hyperbolic tangent neurons, the rectifier activation function (rectifier(x)

= max(0, x)) can get a more sparse representation, which is conducive to

training deep neural networks. It is difficult to train deep neural networks,

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

which generally requires unsupervised pre-training. With ReLU functions,135

the deep networks can obtain good performance without pre-training.

- SNN [20]: The Self-Normalizing Neural Networks can be used for high-

level abstract representations. In SNN, the outputs of neurons can auto-

matically converge towards zero mean and unit variance. The activation

function used is called the “scaled exponential linear unit”(SELU), as is140

shown in Eq. 1. The unit has self-normalized properties, which makes

it possible for the SNN to train deep networks with many layers, avoid-

ing gradient vanishment and explosion under certain conditions. In this

article, a comparison is made between ReLU and SeLU.

selu (x) = λ





x , if x > 0

αex − α, if x ≤ 0
(1)

- SAE [21]: The representation capability of the neural network will be145

enhanced as the depth increases, but it’s harder to train a deeper neural

network. Stacked auto-encoders are useful for training deep networks [45],

especially for the unsupervised pre-training [46]. In this article, neural

networks with and without SAE pre-training are compared.

- dropout [22]: Dropout is an effective way to prevent neural networks from150

over-fitting. Neural networks with a large number of parameters are pow-

erful machine learning tools, but the over-fitting is a serious problem.

Compared to other regularization methods, dropout can avoid over-fitting

more effectively by repeatedly sampling and training the sub-models from

the network.155

- GFWA [23]: Inspired by the process of generating sparks in fireworks ex-

plosions, the fireworks algorithm [37] is a swarm intelligence optimization

algorithm that can be used to solve optimization problems. The FWA

algorithm has been improved several times since it was proposed. GFWA

is a simple and effective version, which is recently proposed. In this paper,160

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

GFWA is used to evolve the parameters of neural networks in the second

stage of the framework.

3. Problem Statement

In the multi-target search problem of swarm robotics, multiple targets are

randomly scattered in a vast and unknown space. A swarm of robots are de-165

livered into the space, and the robots are supposed to search and collect (or

destroy) all the targets as soon as possible. In the simplest case, only three

kinds of objects are involved: the environment, the robots, and the targets. In

addition, some other constraints may be introduced to the environment, such

as obstacles, decoys [47] and inference sources.170

3.1. Assumptions

In order to establish the model, some basic assumptions for the problem are

made as follows.

- Environment: the space of the environment is very large compared with

the size and the perception range of each robot.175

- Targets: the targets are static and small in size (similar to robots), with

a wide range of influence. The farther the distance from the target, the

smaller the influence of the target. The influence of the target remains

unchanged in the collecting process, but the influence will disappear in-

stantly once the target is collected. In the overlapping influence areas of180

multiple target, the influence is determined by the targets that have the

greatest one. Multiple targets are randomly and uniformly distributed

over the search space.

- Robots: local communication and interaction, limited speed and storage,

no prior knowledge of the environment.185

- Robot swarm: no global leader, no centralized control, all individuals start

from the same region in the environment.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

- Fitness value: the degree of influence of targets can be quantified by the

fitness value, which is a monotonically decreasing function of the distance

to the target. A higher influence is corresponding to a greater fitness value.190

Robots can perceive the local fitness value within the influence range of

the target. Considering the limitation of sensor accuracy and the influence

of ambient noise, the robot uses discretized fitness value information to

improve the fault tolerance of the system.

- Iteration frequency: the frequency should be high enough to ensure that195

the difference in fitness values in two consecutive iterations is small enough

to avoid missing promising positions. In each iteration, each robot collects

its own sensor information, its own historical information, neighbors’ indi-

vidual information, and then makes independent decisions. The iteration

frequency is fixed and the robot swarm can work asynchronously.200

3.2. An Idealized Model

Based on the above assumptions, an idealized model for the simplest case of

the problem is established, as is shown in Fig. 2.

- Environment: a square with a size of 1000 ∗ 1000.

- Target: a circle with a radius of rt, in which robots can directly sense the205

target. The targets are distributed uniformly over the environment space.

Each target needs 10 steps to be fully processed, which can be completed

by one robot alone in 10 iterations or by 10 robots in 1 iteration, i.e. the

collection times of each target are 10.

- Fitness value: the range of influence of the target is a series of annuli210

with a width of 5 units. The fitness value of each ring decreases linearly

from the inside out, from about 40 (center) to 1 (outermost ring). The

difference in fitness values of adjacent rings is 1.

- Robots: a square with a size of 1 ∗ 1. The sensing and communication

range is a circular area with a radius of 20 units (i.e. the robot can only215

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 2: A screenshot of the problem at the beginning of a simulation. Red circles stand for

the targets while the central green dot array represents the initial robot swarm. The color of

the circles around the target illustrates the fitness value of that position.

communicate with its perceived neighbors). The robot can learn three

kinds of information about the neighbors: the location, the fitness value

of the location, whether the target is perceived or not. The maximum

speed limit for each robot is 5 units (the maximum distance that can

be moved in one iteration), and 10 iterations of historical information220

(positions and fitness values) can be memorized.

- Robot swarm: typical population size setting is 50.

3.3. The Target Strategy

For the multi-target search problem in swarm robotics, a two-stage imitation

learning framework is proposed in this paper. The first stage is to use the deep225

neural network to learn the behaviors of the target strategy. The second stage

is to optimize the obtained network. In this article, the target strategy is used

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Diffusion Search

Target Processing

Decision
Factors

Figure 3: Target strategy PFSMS: A three-state probabilistic finite state machine for multi-

target search, including diffusion, search, and target processing. Each state will transfer

to other states or maintain the current state with a certain probability. The probability is

determined by the decision factors.

to generate the behavioral data needed for deep learning. It should be pointed

out that the target strategy itself can be regarded as a black box strategy, that

is, we cannot know the specific implementation details of the strategy, but we230

can observe the behaviors of individual robots adopting the strategy, and thus

we can obtain a large amount of behavioral data, usually expressed as “input

information-output action” pairs. In order to facilitate intuitive understanding,

the basic principles of the target strategy are briefly introduced in this section,

but this is not necessary, and only the input and output need to be concerned.235

The target strategy is a probabilistic finite state machine based strategy. It

can be abbreviated as PFSMS, containing three states: diffusion, search, and

target processing, as shown in Figure 3. In this state machine, the robots in each

state have a certain probability of transferring to other states or maintaining

the current state, and the probability is determined by the decision factors.240

The decision factors depend on the specific input information, including the

robot’s own information and information obtained from neighbors. The robot’s

own information includes historical locations and fitness values, fitness value of

current location, whether the target is found or not, and the location of the

target. The robot can obtain information from neighbors, including the current245

location and fitness value, whether the target is found or not, and the location

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of the target. Based on this information, a 30-dimensional feature is constructed

as the network input (as shown in the table 1) and a 2-dimensional action as

the network output (as shown in the table 2).

In dimension 4 − 6, dimension 4 indicates whether a target is found (1 in-250

dicates ‘found’ and 0 indicates ‘not found’), and dimension 5 and dimension 6

indicate the x and y coordinates of the target (x and y are both 0 if no target

is found). The process of acquiring target information is as follows. First, if

the robot finds the target itself, it will enter the target processing state, and

the nearest one will be processed first if multiple targets are found. If the robot255

does not find the target, it will query the robots in its neighborhood in a certain

order (such as from near to far). If a neighbor finds the target, it will stop the

query after knowing the target position. If all the robots in the neighborhood

do not find the target, then no target is found.

In this paper, only one target strategy is considered, although a general260

imitation framework should be suitable for a variety of strategies, and there are

mainly three reasons to do so. Firstly, the initial motivation of this paper is to

propose a framework that can imitate the superior strategy which has excellent

performance. The PFSMS is chosen as the target strategy for its performance is

significantly better than other strategies in this paper. Secondly, the structure265

of the neural network itself has certain versatility. If a network can imitate

an excellent strategy for the task, then the expressive ability of the network

structure is guaranteed to some extent, so the neural network structure used in

this paper can provide a direct reference for the imitation of other strategies.

Thirdly, the specialization work of feature engineering is required for the target270

strategy. The more consistent the selected network input features are with the

target strategy, the more likely it is to learn the behaviors successfully. Data

preprocessing and feature selection generally require special study, so it is not

proper to imitate various strategies in one article.

As is listed in table 1, only two neighbors and two historical records are275

selected. It is worth noting that in order to avoid feature engineering work, a

promising research direction is to use all available input information for end-

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Descriptions for each dimension of the 30-dimensional input.

Index Descriptions

0 Current state, three values, -1 for search, 1 for diffusion, 0 for target processing.

1 The number of iterations that the current state has persisted.

2-3 Current velocity, x and y.

4-6 Whether the target is found by the neighbors, and the target’s location (x and y).

7-11 The total number of neighbors, and number of neighbors in the up, down, left, and right directions.

12 The number of history records.

13-15 The best position in history and its fitness value.

16-18 The worst position in history and its fitness value.

19 The fitness value of the current position.

20-22 The position of the best neighbor and its fitness value.

23-25 The position of the worst neighbor and its fitness value.

26-29 4 random numbers for probabilistic decision making.

Table 2: Descriptions for each dimension of the 2-dimensional output.

Index Descriptions

0 The next moving direction (angle value), in the range of (−π, π]

1 The next state.

to-end network training, including all the neighbors and historical information.

Obviously, considering all the input information will make the network input

wide and affect the simplicity of the network. And in this paper, the cost of280

simplicity is the need for manually selection and design of the input features,

which requires certain domain knowledge. In theory, the closer the selected

features are to the information required by the target strategy, the more similar

the performance can be imitated.

4. Proposed Methods285

4.1. The Motivation

In nature, we can observe the self-organizing behaviors of many biological

swarms, such as ant foraging, bees nesting, and bird migration [28] etc., but

we do not know the specific strategies followed by biological individuals. Using

some equipments and technologies, we can collect and extract behavioral data290

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of biological swarms, and then we can use some tools to model biological be-

havior patterns. Imitating the self-organizing behavior of organisms is of great

significance for us to reveal the underlying mechanisms and to design efficient

swarm strategies.

In addition, if the performance metrics of behavior are known, evolutionary295

algorithms can be used to further optimize the model. For example, in the

multi-target search problem, the performance metric is the number of iterations

required to find and collect all the targets. Through evolutionary optimization,

a more efficient strategy can be obtained, which is very helpful for the practical

application of the model.300

Based on the above ideas, a two-stage imitation learning framework is pro-

posed in this section. The first stage is to imitate the strategy through deep

learning technologies, and the second stage is to evolve the network through

some evolutionary algorithm. Apart from the multi-target search, the frame-

work can also be used for other swarm tasks.305

4.2. The First Stage: Strategy Imitation based on Deep Learning

Training a deep neural network generally requires a large amount of data.

In order to learn a good model, the data is usually preprocessed, such as mean

subtraction, normalization, batch normalization [48], and so on. The next work

is to design the network, including the network type (feedforward, recurrent,310

convolution, etc.), the number of layers, the activation function, the optimiza-

tion algorithm, the learning rate, the regularization technique, and the weight

initialization technique, etc.

4.2.1. The Data Acquisition and Preprocessing

In order to test different strategies, a simulation environment is built on315

the C# language and the Microsoft XNA framework. In this paper, the data is

generated by the interaction between the simulation environment and the target

strategy. The simulation environment contains objects such as maps, targets,

and robots. The target strategy can access the information of the robots, and

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

then make decisions for the robots. According to the decisions, the environment320

will update the corresponding information (such as the location change, target

processing, etc.). The 30-dimensional input data includes information that may

be used by the target strategy, and the target strategy uses only a portion of it

in an iteration. The output data is the decision of the robot (the next moving

direction and state).325

In order to ensure that the data obeys the independent and identical distribu-

tion, for generating each sample, the seed of the map, the individual number of

the robot, and the number of iterations are uniformly distributed. The map seed

value range is [0, 1), and the robot individual number range is {0, 1, 2, ..., 49},
and the iteration number value range is {1, 2, 3, ..., 199}.330

At first, the collected raw data is used directly for training networks, but

visual simulations show that the neural network can’t learn the robot’s search

behavior well. The search behavior is that the robot will approach the target

when the individual is within the target influence range (the perceived fitness

value is greater than 0). By analyzing the collected data, we find that the335

samples in the search state (inputs[0] = −1) and the fitness value greater than

0 (inputs[19] > 0) occupies only around 1/5. Since this kind of samples are

more important for improving the robot’s search capability, we balance the data

so that its proportion increases from 1/5 to about 1/2. From the simulation

results, data balance facilitates the neural network learning the search behavior340

of robots.

The balanced data set includes 1.5 million samples, which is divided into

a training set (900,000), a validation set (300,000), and a test set (300,000)

by 3:1:1. In addition, considering the inconsistent scales of the input features

in different dimensions, each dimension of the input feature is normalized so345

that the range of each dimension is approximately equal, as is shown in Eq. 2,

where xi represents the value of the ith dimension feature, µi and si represent

the mean and standard deviation of the dimension feature, both of which are

calculated from the training set.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

xi =
xi − µi
si

(2)

4.2.2. The Structure of the Neural Network350

The neural network structures used in deep learning can basically be divided

into three categories: feed-forward neural networks (FNN), convolutional neural

networks (CNN), and recurrent neural networks (RNN). The convolutional neu-

ral network is suitable for image processing and the recurrent neural network is

suitable for sequence processing. Considering the characteristics and structure355

of the data set, the FNN is used for deep learning. Next, this section will intro-

duce the specific network configurations, such as the number of network layers

and hidden units, activation functions, initialization techniques, regularization

techniques, learning algorithms, and learning rates.

For the number of network layers and hidden units, a series of simple tests360

are carried out. Considering performance and model complexity, finally the

network structure is setting as 30 − 128 − 256 − 256 − 128 − 2, as is shown in

Fig. 4. The network contains 4 hidden layers, and the numbers of hidden units

in each layer are 128, 256, 256, and 128, respectively.

Two types of activation functions are selected: the ReLU and the SeLU. The365

former facilitates generating the sparse network, while the latter enhances the

normalization of the data stream (zero mean and unit variance). Since both are

conducive to the training of deep networks, as a contrasting component, both are

involved in the construction of the network. It should be noted that, compared

with SeLU, the calculations of ReLU are simpler and easier to be implemented370

in parallel. If the performance of the two structures are similar, ReLU should

be a more appropriate choice. For the settings of SeLU, the configuration in

article [20] are adopted: λ ≈ 1.0507 and α ≈ 1.6733, input normalized to zero

mean unit variance (in data preprocessing). The network weights are initialized

with variance 1/n (n is the number of hidden units in the previous layer). In375

addition to conventional initialization methods, the unsupervised pre-training

with SAE is also investigated for the network. Comparisons of the networks

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
.
..

.
..

.
..

.
..

.
..

.
..
.
.
..
.
.

.
..
.
.
..
.
.

.
..
.
.
..
.
.

.
..
.
.
..
.
.

Inputs
30

Hidden_1
128

Hidden_2
256

Hidden_3
256

Hidden_4
128

Outputs
2

Figure 4: The FNN structure adopted in this paper, containing a 30-dimensional input layer,

a 2-dimensional output layer, and 4 hidden layers. The numbers of hidden layer units are 128,

256, 256, and 128, respectively.

with and without SAE were also conducted in experiments.

In order to prevent the network from over-fitting, the network with the

lowest verification error will be stored in time, and the dropout technology is380

also adopted. It needs to be explained that the “alpha-dropout” technology

designed for SeLU is not used, for it would lead to a larger validation error in

the experiments. The Adam [49] is used as the optimization algorithm. And

a dynamic learning rate is adopted, which is updated by the Eq. 3, where

lrmax = 3e− 3, lrmin = 1e− 6, decay factor = 1e5, and count is the number of385

iterations.

lr = lrmin + (lrmax − lrmin)× e−count/decay factor (3)

4.2.3. Experimental Results of Four Types of Networks

The basic structure of the neural network is shown in Fig. 4. Based on

the type of activation function (ReLU or SeLU) and whether the SAE is used,

four types of networks are selected for training and simulation: SeLU SAE,390

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SeLU NoSAE, ReLU SAE, ReLU NoSAE. During the training, batch size

is set to 500 and the maximum number of iterations is 1e6 (one iteration for

each batch). All four types of networks use the dropout technique, and the keep

probability of SeLU is set to 0.97, while the keep probability of ReLU is set to

0.98.395

Firstly, each type of network is trained 10 times and 10 networks are ob-

tained. The average training error, average verification error, and average test

error for 10 networks are expressed as train error, vali error, and test error

respectively. In the simulation, the trained network is used for multi-target

search experiments, and the performance metric is the “number of iterations”400

required to find and collected all the targets. There are 50 robots and 10 targets

in each experiment. For each type of network, each trained network run 3,000

times, and the mean and standard deviation of the “number of iterations” for

a total of 30000 experiments over 10 networks are expressed as mI and dI, re-

spectively. Finally, experimental results of four types of networks are obtained,405

as is shown in Tab. 3.

As shown in Tab. 3, the vali error and the test error of each type of network

are similar, indicating that the trained networks bear good generalization. Com-

paring SeLU SAE and SeLU NoSAE, using SAE will reduce the vali error,

but the simulation performance will be worse (mI is larger), which is similar410

for ReLU SAE and ReLU NoSAE. On the one hand it illustrates the SAE

facilitating deep network training. On the other hand, it shows that there is a

certain deviation between the behavioral data used for training network and the

target strategy for generating data. The deviation may result from the incon-

sistency of the raw data and the preprocessed data, for the latter is balanced to415

improve the robot’s search ability.

As can be seen from table 3, the vali error of ReLU SAE is smaller than

that of ReLU NoSAE, but the train error of ReLU SAE is larger, which

indicates that the over-fitting problem of the network without SAE is more

serious. A small vali error means that the network has better generalization420

performance. In ReLU SAE, an SAE is used for pre-training, so the initial

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: The train error, vali error, test error, mI, dI of four types of networks.

train error vali error test error mI dI

SeLU SAE 0.23 0.37 0.37 166.51 29.44

SeLU NoSAE 0.23 0.38 0.37 163.24 27.36

ReLU SAE 0.25 0.39 0.39 182.70 46.30

ReLU NoSAE 0.21 0.42 0.42 164.22 28.78

weight of the network learns some overall structure of the data set, which may, to

some extent, weaken the over-fitting effect resulting from local optima, although

this is not obvious for SeLU SAE and SeLU NoSAE.

One of the four types of networks is supposed to be selected for the second425

stage. There are mainly two points to be considered: First, the simulation per-

formance of the network should be good, so the SAE will not be adopted; second,

the calculation should be simple and easy to be implemented in parallel. Since

the simulation performances of SeLU NoSAE and ReLU NoSAE are similar

and the calculation of ReLU unit is much simpler, finally the ReLU NoSAE is430

chosen. From 10 networks of ReLU NoSAE type, the one with the best simu-

lation performance (mI ≈ 159) is selected for the evolutionary optimization in

the second stage.

4.3. The Second Stage: Strategy Optimization based on Evolutionary Computa-

tion435

Through the first stage of deep learning, a strategy is obtained (a network

of ReLU NoSAE type). In order to further fine tune the strategy, evolutionary

algorithms are adopted in the second stage to improve the network performance.

Since the combination of deep networks and evolutionary algorithms is impor-

tant, it’s necessary to analyze and solve the problems caused by the attributes440

of these two parts.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.3.1. Reduce the Dimensions to be Optimized

Deep neural networks have strong abilities of representation, but the pa-

rameters of the network will increase significantly with the increase of network

depth. For example, the number of weights of the FNN in Fig. 4 is greater445

than 1e5. The resulting network is used as a initial solution, which will be

optimized locally by evolutionary algorithms. However, generally the problem

dimension for existing evolutionary algorithms is limited in application, oth-

erwise the efficiency and performance will be reduced. Even if the large-scale

global optimization problem is only about 1000-dimensional [50], and usually450

the optimization dimension is not more than 100 dimensions [51]. Some evo-

lutionary algorithms such as CMA-ES [52] involve nonlinear operations such

as matrix decomposition, so they are not suitable for problems with too high

dimensions.

Therefore, the first problem to be solved is how to reduce the dimensions455

to be optimized, and we can choose a part of dimensions for optimization, such

as optimizing only the offset of the network or optimizing only one layer of the

network. For FNN networks, the previous layer affects the later layers and it is

generally difficult to be locally optimized. Considering that the last layer has

a direct and critical impact on the output, we only optimize the last layer of460

the network, similar to the mechanism of the extreme learning machine [53].

In this way, the number of dimensions to be optimized (connection weights +

offsets) is 128 ∗ 2 + 2 = 258, which accounts for approximately 0.2% of the

original dimension, thus reducing greatly the number of dimensions that need

to be optimized.465

4.3.2. The Setting of the Evolutionary Algorithm

Firstly, the operation of evolutionary algorithms requires a good performance

metric, which is supposed to be relatively stable and suitable for the task. For

the multi-target search problem in swarm robotics, the performance metric is

the number of iterations required for the swarm to find and collect all the470

targets. But it should be noted that the task involves many random factors:

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the targets on the map are randomly generated, and the robot search strategy

also has a certain randomness. In order to reduce the impact of the randomness,

the average performance in many runs is adopted as the performance metric.

Many tests on the network show that the standard deviation σ of the number475

of iterations required for the swarm is less than 30 (σ < 30). According to the

central limit theorem, if the mean number of iterations over 1000 runs is the

performance metric, the corresponding standard deviation σ′ = σ√
1000

< 1. In

the experiments, 40 maps are generated, and the network runs 25 times in each

map, and finally the mean number of iterations over 1000 runs is chosen as the480

performance metric, which is relatively stable.

On the other hand, compared with gradient descent methods, the speed

of progress of evolutionary algorithms is limited. Generally, many evaluations

are needed in order to achieve good results. Therefore, the time-consuming

evaluation has a large impact on the algorithm [54]. Since each evaluation in485

the evolutionary algorithm requires 1000 runs, the evaluation of this task is time-

consuming. In order to improve the efficiency of the algorithm, it is a feasible

way to enhance the parallelism. Specifically, multiple threads can be used to

evaluate candidate solutions (candidate networks) in parallel. And four threads

are used in this article, significantly improving the efficiency of the algorithm.490

Finally, because the evolutionary algorithm is used to fine-tune the network

obtained in the first stage, and the number of evaluations should not be too

large (the evaluation is time-consuming), the learning rate of the algorithm is

supposed to be small. In GFWA, the learning rate corresponds to the explosion

amplitudes of fireworks, which is set to 3e-3 initially in this article.495

4.3.3. Optimizing the Neural Network using GFWA

With the above settings, the GFWA is used to optimize the ReLU NoSAE

network obtained in the first stage. For the parameters of GFWA, the number of

firework is 1 and the number of sparks is 11. The convergence curve of optimizing

neural networks using GFWA is shown in Fig. 5. The abscissa indicates the500

number of evaluations in GFWA, and the ordinate mI indicates the average

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 100 200 300 400 500 600 700 800

Number of Evaluations of GFWA

152

153

154

155

156

157

158

159

m
I

mI of the ReLU_NoSAE

Figure 5: The convergence curve of optimizing neural networks using GFWA.

number of iterations required for the network to collect all the targets. As

is shown in Fig. 5, through the optimization of GFWA, the performance of

ReLU NoSAE is improved from 159 to 152. However, the evaluation still has

a certain randomness, and the actual simulation performance is about 155. For505

the convenience of distinction, the ReLU NoSAE obtained in the first stage is

named as RNS, and the evolved ReLU NoSAE in the second stage is named

as RNSE (ReLU NoSAE Evolution).

Compared to the first stage of deep learning, the second stage of optimization

is limited in performance improvement, which is around 2.5% (from 159 to 155).510

The optimization is only used to locally fine-tune the network obtained from

the first stage, and the limited improvement is also useful in some situations.

For example, if the overall energy consumption of the robotic swarm is high,

then 2.5% improvement can also save a lot of energy. This improvement is also

statistically significant, and two-side Wilcoxon rank sum tests (with confidence515

level 95%) are conducted in the following section to support the conclusion.

5. Simulation Results and Discussions

In this section, a series of comparative experiments are conducted under

different problem settings. In each experiment, each strategy runs 1,000 times

on 40 random maps (25 runs in each map), and the final result is the average520

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

performance of 1,000 runs. The performance metrics for strategies are the mean

and standard deviation of the number of iterations required by the swarm to

collect all the targets in 1,000 runs, which are expressed as mI and dI, respec-

tively. The mI shows the search efficiency of the strategy, and the dI reflects

the stability of the strategy. In addition, another two indicators are introduced525

to measure the parallel processing capability and the collaborative processing

capability of search strategies. So there are four main indicators, as shown

below:

- Efficiency: the mean of the number of iterations required to collect all the

targets, represented by mI.530

- Stability: the standard deviation of the number of iterations required to

collect all the targets, represented by dI.

- Parallel processing capability: with fixed number of robots, the average

number of extra iterations (extra mI) needed for one additional target.

The smaller the number of extra iterations, the stronger the parallel pro-535

cessing capability. This indicator shows the ability of a search strategy to

process multiple targets in parallel.

- Collaborative processing capability: with fixed number of robots, the av-

erage number of extra iterations (extra mI) needed for one additional

collection time of targets. Normally, the collection times of each target540

are 10. The smaller the number of extra iterations, the stronger the collab-

orative processing capability. This indicator shows the ability of a search

strategy to process one target collaboratively.

5.1. Algorithms for Comparison

All the parameters of the comparison algorithms are tuned under the same545

experimental settings. The map size is 1000*1000. The population size is 50,

and the number of targets is 10. All algorithms and their parameters are as

follows:

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

- RPSO: Robotic Particle Swarm Optimization, inertia weight w = 3.0,

social coefficient c2 = 2.0, cognition coefficient c1 = 1.0, random coefficient550

c3 = 0.1.

- A-RPSO: Adaptive Robotic Particle Swarm Optimization, inertia weight

wini = 1.0, social coefficient c2 = 0.4, cognition coefficient c1 = 0.6, scale

factor α = 0.3, scale factor β = 0.7, random coefficient c3 = 0.1.

- IGES: Improved Group Explosion Strategy, group size threshold size = 5.555

Since the performance of IGES is much better than GES, the latter is not

used for comparison.

- TFS: Triangle Formation Search, the parameter configuration is the same

as that in [32].

- PFSMS: PFSM-based Search, this strategy is the target strategy to be560

imitated. Although we do not care about the details of the strategy, the

parameters are also given: initial probability for holding state Pini =

0.9997, inertia weight w = 0.55, diffusion threshold Tb = 2.3.

- RNS: ReLU NoSAE, the strategy is obtained from the deep learning in

the first stage, and there is no parameters to be optimized other than the565

weights and offsets of the neural network.

- RNSE: ReLU NoSAE Evolution, the strategy is obtained from evolving

RNS in the second stage, and there is no parameters to be optimized

other than the weights and offsets of the neural network.

Although only PFSMS is used for imitation, the performance of other com-570

parison strategies is also provided to enhance the intuitiveness of the conclusions.

The initial motivation for this paper is to propose a framework that can imitate

superior strategies. With the performance evaluation of other search strategies,

the superiority of PFSMS can be highlighted, and the similarity in performance

between the PFSMS and the strategies from imitation is also emphasized visu-575

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: mI and dI of search strategies with various population size and 10 targets.

Population
RPSO A−RPSO IGES TFS PFSMS RNS RNSE

mI dI mI dI mI dI mI dI mI dI mI dI mI dI

25 347.4 88.0 338.6 79.3 286.7 61.2 316.7 121.0 188.4 40.2 204.4 52.6 197.5 45.2

50 295.4 76.6 280.5 69.7 229.7 39.4 212.3 59.0 148.4 20.5 157.3 25.0 154.6 22.3

75 260.0 68.9 254.5 62.7 212.6 33.6 180.9 39.4 137.9 18.2 148.0 20.4 143.3 18.8

100 245.0 63.6 238.2 60.1 203.3 31.4 164.4 28.5 132.6 16.0 141.8 19.1 138.7 17.2

125 229.1 57.1 222.1 50.7 194.8 28.2 154.3 22.8 129.0 15.0 137.0 17.3 133.8 15.5

150 219.5 53.3 215.3 48.6 190.3 27.2 149.4 22.0 127.1 15.0 134.9 16.5 131.7 15.4

175 214.7 52.8 209.6 47.3 186.4 26.1 143.7 19.9 125.2 14.5 132.3 15.0 129.6 14.5

200 207.1 50.5 202.2 43.3 182.5 24.7 141.0 18.4 123.8 14.7 131.4 15.0 128.1 13.8

ally (ie, the performance curves of RNS and RNSE are close to that of PFSMS

but significantly better than those of other strategies).

5.2. Different Population Sizes

In this section, the search efficiency of various comparison algorithms under

different population sizes is investigated. In experiments, each strategy is tested580

at the population size of 25, 50, 75, 100, 125, 150, 175, 200 in turn, and the map

size is 1000*1000, containing 10 targets. The experimental results are shown in

Tab. 4, Fig. 6 and Fig. 7.

The Significance of RNS and RNSE: As is shown in Tab. 4 and Fig. 6,

the mIs of RNS and RNSE are close to that of PFSMS, and the performance of585

RNSE is slightly better. In addition, under different population sizes, two-side

Wilcoxon rank sum tests (with confidence level 95%) are conducted on the RNS

and other algorithms, as well as on the RNSE and other algorithms, which are

based on the data of 1000 runs. And the results of statistical test prove that

RNS is significantly better than other strategies except RNSE and PFSMS,590

while RNSE is significantly better than other strategies except PFSMS.

As is shown in the results, although a random component is introduced to

prevent robots from falling into local oscillation, the search efficiency of RPSO is

still the lowest. Despite the introduction of a simple niche technology (limiting

the communication range of robots), A-RPSO also performs poorly. By limiting595

the search space into 2D or 3D, some strategies can be adapted from high-

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 40 60 80 100 120 140 160 180 200

Population Size

100

150

200

250

300

350

m
I

RPSO
A-RPSO
IGES
TFS
PFSMS
RNS
RNSE

Figure 6: mI of search strategies with various population sizes.

20 40 60 80 100 120 140 160 180 200

Population Size

0

20

40

60

80

100

120

140

d
I

RPSO
A-RPSO
IGES
TFS
PFSMS
RNS
RNSE

Figure 7: dI of search strategies with various population sizes.

dimensional algorithms (such as PSO). But the adapted strategies may not be

suitable for the multi-target search task in swarm robotics, which focuses on

2D or 3D scenarios. Compared with RPSO and A-RPSO, the performance of

IGES has significant advantages. This is mainly because IGES pays attention600

to the diffusion mechanism, which improves the swarm’s exploration ability. For

TFS, the population size is a particularly important influence factor. As the

population size increases, the performance of TFS increases significantly.

As is shown in Fig. 6, except for RNS and RNSE, the performance of the

target strategy (PFSMS) is significantly better than other strategies, showing605

the highest search efficiency. With a population size of 50, compared to the other

six strategies (RPSO, A-RPSO, IGES, TFS, RNS, and RNSE), the efficiency of

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

PFSMS increased by 50%, 47%, 35% , 30%, 6%, and 4% respectively. It can be

seen that after the first stage of deep learning, the search efficiency of RNS is very

close to the target strategy, and after the second stage of evolution, the efficiency610

of RNSE is closer to the PFSMS. Except for the PFSMS, the performance

of RNS and RNSE is significantly better other comparison algorithms, which

verifies the effectiveness of the proposed two-stage imitation learning framework.

Comparing Fig. 6 and Fig. 7, the trends of the curves are roughly the same,

which means the more efficient strategy is generally more stable. After two615

stages of learning and evolution, the stability of the RNSE is very close to

the target strategy (PFSMS), even beyond the target strategy with a large

population (such as 200 robots). The stability of the RNSE originates from

the imitation of the diffusion mechanism of the target strategy. Therefore, the

difference in efficiency between RNSE and the target strategy is mainly due to620

the difference in local exploitation capacity, and further enlarging the proportion

of relevant samples in data set may improve the performance to some extent.

When the population size is 50, according to stability, the search strategies can

be sorted as PFSMS ≈ RNSE ≈ RNS > IGES > TFS > A − RPSO >

RPSO.625

As is shown in the experimental results, under different population size, RNS

and RNSE are very close to the target strategy in efficiency and stability, and

the performance of RNSE is slightly better than RNS.

Experiments in the Environment with Small Obstacles: There is

certain independence between the search strategy and the obstacle avoidance630

strategy, and simple obstacle avoidance approaches can be applied to search

strategies. Thus, it is reasonable to focus on improving the efficiency of the

search strategy in environments without obstacles. Still, a problem that cannot

be ignored is that the obstacle avoidance strategy may have an impact on the

performance of the search strategy. In order to show the rationality of the635

study without obstacles, experiments in the environment with small obstacles

were carried out in this section.

As is shown in Fig. 8, the environment contains 100 small obstacle, which

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 8: A screenshot of the problem with obstacles at the beginning of a simulation. Black

squares stand for the obstacles. Red circles stand for the targets while the central green dot

array represents the initial robot swarm.

are represented by black squares (each with a size of 1 ∗ 1). In this paper, a

simple avoiding strategy is applied for search strategies. In this strategy [11],640

the robot will check if it will run into obstacles with current velocity. If so,

a small repulsive force perpendicular to the velocity from the obstacle will be

added to avoid the collision.

As is shown in Fig. 9, the mI of search strategies in the environment with

small obstacles are similar to that in Fig. 6. Although the mI in obstructive645

environments is a little higher, the overall trend of curves and relative rank-

ings of different search strategies remain unchanged. Therefore, small obstacles

basically do not affect the relative performance of search strategies.

5.3. Different Number of Targets

In this section, the search efficiency of various comparison algorithms under650

different number of targets is investigated. In experiments, each strategy is

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 40 60 80 100 120 140 160 180 200

Population Size

100

150

200

250

300

350

400

m
I

RPSO
A-RPSO
IGES
TFS
PFSMS
RNS
RNSE

Figure 9: mI of search strategies with various population sizes in the environment with small

obstacles.

tested at the target number of 1, 5, 10, 15, 20, 30, 40, 50 in turn, and the map

size is 1000*1000, containing 50 robots. The experimental results are shown in

Tab. 5, Fig. 10 and Fig. 11.

The Significance of RNS and RNSE: As is shown in Tab 5 and Fig. 10,655

the mIs of RNS and RNSE are close to that of PFSMS, and the performance of

RNSE is slightly better. In addition, under different target numbers, two-side

Wilcoxon rank sum tests (with confidence level 95%) are conducted on the RNS

and other algorithms, as well as on the RNSE and other algorithms, which are

based on the data of 1000 runs. Statistical tests show that there is no significant660

difference between TFS, RNS, and RNSE when the target number is 1. And

there is no significant difference between RNS and RNSE when the target num-

ber is 5. In other cases, RNS is significantly better than other algorithms except

for PFSMS and RNSE, and RNSE is significantly better than other algorithms

except PFSMS. With the increase in the number of targets, the advantages of665

RNS and RNSE gradually emerge, showing excellent parallel search capabilities.

As is shown in Tab. 5 and Fig. 10, when there is only one target, all search

strategies have similar performance, and there is no statistically significant dif-

ference in the performance of TFS, RNS, and RNSE. The excellent local ex-

ploitation capability of TFS makes up for its lack of global exploration capabil-670

ities. From the results, the performance of RNS and RNSE is especially close,

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: mI and dI of search strategies with various numbers of targets and 50 robots.

Targets
RPSO A−RPSO IGES TFS PFSMS RNS RNSE

mI dI mI dI mI dI mI dI mI dI mI dI mI dI

1 96.0 36.7 98.2 39.0 105.3 43.3 93.8 45.5 84.8 29.3 87.6 32.9 87.3 32.7

5 187.4 46.2 188.5 46.3 180.4 33.8 164.7 52.4 125.4 20.0 133.7 25.2 132.9 24.0

10 289.2 74.7 283.3 71.6 229.1 40.2 211.0 56.0 147.6 20.8 157.6 24.2 155.4 23.2

15 380.0 98.6 366.2 87.6 271.9 41.2 244.3 63.2 163.5 20.0 177.6 27.3 174.1 28.1

20 434.9 97.9 414.1 86.7 302.5 49.2 263.4 63.9 175.7 20.4 195.2 34.5 187.1 26.5

30 548.6 108.7 505.3 93.8 354.0 65.7 306.3 66.2 202.1 25.7 226.9 41.8 215.2 32.8

40 629.0 104.5 563.0 95.0 409.4 60.9 344.3 70.8 223.3 28.3 255.6 45.6 241.3 34.1

50 704.1 121.4 609.2 112.5 436.7 68.3 367.2 67.2 236.5 29.2 284.2 51.2 263.8 38.8

0 5 10 15 20 25 30 35 40 45 50

Number of Targets

0

100

200

300

400

500

600

700

800

m
I

RPSO
A-RPSO
IGES
TFS
PFSMS
RNS
RNSE

Figure 10: mI of search strategies with various number of targets.

0 5 10 15 20 25 30 35 40 45 50

Number of Targets

20

40

60

80

100

120

140

d
I

RPSO
A-RPSO
IGES
TFS
PFSMS
RNS
RNSE

Figure 11: dI of search strategies with various number of targets.

which means that the two strategies have similar local exploitation capabilities,

and the difference in performance lies mainly in the parallel search of multiple

targets.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

RPSO A-RPSO IGES TFS PFSMS RNS RNSE
0

2

4

6

8

10

12

14

E
xt

ra
 m

I
fo

r
o

n
e

ad
d

ed
 t

ar
g

et
.

Figure 12: Extra mI required for one added target of different search strategies.

As is shown in Fig. 10, the slope of each curve represents the number of675

extra iterations needed for one additional target, so a small slope means the

algorithm has better parallelism. For each strategy (RPSO, A-RPSO, IGES,

TFS, PFSMS, RNS, and RNSE), the slopes of the curves are 12.41, 10.43, 6.76,

5.58, 3.10, 4.01, and 3.60, respectively, as is shown in Fig. 12. RNS and RNSE

have similar parallelism with PFSMS, while RNSE is slightly better than RNS.680

Considering that RNS and RNSE have similar local exploitation capabilities,

the evolutionary stage mainly enhances the parallel search capability of the

strategy. According to parallelism, the strategies can be sorted as PFSMS >

RNSE > RNS > TFS > IGES > A−RPSO > RPSO.

With different number of targets, the stability of each search strategy is685

shown in Fig. 11. As the number of targets increases, the curves of IGES, RNS,

RNSE, and PFSMS drop first and then increase, which means that a proper

increase in targets helps to reduce the randomness of the problem. As can be

seen from the curve trend, compared with other algorithms, the stability of

TFS, RNSE and PFSMS is less sensitive to the number of targets. On the other690

hand, as the number of targets increases, the stability of PRSO and A-RPSO

significantly deteriorates, indicating that they are not very good at parallel

search for multiple targets.

As is shown in the experimental results, with different number of targets,

RNS and RNSE are very close to the target strategy in efficiency and stability,695

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and the performance of RNSE is slightly better than RNS.

5.4. Different Collection Times of Targets

As described in the problem statement, a target requires 10 steps to be

processed, which can be done by a single robot in 10 iterations, or 10 robots

in one iteration. The “collection times of targets” refers to the number of700

iterations that a robot needs to collect a target. If the “collection times of

targets” is 50, then it takes a robot 50 iterations to collect one target. With

different collection times of targets, collaborative collection capabilities of the

swarm in different strategies can be investigated, which is complementary to the

parallel search capabilities of the swarm. In this section, the search efficiency705

of various comparison algorithms under different collection times of targets is

investigated. In experiments, each strategy is tested at the collection time of 1,

5, 10, 15, 20, 30, 40, 50 in turn, and the map size is 1000*1000, containing 10

targets and 50 robots. The experimental results are shown in Tab. 6, Fig. 13

and Fig. 14.710

The Significance of RNS and RNSE: As is shown in Tab 6 and Fig. 13,

the mIs of RNS and RNSE are close to that of PFSMS, and the performance of

RNSE is slightly better. In addition, under different collection times of targets,

two-side Wilcoxon rank sum tests (with confidence level 95%) are conducted on

the RNS and other algorithms, as well as on the RNSE and other algorithms,715

which are based on the data of 1000 runs. Statistical tests show that there is

no significant difference between RNS and RNSE when the collection times of

targets are 30, 40 and 50. In other cases, RNS is significantly better than other

algorithms except for PFSMS and RNSE, and RNSE is significantly better than

other algorithms except PFSMS.720

As shown by Fig. 13, as the collection time of targets increases, the mI

for different search strategies grows approximately linearly. With different col-

lection times of targets, the relative ranking of the efficiency of each strategy

has not changed, and the performance of RPSO gradually approaches A-RPSO,

indicating that the former has a stronger collaborative collection capability.725

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: mI and dI of search strategies with various collection times of targets.

Collection

Times

RPSO A−RPSO IGES TFS PFSMS RNS RNSE

mI dI mI dI mI dI mI dI mI dI mI dI mI dI

1 276.9 75.2 263.3 66.7 211.2 36.5 198.6 54.8 137.2 18.8 145.8 22.6 142.2 20.5

5 286.7 77.4 275.4 70.5 221.3 37.6 207.3 58.7 142.8 19.3 153.0 24.4 149.4 24.0

10 289.4 75.5 283.1 71.0 230.6 39.3 210.3 53.8 147.9 20.6 158.2 24.5 155.1 23.9

15 296.3 74.9 286.6 69.2 235.7 40.5 215.5 59.4 153.1 22.2 163.6 24.2 161.0 23.9

20 298.1 74.3 294.7 72.8 244.8 42.1 219.8 55.8 157.1 22.0 168.3 25.8 164.2 22.8

30 305.8 76.9 302.7 70.8 256.3 44.7 227.5 55.4 165.8 23.2 176.8 27.3 174.0 24.7

40 313.6 77.2 311.7 70.9 265.2 45.0 232.6 55.5 173.9 24.9 185.4 30.3 181.7 25.5

50 320.6 77.3 319.8 73.7 276.0 47.5 242.6 65.4 178.9 23.7 191.7 29.1 189.5 27.0

0 5 10 15 20 25 30 35 40 45 50

Collection Times of Targets

100

150

200

250

300

350

m
I

RPSO
A-RPSO
IGES
TFS
PFSMS
RNS
RNSE

Figure 13: mI of search strategies with various collection times of targets.

0 5 10 15 20 25 30 35 40 45 50

Collection Times of Targets

10

20

30

40

50

60

70

80

d
I

RPSO A-RPSO IGES TFS PFSMS RNS RNSE

Figure 14: dI of search strategies with various collection times of targets.

The slope of each curve in the figure indicates the number of extra iterations

needed for one additional collection time of targets, indicating the collaborative

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

RPSO A-RPSO IGES TFS PFSMS RNS RNSE
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
xt

ra
 m

I
fo

r
o

n
e

ad
d

ed
 c

o
lle

ct
io

n
 t

im
e.

Figure 15: Extra mI required for one added collection time of different search strategies.

collection ability of the swarm, thus a small slope means that the search strat-

egy has better collaborative processing capabilities. For each strategy (RPSO,

A-RPSO, A-RPSO, IGES, TFS, PFSMS, RNS, and RNSE), the slope of the730

curve is 0.89, 1.15, 1.32, 0.90, 0.85, 0.94, 0.97, as is shown in Fig. 15. Accord-

ing to the collaborative processing capability, the strategies can be sorted as:

PFSMS > PRSO ≈ TFS > RNS > RNSE > A − RPSO > IGES. Com-

pared with RPSO, niche technology limits the swarm collaboration of A-RPSO

and reduces the ability of collaborative processing. In TFS, three-robot forma-735

tions allow a single target to be processed by at least three robots, resulting

in good collaborative collection capabilities. IGES tends to allow the group to

spread out slowly, weakening the collaboration among individuals. Compared

with the target strategy PFSMS, the RNS and RNSE have a weaker ability

for collaborative processing, and the RNSE is slightly weaker than RNS, which740

means that the evolution of the second stage slightly sacrificed the swarm’s

collaborative processing capability to enhance parallel search capabilities.

As is shown in Fig. 14, the stability of each strategy is less sensitive to the

collection times of targets. The stability of RNS and RNSE is close to PFSMS,

which is significantly better than other comparison algorithms. Because this745

article focuses on the search efficiency of the strategy, rather than the collab-

orative processing, the collection times of targets in the problem is small (10

times), and only linear acceleration is considered (the collection efficiency of the

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

target is proportional to the number of participating robots), so the performance

improvement brought by good collaborative collection capability is not signifi-750

cant. If the collection times of targets increases significantly, the performance

of various strategies may be different.

As is shown in the experimental results, with different collection times of

targets, RNS and RNSE are very close to the target strategy in efficiency and

stability, and the performance of RNSE is slightly better than RNS.755

6. Conclusions

The existing multi-target search strategies in swarm robotics are gener-

ally behavior-based, that is, the multi-target search behavior of the swarm is

achieved by designing individual behaviors. The purpose of this article is not to

design new strategies, but to approach a target strategy through imitation and760

evolution. In this paper, it is assumed that the specific details of the target strat-

egy are unknown, but the individual robot’s behavioral data and performance

metric can be obtained. This paper proposes a two-stage imitation learning

framework to approach the target strategy. In the first stage, the neural net-

work is used to learn the behavioral data of individual robots. In the second765

stage, the network parameters are optimized by evolutionary algorithms. Ex-

perimental results show that the final strategy RNSE is very close to the target

strategy PFSMS in terms of efficiency and stability, showing a balance between

exploration and exploitation, and a good trade-off between parallelism and col-

laboration, which validates the effectiveness of the framework. The method770

section in this article is useful for the design of the network structure (layers,

activation functions, initialization techniques, regularization techniques, etc.)

and the setting of evolutionary algorithms (stability of the performance met-

ric, learning rate settings) to facilitate the framework promotion and migration

applications.775

In this paper, the evolutionary algorithm is only used to optimize the last

layer of the network, and the study of evolving the entire network can be con-

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ducted in the future. In addition, there are certain artificial traces in the con-

struction and selection of the netwotk input features in this paper. Since deep

networks have strong feature extraction and representation capabilities, in the780

future research, the original data can be directly used as the input of the net-

work for training. In addition to the multi-target search, the framework can

also be used for other tasks in swarm robotics, such as aggregation, dispersion,

object transport, and so on.

Acknowledgment785

This work was supported by the Natural Science Foundation of China (NSFC)

under grant no. 61375119 and 61673025 and also Supported by Beijing Nat-

ural Science Foundation (4162029), and partially supported by National Key

Basic Research Development Plan (973 Plan) Project of China under grant no.

2015CB352302.790

References

[1] S. Camazine, Self-organization in biological systems, Princeton University

Press, 2003.

[2] E. Şahin, Swarm robotics: From sources of inspiration to domains of appli-

cation, in: International workshop on swarm robotics, Springer, 2004, pp.795

10–20.

[3] E. Şahin, S. Girgin, L. Bayindir, A. E. Turgut, Swarm robotics, in: Swarm

intelligence, Springer, 2008, pp. 87–100.

[4] M. S. Couceiro, D. Portugal, R. P. Rocha, A collective robotic architecture

in search and rescue scenarios, in: Proceedings of the 28th Annual ACM800

Symposium on Applied Computing, ACM, 2013, pp. 64–69.

[5] J. Clark, R. Fierro, Mobile robotic sensors for perimeter detection and

tracking, ISA transactions 46 (1) (2007) 3–13.

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[6] J. Alonso-Mora, S. H. Lohaus, P. Leemann, R. Siegwart, P. Beardsley,

Gesture based human-multi-robot swarm interaction and its application to805

an interactive display, in: Robotics and Automation (ICRA), 2015 IEEE

International Conference on, IEEE, 2015, pp. 5948–5953.

[7] G. A. Landis, Robots and humans: synergy in planetary exploration, Acta

astronautica 55 (12) (2004) 985–990.

[8] W. Wu, A. Song, P. Varnell, F. Zhang, Cooperatively mapping of the un-810

derwater acoustic channel by robot swarms, in: Proceedings of the Interna-

tional Conference on Underwater Networks & Systems, ACM, 2014,

p. 20.

[9] B. Yang, Y. Ding, Y. Jin, K. Hao, Self-organized swarm robot for target

search and trapping inspired by bacterial chemotaxis, Robotics and Au-815

tonomous Systems 72 (2015) 83–92.

[10] A. Jaimes, S. Kota, J. Gomez, An approach to surveillance an area using

swarm of fixed wing and quad-rotor unmanned aerial vehicles uav (s), in:

System of Systems Engineering, 2008. SoSE’08. IEEE International Con-

ference on, IEEE, 2008, pp. 1–6.820

[11] J. Li, Y. Tan, The multi-target search problem with environmental restric-

tions in swarm robotics, in: Robotics and Biomimetics (ROBIO), 2014

IEEE International Conference on, IEEE, 2014, pp. 2685–2690.

[12] L. Bayindir, E. Şahin, A review of studies in swarm robotics, Turkish Jour-

nal of Electrical Engineering & Computer Sciences 15 (2) (2007) 115–825

147.

[13] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a

review from the swarm engineering perspective, Swarm Intelligence 7 (1)

(2013) 1–41.

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[14] O. Soysal, et al., Probabilistic aggregation strategies in swarm robotic sys-830

tems, in: Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005

IEEE, IEEE, 2005, pp. 325–332.

[15] O. Khatib, Real-time obstacle avoidance for manipulators and mobile

robots, The international journal of robotics research 5 (1) (1986) 90–98.

[16] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, Vol. 1,835

MIT press Cambridge, 1998.

[17] S. Nolfi, D. Floreano, Evolutionary robotics (2000).

[18] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-

che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,

Mastering the game of go with deep neural networks and tree search, nature840

529 (7587) (2016) 484–489.

[19] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks,

in: Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, 2011, pp. 315–323.

[20] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing845

neural networks, in: Advances in Neural Information Processing Systems,

2017, pp. 972–981.

[21] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise train-

ing of deep networks, in: Advances in neural information processing sys-

tems, 2007, pp. 153–160.850

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,

Dropout: A simple way to prevent neural networks from overfitting, The

Journal of Machine Learning Research 15 (1) (2014) 1929–1958.

[23] J. Li, S. Zheng, Y. Tan, The effect of information utilization: introducing

a novel guiding spark in the fireworks algorithm, IEEE Transactions on855

Evolutionary Computation 21 (1) (2017) 153–166.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[24] M. S. Couceiro, R. P. Rocha, N. M. Ferreira, A novel multi-robot explo-

ration approach based on particle swarm optimization algorithms, in: 2011

IEEE International Symposium on Safety, Security, and Rescue Robotics,

IEEE, 2011, pp. 327–332.860

[25] H. N. Ataei, K. Ziarati, M. Eghtesad, A bso-based algorithm for multi-robot

and multi-target search, in: International Conference on Industrial, Engi-

neering and Other Applications of Applied Intelligent Systems, Springer,

2013, pp. 312–321.

[26] K. Krishnanand, D. Ghose, A glowworm swarm optimization based multi-865

robot system for signal source localization, in: Design and control of intel-

ligent robotic systems, Springer, 2009, pp. 49–68.

[27] Z. Zheng, Y. Tan, Group explosion strategy for searching multiple targets

using swarm robotic, in: 2013 IEEE Congress on Evolutionary Computa-

tion, IEEE, 2013, pp. 821–828.870

[28] G. M. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince,

H. E. Stanley, Lévy flight search patterns of wandering albatrosses, Nature

381 (6581) (1996) 413.

[29] O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Two-dimensional inter-

mittent search processes: An alternative to lévy flight strategies, Physical875

Review E 74 (2) (2006) 020102.

[30] V. Gazi, K. M. Passino, Stability analysis of social foraging swarms, IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

34 (1) (2004) 539–557.

[31] L. Xie, G. Yang, J. Zeng, Z. Cui, Swarm robots search based on artifi-880

cial physics optimisation algorithm, International Journal of Computing

Science and Mathematics 4 (1) (2013) 62–71.

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[32] J. Li, Y. Tan, Triangle formation based multiple targets search using

a swarm of robots, in: International Conference in Swarm Intelligence,

Springer, 2016, pp. 544–552.885

[33] M. S. Couceiro, P. A. Vargas, R. P. Rocha, N. M. F. Ferreira, Benchmark

of swarm robotics distributed techniques in a search task, Robotics and

Autonomous Systems 62 (2) (2014) 200–213.

[34] M. Dadgar, M. S. Couceiro, A. Hamzeh, Rdpso diversity enhancement

based on repulsion between similar ions for robotic target searching, in:890

Artificial Intelligence and Signal Processing Conference, 2018, pp. 275–280.

[35] M. Dadgar, S. Jafari, A. Hamzeh, A pso-based multi-robot cooperation

method for target searching in unknown environments, Neurocomputing

177 (2016) 62–74.

[36] X. Yang, J. Yuan, J. Yuan, H. Mao, A modified particle swarm optimizer895

with dynamic adaptation, Applied Mathematics and Computation 189 (2)

(2007) 1205–1213.

[37] Y. Tan, Y. Zhu, Fireworks algorithm for optimization, in: International

Conference in Swarm Intelligence, Springer, 2010, pp. 355–364.

[38] Z. Zheng, J. Li, J. Li, Y. Tan, Improved group explosion strategy for search-900

ing multiple targets using swarm robotics, in: 2014 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2014, pp.

246–251.

[39] J. P. Hecker, M. E. Moses, Beyond pheromones: evolving error-tolerant,

flexible, and scalable ant-inspired robot swarms, Swarm Intelligence 9 (1)905

(2015) 43–70.

[40] J. Gomes, P. Urbano, A. L. Christensen, Evolution of swarm robotics sys-

tems with novelty search, Swarm Intelligence 7 (2-3) (2013) 115–144.

41

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[41] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira,

A. L. Christensen, Evolution of collective behaviors for a real swarm of910

aquatic surface robots, PloS one 11 (3) (2016) e0151834.

[42] J. Foerster, I. A. Assael, N. de Freitas, S. Whiteson, Learning to communi-

cate with deep multi-agent reinforcement learning, in: Advances in Neural

Information Processing Systems, 2016, pp. 2137–2145.

[43] J. Foerster, N. Nardelli, G. Farquhar, P. Torr, P. Kohli, S. Whiteson, et al.,915

Stabilising experience replay for deep multi-agent reinforcement learning,

arXiv preprint arXiv:1702.08887.

[44] Q. Li, X. Du, Y. Huang, Q. Sykora, A. P. Schoellig, Learning of coordina-

tion policies for robotic swarms, arXiv preprint arXiv:1709.06620.

[45] Y. Bengio, et al., Learning deep architectures for ai, Foundations and920

trends R© in Machine Learning 2 (1) (2009) 1–127.

[46] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Ben-

gio, Why does unsupervised pre-training help deep learning?, Journal of

Machine Learning Research 11 (Feb) (2010) 625–660.

[47] Z. Zheng, J. Li, J. Li, Y. Tan, Avoiding decoys in multiple targets searching925

problems using swarm robotics, in: 2014 IEEE Congress on Evolutionary

Computation (CEC), IEEE, 2014, pp. 784–791.

[48] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift, in: International conference on

machine learning, 2015, pp. 448–456.930

[49] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980.

[50] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, H. China, Benchmark

functions for the cec 2013 special session and competition on large-scale

global optimization, gene 7 (33) (2013) 8.935

42

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[51] J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria

for the cec 2014 special session and competition on single objective real-

parameter numerical optimization, Computational Intelligence Laboratory,

Zhengzhou University, Zhengzhou China and Technical Report, Nanyang

Technological University, Singapore.940

[52] N. Hansen, The cma evolution strategy: A tutorial, arXiv preprint

arXiv:1604.00772.

[53] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory

and applications, Neurocomputing 70 (1-3) (2006) 489–501.

[54] Q. Chen, B. Liu, Q. Zhang, J. Liang, P. Suganthan, B. Qu, Problem defi-945

nition and evaluation criteria for cec 2015 special session and competition

on bound constrained single-objective computationally expensive numerical

optimization, Computational Intelligence Laboratory, Zhengzhou Univer-

sity, China and Nanyang Technological University, Singapore, Technical

report.950

Jie Li, received a Bachelor of Intelligence Science and

Technology from University of Science and Technology Beijing, China, in 2013.

He is currently majoring in Computer Science and working towards the PhD de-

gree at Key Laboratory of Machine Perception (Ministry of Education) and De-

partment of Machine Intelligence, School of Electronics Engineering and Com-955

puter Science, Peking University, Beijing, China. His research interests include

Swarm Robotics, Evolutionary Computation, Machine Learning and Artificial

Neural Networks.

43

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ying Tan, is a full professor and PhD advisor at the School

of Electronics Engineering and Computer Science of Peking University, and di-960

rector of Computational Intelligence Laboratory at Peking University. He re-

ceived his B.Eng, M.S., and PhD from Southeast University, in 1985, 1988, and

1997, respectively. He is the inventor of Fireworks Algorithm (FWA). He serves

as the Editor-in-Chief of International Journal of Computational Intelligence

and Pattern Recognition (IJCIPR), the Associate Editor of IEEE Transaction on965

Cybernetics (CYB), IEEE Transaction on Neural Networks and Learning Sys-

tems (NNLS), International Journal of Swarm Intelligence Research (IJSIR), In-

ternational Journal of Artificial Intelligence (IJAI), etc. He also served as an Ed-

itor of Springers Lecture Notes on Computer Science (LNCS) for 20+ volumes,

and Guest Editors of several referred Journals, including IEEE/ACM Transac-970

tions on Computational Biology and Bioinformatics (IEEE/ACM TCBB), In-

formation Science, Softcomputing, Neurocomputing, IJSIR, IJAI, B&B, CJ, etc.

He is an IEEE senior member and a member of Emergent Technologies Techni-

cal Committee (ETTC) of IEEE Computational Intelligence Society since 2010.

He is the founder general chair of the ICSI International Conference series. He975

won the 2nd-Class Natural Science Award of China in 2009.

44

