
A Probabilistic Finite State Machine based Strategy for

Multi-Target Search Using Swarm Robotics

Jie Li and Ying Tan

Key Laboratory of Machine Perception (Ministry of Education), Department of Machine
Intelligence, School of Electronics Engineering and Computer Science, Peking University,

Beijing, 100871, P.R. China.
Email: ustblijie@126.com,ytan@pku.edu.cn

Abstract

As a distributed system, swarm robotics is well suited for the multi-target
search task where a single robot is rather inefficient. In this paper, a model
of the multi-target search problem in swarm robotics and its approximate
mathematical representation are given, based on which a lower bound of the
expected number of iterations is drawn. Two categories of behavior-based
strategies for target search are introduced: one is inspired from swarm in-
telligence optimization while the other from random walk. A novel search
strategy based on probabilistic finite state machine is put forward, show-
ing the highest efficiency in all presented algorithms, which is very close to
the optimal value in situations with a large number of robots. It has been
demonstrated by extensive experiments that the novel strategy has excellent
stability, striking a good balance between exploration and exploitation, as
well as a good trade-off between parallelism and cooperative capability.

Keywords: swarm robotics, multi-target search, swarm intelligence
optimization, random walk, probabilistic finite state machine.

1. Introduction

Swarm robotics is a field inspired by the self-organized behaviors of social
animals [1], aiming at designing a large number of simple robots to complete
some complex tasks in a low-cost way with high reliability and efficiency [2, 3]
or to simulate some expected collective behaviors [4], through local interac-
tions among robots and between the robots and environment [5], in which

Preprint submitted to Applied Soft Computing January 9, 2019

people have done lots of various research and survey work [6, 7, 8, 9]. As a
distributed system, swarm robotic system is well-suited for tasks involving
area coverage[5], such as searching for multiple targets in a large space. S-
trategies for multi-target search have a broad prospect of application, such
as hunting submarines[10], searching for victims and wreckage after air crash
or shipwreck, monitoring the leak water quality[5], exploring and destroying
battlefield targets, and so on.

Similar to the general foraging task, the search space in the multi-target
search problem is very large. The large space emphasizes the importance of
good exploration ability or high diffusion rate of the swarm. In addition,
the influence scope of targets is also wide and robots can only perceive the
local fitness information generated by targets (similar to radiation intensity
but non-directional). The wide scope implies the necessity of good exploita-
tion ability of robots [11]. For simplicity, the targets are static, and the
fitness information will remain unchanged in the collecting process of the
corresponding target, but will disappear immediately once the collection is
finished. We may consider a more realistic scenario, such as the salvage task
at sea. The people waiting for rescue are scattered in different areas, and a
swarm of robots (ships or aircrafts) equipped with specific sensors (for life
sign detection or other signals) are launched and instructed to search a des-
ignated region and find the people as soon as possible, and the signals will
disappear once the people are saved.

The methods for designing collaborative mechanisms of swarm robotic-
s can be divided into two categories: behavior-based design and automat-
ic design [8]. Generally, behavior-based design is a bottom-up process, in
which individual behaviors of robots are iteratively adjusted and tuned un-
til the desired collective behavior is obtained. Automatic design methods
mainly include reinforcement learning and evolutionary robotics, which can
be considered as top-down approaches and generate behaviors automatical-
ly without the explicit intervention of the developer. Basically, the design
methods of current strategies for multi-target search task can be classified
as the behavior-based category [12, 13], such as methods based on artifi-
cial potential functions[14, 15], and methods adapted from some swarm in-
telligence optimization algorithms, such as Glowworm Swarm Optimization
(GSO) [16], Particle Swarm Optimization (PSO) [17], Bee Swarm Optimiza-
tion (BSO) [18], Fireworks Algorithm (FWA) [19], and Differential Evolution
(DE) [20, 21].

In addition to swarm intelligence optimization, another important behavior-

2

based perspective is using mathematical physics methods to model and ana-
lyze the foraging and migratory behaviors of animals, which is often referred
to as “random search”[22] or “stochastic optimal foraging theory”[23]. Lévy
flight [24] is a typical random search strategy, which can also be called Lévy
walk[25] except for a negligible difference (In Lévy walk models, “jumps are
not instantaneous but a time interval related to a finite velocity to complete
the jump is involved” [23]). Random walk strategies can find many appli-
cations in swarm robotics [3], and we put forward a benchmark algorithm
combining linear ballistic motion with triangle estimation technology [26].
Random walk strategy such as Lévy flight, bears excellent exploration abil-
ity (i.e. high diffusion rate), which is important for searching tasks in large
space. Furthermore, if the targets are distributed sparsely and can be located
directly by robots in their influence scope, then random walk strategy may
be the only reasonable solution. In the problem scenario of this article, ran-
dom walk strategies are generally used in areas without fitness information
to help robots move quickly to other areas.

The probabilistic finite state machine (PFSM) is also a behavior-based
design method for swarm robotics [8], which is convenient for describing var-
ious kinds of algorithms in an intuitive way. In this paper, the PFSM is used
as an approach to describe, analyze and design the strategy. The motiva-
tion is from the previous work about triangular formation search [26], where
robots in a team can roughly maintain a triangular formation to improve
the exploitation ability of robots. However, the algorithm is rather com-
plex, causing difficulties in maintenance and expansion, thus the disband-
ment and reorganization of the formation are not considered. In addition,
to a certain extent, the triangular formation leads to excessive concentration
of resources, limiting the exploration ability of robots. Therefore, we want
to design a self-organized triangular formation strategy, in which the forma-
tion can be disbanded or reorganized freely. However, it’s found unnecessary
to maintain a formation explicitly, which will increase the computation and
communication load. In the new strategy, there is no grouping operation
nor rigid triangular formation, and only the triangle estimation technology
is adopted. The results in [26] are probably not easy to relate to those in
the current paper for two reasons: the parameters of RPSO strategy in [26]
are not well tuned, and the IS strategy in [26] is enhanced with the inertia
mechanism and corresponds to the BMS in current paper.

This article mainly includes three contributions. Firstly, an approximate
mathematical model is established for the multi-target search problem in

3

swarm robotics, based on which a lower bound of the expected number of it-
erations is derived. Secondly, three kinds of independent search strategies are
introduced, each of which is combined by a kind of random walk strategy, the
triangle estimation technology, and the inertia mechanism. Finally, a novel
search strategy based on PFSM is proposed, showing the highest efficiency
and the best stability in all presented algorithms. With a large population,
the efficiency of the PFSMS is close to the theoretical lower bound of iter-
ations for the problem. The PFSMS also strikes a good balance between
exploration and exploitation, and a good trade-off between parallelism and
cooperative capability.

The rest of the paper is organized as follows. In section II, both of two
categories of searching algorithms and a formation search strategy are in-
troduced. In section III, the model and analysis of the multi-target search
problem in swarm robotics are stated. In section IV, the behavior-based
strategies proposed in this paper are described in detail. In section V, exper-
imental results and discussions are presented. Finally, the work is concluded
in section VI.

2. Related Work

There are mainly two categories of behavior-based algorithms for target
search, one inspired from swarm intelligence optimization algorithms while
the other from random walk strategies. Similar to our problem model[11],
swarm algorithms focus on search tasks in information-rich environment (the
influence range of targets is wide), bearing strong exploitation but weak ex-
ploration abilities due to high degree of swarm connectivity. In contrast,
random walk strategies mainly consider the situations of lacking fitness in-
formation (the influence of targets is narrow), possessing strong exploration
but weak exploitation abilities owing to great diffusion capacities.

2.1. Swarm Algorithms for Target Search

To design the collaborative mechanisms of swarm robotics for the multi-
target search task, a natural idea is to learn from the existing swarm opti-
mization algorithms, such as PSO [27, 28], GSO [29, 16], BSO [30, 18] and so
on. Robots, collaborative mechanisms among robots, and target search are
analogous to candidate solutions, information mining mechanisms and opti-
mization process respectively. In this section, four strategies inspired from
swarm algorithms are introduced as follows.

4

vt+1
i = wvti + c1r1

(
pBestti − xti

)
+ c2r2

(
gBestti − xti

)
(1)

RPSO: Robotic Particle Swarm Optimization (RPSO) [17] is an exten-
sion of PSO, in which an obstacle avoidance component is added to the
velocity update formula. In PSO, as shown in Eq. 1, three components are
considered: inertia, cognition and social components. In iteration t, the po-
sition and velocity of particle i are denoted by xti and vti , and w, c1, c2 are
named “inertia weight”, “cognition coefficient” and “social coefficient”, re-
spectively. pBestti and gBestti are the best historical position of particle i
and the best previous position among all the particles, and r1, r2 are random
numbers uniformly distributed within [0,1]. In RPSO, as shown in Eq. 2,
a component for obstacle avoidance is introduced, where pti is an attractive
position located away from obstacles, and c3, r3 are the corresponding co-
efficient and random number. In this paper, as shown in Eq. 3, a random
component is introduced into RPSO to help robots to escape from local os-
cillation, where c4 is the random efficient and mt

i is a unit direction vector
with the angle uniformly distributed within the range [0,2π].

vt+1
i = wvti + c1r1

(
pBestti − xti

)
+ c2r2

(
gBestti − xti

)
+ c3r3

(
pti − xti

)
(2)

vt+1
i = wvti + c1r1

(
pBestti − xti

)
+ c2r2

(
gBestti − xti

)
+ c3r3

(
pti − xti

)
+ c4m

t
i

(3)
A-RPSO: In Adaptive Robotic PSO (A-RPSO) [13], as shown in Eq. 4,

the velocity update formula of each robot is similar to that in RPSO, except
that the inertia weight wt

i is a variable for each robot i and each iteration t,
and its value depends on “evolutionary speed” and “aggregation degree” [31].
The “evolutionary speed” factor is described by the difference between per-
sonal best fitness values in adjacent iterations, and “aggregation degree” is
determined by the difference between the best fitness and mean fitness in
current iteration. The original A-RPSO algorithm focuses on the single tar-
get search problem, and to adapt to the multi-target search problem, we
divide the swarm into several sub-swarms through limiting the communica-
tion range of robots. In this paper, as shown in Eq. 5, a random component
mt

i is also introduced into A-RPSO to help robots to avoid local oscillation.

5

vt+1
i = wt

iv
t
i + c1r1

(
pBestti − xti

)
+ c2r2

(
gBestti − xti

)
+ c3r3

(
pti − xti

)
(4)

vt+1
i = wt

iv
t
i + c1r1

(
pBestti − xti

)
+ c2r2

(
gBestti − xti

)
+ c3r3

(
pti − xti

)
+ c4m

t
i

(5)
GES: Group Explosion Strategy (GES) [19] borrows some ideas from

the FWA [32], a swarm intelligence optimization algorithm inspired by the
firework explosion. In GES, the entire swarm is divided into small groups
automatically according to the perception range of each robot. The key idea
is to move the geometric center of a group to the position of an optimal
individual in the group, and the group will split if the size is larger than a
threshold. In iteration t, as shown in Eq. 6, the guidance vector of robot i
from its group is denoted by gti , where N t

i is the set including robot i and all
its neighbors and |N t

i | is the cardinality of N t
i , and xtj is the current position

of robot j and xtb is one of the best positions in the group.

gti = xtb −
∑

j∈Nt
i
xtj

|N t
i |

(6)

IGES: Improved Group Explosion Strategy (IGES) [33] is an improved
version of GES. In the simulation experiments of GES, it is found that if all
robots in a group share an optimal fitness, selecting an optimal individual
randomly may cause robots to fall into local oscillation or fall back to worse
regions. In IGES, four strategies have been developed to deal with various
situations, and there are mainly two improvements. Firstly, as shown in
Eq. 7, the moving reference point is the center of all best positions in the
group instead of one of the best positions, where Bt

i is the set of robots in N t
i

that have the maximum fitness and |Bt
i | is the cardinality of Bt

i . Secondly,
the group will split if all robots share the same fitness value or the group size
is larger than a threshold.

gti =

∑
j∈Bt

i
xtj

|Bt
i |
−
∑

j∈Nt
i
xtj

|N t
i |

(7)

2.2. Random Walk Strategies for Target Search

Random search strategies [34] are derived from the study of the migration
behaviors of foraging organisms [35, 36]. Due to the sparseness, renewabil-
ity, fractal property of the distribution of food resources, Lévy Flights are

6

popular to explain the trajectories of foraging organisms [37], which are a
special class of random walk strategies whose step lengths come from prob-
ability distributions with heavy power-law tails [24]. An alternative is the
intermittent search strategy, which combines phases of slow motion, allowing
searchers to detect the target, and phases of fast motion during which tar-
gets cannot be detected [38]. A limiting case of Lévy Flights is the ballistic
motion strategy, in which the searcher selects a direction randomly and keeps
moving in a straight line until targets or boundaries are detected. In the case
of dense distribution of targets, strategies with power-law or exponential dis-
tributions are more efficient than the ballistic motion strategy. Conclusions
about situations of sparse targets are stated in the following part.

Lévy Flight: In this model, the step length l of searchers obeys the power
law distribution p (l) = l−u, where 1 < u < 3. If targets can be regenerated
at the same location after a finite time, the foraging is non-destructive and
u ≈ 2 is the optimal value for a search in any dimension. In the case of
destructive foraging, targets are non-renewable and lower values of u lead to
more efficient search, thus the optimal strategy reduces to a linear ballistic
motion [22].

Intermittent Search: This model is a two state search processes for
non-renewable targets, including slow reactive phases (phase 1) randomly
interrupted by fast relocating ballistic flights with a constant velocity v and
a random direction (phase 2). The duration of each phase i is exponentially
distributed with the mean τi, and the searcher can only find a target during
reactive phases, for fast motion usually strongly degrades perception abilities.
Intermittent strategies constitute optimal strategies with proper values of τi
[39].

2.3. Formation Technologies in Search Strategies

Apart from swarm algorithms and random walk strategies, another thing
needed to be introduced here is the formation control technology for multiple
robots or vehicles, which are usually considered in aircraft formation [40].
To improve the exploitation ability, a triangle formation search strategy [26]
adopts the behavior-based control[41] to maintain the formation, where each
robot determines its proper position based on a reference point[42].

Triangle Formation Search: In this strategy [26], the swarm is divided
into three-robot teams as many as possible, and each team forms roughly
an equilateral triangle, including a leader and two members. The leader
determines the moving direction while the members follow the leader and

7

maintain the formation. The strategy contains five stages: “initial grouping”,
“initial diffusion”, “search in areas without fitness”, “search in areas with
fitness” and “target collecting”. The “initial grouping” stage is to divide
the swarm into three-robot teams, and in “initial diffusion” stage the leader
will select a sparse direction and lead the team forward. In areas without
fitness, the leader will search randomly whose step size obeys exponential
distribution, and in areas with fitness, the leader will estimate the gradient
direction according to the team information, and the estimation technology is
also adopted by the proposed strategy (as shown in Sec. 4.1.2). In the “target
collecting” stage, robots having found targets will broadcast the information
within the team and the other two will move towards the target.

A proper formation control will help robots to complete tasks in an or-
ganized and efficient way. However, the communication and computation
costs associated with formation technology will add complexity to system
maintenance.

3. Problem Statement

In the multi-target search problem, a swarm of robots are delivered into
a vast unknown space where multiple targets are distributed randomly, and
the task for robots is to search and collect (or destroy) the targets as soon
as possible through certain collaborative mechanism. In the simplest case,
only three kinds of objects are considered: environment space, robots and
targets. In addition, obstacles, decoys [43] and inference sources can also be
introduced into the problem [11]. Because we focus on the search efficiency
in this article, only the simplest case is studied here.

3.1. Assumptions

In order to establish the simulation model for the problem, some assump-
tions are made at first, which are summarized and presented as follows.

- Environment: the entire space is vast compared with the size and per-
ception range of each robot.

- Targets: static, small size but with wide influence scopes where fitness
values decrease with increasing distance to the target. The influence of
each target remains unchanged during the collecting process but will
disappear once the target is collected. In the overlap area of multiple

8

targets, the influence equals the largest one generated by targets. The
targets are distributed randomly but uniformly over the search space.

- Robots: without prior knowledge about the environment, local inter-
action (perception and communication), limited speed and memory.

- Robot swarm: no global leader, no central control, all individuals s-
tarting from the same region.

- Fitness value: discretized to enhance the robustness of the system con-
sidering the limitation of sensor accuracy and the influence of ambient
noise.

- Iteration frequency: high enough to ensure the fitness difference be-
tween two adjacent iterations is small (to avoid missing promising po-
sitions). In each iteration, each robot gathers the information from
sensors, historical records, neighbors, and makes decisions autonomous-
ly. The iteration frequency is fixed, and robots can work in an asyn-
chronous way.

3.2. An Idealized Model

Based on the above assumptions, an idealized model for the simplest case
of the problem is shown in Fig. 1, which is described as following.

- Environment: a square with size of 1000 ∗ 1000.

- Target: a circle with radius of rt (10 units) in which robots can perceive
the target. The targets are distributed uniformly over the environment,
and the influence scopes are a series of annuli with width of 5 units
whose fitness values descend linearly by 1 unit from about 40 till 1.
Each target requires 10 processing steps to be fully collected, which
could be done by one robot alone in 10 iterations and by ten robots in
one iteration.

- Robots: a square with size of 1 ∗ 1, a circular range with radius of 20
units for perception and communication (i.e. robots can only communi-
cate with the perceived neighbors), a limit of 5 units for the maximum
speed (maximum moving distance in an iteration), can memorize in-
formation of 10 iterations (positions and fitness values).

- Robot swarm: typical population size is 50.

9

Figure 1: A screenshot of the problem at the beginning of a simulation. Red circles stand
for the targets while central green dot array represents the initial robot swarm. The color
of the circles around the target illustrates the fitness value of that position.

3.3. Mathematical Modeling and Analysis

In the multi-target search task, it takes the robot swarm a finite number of
iterations to search and collect all targets distributed over the environment.
To estimate the lower bound of the expected number of iterations, some
mathematical approximations of the problem are introduced to simplify the
analysis.

3.3.1. Approximations Used for the Problem

Since it is the estimation for the optimal solution of the problem, we
may assume that there are more robots than targets, and the robots have
been informed of the locations of targets beforehand. Another assumption
is that each robot can only participate in the collection of one target, thus
the original search problem is transformed into an assignment problem, in
which the swarm is divided into different teams to collect different targets
separately. Each team is assigned to one target, containing at least one robot.

Suppose there are N robots and T targets in the environment, and the
positions of all targets are known in advance, to which the distances from the

10

center of the search space are successively from small to large: d1, d2, ..., dT .
Corresponding to T targets, N robots are divided into T teams, and the
number of robots in each team is k1, k2, ..., kT respectively. The initial posi-
tion of the robot swarm is the center of the map, and the maximum speed
of robots is vmax. Generally larger speed means higher efficiency, so we let
all robots run at the maximum speed. Each target needs 10 processing steps
to be fully processed, i.e. one robot needs 10 iterations while 10 robots need
one iteration. Let S denote the policy set for assignment (i.e. how to as-
sign robots to targets), then the task can be formalized into an optimization
problem below (Eq. 8). It should be pointed out that we do not need to
actually construct the optimal strategy for the assignment problem, but only
need to analyze the performance that the optimal strategy can achieve. min

s∈S

{
max

i

{
di

vmax
+ 10

ki

}}
s.t.

∑T
i=1 ki = N, ki ∈ N+

(8)

In addition, some approximations are used to simplify the calculation.
Firstly, the square of the search space is regarded as a circle with equal area
for convenience, as is shown by Eq. 9, in which L is the side length of the
square and R is the radius of the circle. Another thing can be simplified is
the item 10/ki in Eq. 8, representing the cost of target collection. It takes
one robot 10 iterations to collect a target while one iteration for 10 robots,
and the actual iterations should be integers, so the range of the collection
item is [1, 2, ..., 10], and can be represented approximately as 5.5 ± 4.5 due
to its small proportion.

L2 = πR2 (9)

3.3.2. An Approximate Lower Bound of the Expected Number of Iterations

Based on the approximations made above, a lower bound of the expected
iteration number in search task (equivalent to a upper bound of the effi-
ciency) can be represented approximately by utilizing the expectation of the
maximum distance from the map center to targets E [dT], as is illustrated by
Eq. 10.

min
s∈S

{
max

i

{
di
vmax

+
10

ki

}}
≈ E

[
dT
vmax

]
+ 5.5± 4.5 (10)

11

Let r denote the distance from a target to the center of the map, then its
probability density function (Eq. 11) and distribution function (Eq. 12) can
be drawn respectively. The probability density of the ith farthest distance
di can be represented as Eq. 13. Then we can obtain the probability density
of dT (Eq. 14) and the corresponding expectation E[dT] (Eq. 15).

p(r) =
2r

R2
(11)

F (r) =
r2

R2
(12)

pi(r) =
T !

(i− 1)!(T − i)!
F (r)i−1(1− F (r))T−ip(r) (13)

pT (r) =
2T

r

(
r2

R2

)T

(14)

E [dT] =
2T

2T + 1
R (15)

Finally, we can obtain the lower bound with given parameters. According
to the problem configuration, an approximate lower bound of the expected
number of the iterations required in search task can be calculated by Eq. 10
and Eq. 16. With given parameters: side length of the square L = 1000,
number of targets T = 10, maximum speed of robots vmax = 5, we can
obtain the range of approximate lower bound [108.46, 117.46], and 117.46, as
the upper limit of the interval, means that it takes the swarm around 120
iterations to collect all the targets if the farthest one is always collected by
a single robot.

E [dT]

vmax

=
2TL

(2T + 1)v
√
π

(16)

4. Proposed Methods

In this section, three independent search strategies based on random walk
and a PFSM-based search strategy are proposed, the former mainly serving
as a benchmark while the latter trying to approach the optimal strategy for
the problem. For the former, we introduce three aspects: wide-area search,

12

Wide-area Search Refining Search

Target Processing

Sensing
Fitness

Find
Target

Sensing
Fitness

No
Fitness

Figure 2: A three-phase search framework for the multi-target search problem. When
searching in areas without fitness, robots are in the phase of wide-area search, and will get
into the phase of refining search once sensing fitness. Whenever a target is found, robots
will switch to collecting it.

refining search and inertia mechanism. For the latter, we first model the
search strategy as a complete three-state PFSM, and then simplify it to
reduce the parameters. Finally, based on the simplified PFSM, we establish
the search strategy proposed in this paper.

As is stated in the assumptions, the size and perception range of each
robot is small, and the targets are distributed sparsely, whose influence s-
copes are large but will disappear once the target is collected. In addition,
a robot cannot move too far in one iteration to obtain sufficiently detailed
information. Therefore, robots will spend lots of iterations searching in areas
without fitness, and the whole process is shown in Fig. 2. When searching in
areas without fitness, robots are in the phase of wide-area search, and they
should explore unknown areas as far as possible to get information about
targets. Once sensing fitness, robots in wide-area search will get into the
phase of refining search, and they are supposed to use fitness information
to approach the target. Whenever a target is found, robots in wide-area or
refining search will switch to target processing phase. Robots that complete
the target processing will again get into wide-area search or refining search
according to whether new fitness information is perceived.

4.1. Independent Search Strategies

It’s a natural idea to use the three-phase search framework to guide the
design of search strategies, and random walk strategies can be used in the
phase of wide-area search while some gradient estimation technologies can

13

be used in the refining search phase. “Independent Search Strategies” are
the combination of random walk strategies and triangle estimation technol-
ogy, in which there are no interactions among robots, so the corresponding
performance can serve as a benchmark for the multi-target search problem.

4.1.1. Random Walk Strategies for Wide-area Search

Earlier in the article, three kinds of random walk strategies are intro-
duced: Lévy Flights, ballistic motion and intermittent search.

In our problem model, the targets are non-regenerative and distributed
sparsely, which means that the search performance of Lévy Flights increases
with the parameter u approaching 1 and the ballistic motion strategy is a
promising candidate, thus we implement these two strategies and optimize
the parameter u in Lévy Flights to 1.001 (the corresponding algorithm is rep-
resented by LFS, i.e. Lévy Flight Search), and the other strategy is expressed
as BMS (Ballistic Motion Search).

In intermittent search strategies, robots in phase 2 (fast motion phase)
cannot detect targets, i.e. speed affecting perception, and in our implemented
version (represented as IS, Intermittent Search), robots in phase 2 will just
ignore the fitness information. The duration of each phase i is exponentially
distributed with the mean τi. In experiments for parameter optimization,
intermittent search strategies with smaller τ2 and larger τ1 perform better.
In the IS strategy, τ2 and τ1 are set respectively as 0.3 and 3.0 times of the
side length of the map, from which we can see that the fast motion phase
contributes little to the search.

4.1.2. Triangle Gradient Estimation for Refining Search

When sensing fitness information, robots will step into the refining search
phase and integrate current and historical data to calculate the approximate
gradient direction, based on the presumption that the fitness value varies
almost linearly with the distance in local area [26].

To estimate the gradient direction, three positions and their correspond-
ing fitness values are used and the basic idea is to construct a vector perpen-
dicular to the local contours. In LFS, BMS and IS, the three points are the
current position, and two historical positions with the best and worst fitness
values. Various cases are presented as follows and the details are described
in Alg. 1.

• Case I: all three positions share the same fitness value, which means

14

that the robot is still in the area without fitness, and it can just keep
the original direction.

• Case II: two positions share the same better fitness value, then the
gradient vector equals the center of the two better positions minus the
worse one.

• Case III: two positions share the same worse fitness value, then the
gradient vector equals the better position minus the center of the two
worse ones.

• Case IV: all positions have different fitness values, then the gradient
vector constructed is perpendicular to the local contour line (Fig. 3).
In Fig. 3, A, B and C stand for the positions, and their fitness values
satisfy inequality f(A) > f(B) > f(C). Based on the local linearity,
f(B′) = f(B) and the position of B′ can be calculated from Eq. 17.
The line BB′ serves as a contour line, so its vertical vector B′P is the
gradient direction (Eq. 18).

Algorithm 1 Triangle Gradient Estimation

Require: Pi(xi, yi), fi(i = 1, 2, 3) : positions and fitness values of three
points.
⇀
v last : the previous velocity of robot r

Ensure:
⇀
v : the new velocity of robot r

1: (PA, PB, PC)← sort(P1, P2, P3) by fi(i = 1, 2, 3), so that fA ≥ fB ≥ fC
2: if fA = fC then
3:

⇀
v ← ⇀

v last {Case I}
4: else if fA = fB then
5:

⇀
v ← (PA + PB)/2− PC {Case II}

6: else if fB = fC then
7:

⇀
v ← PA − (PB + PC)/2 {Case III}

8: else
9: PB′ ← PA + (PC − PA)× (fA − fB)/(fA − fC) {Case IV}

10: BB′ ← PB′ − PB

11: Calculate B′P from Eq.(18)
12:

⇀
v ← B′P

13: end if

15

A

B C

(a) (b) (c)

A’

L

R

 B’

P

A

BC

P

f(A)>f(B)>f(C)

 B’

C

B

A

A’ P

A

Figure 3: Calculation of the gradient direction when all positions have different fitness
values.

~BB′ = ~BA+ ~AC · f(A)− f(B)

f(A)− f(C)
(17)

{
~B′P · ~BB′ = 0
~B′P · ~B′A > 0

(18)

4.1.3. Inertia Mechanism

Generally, the inertia mechanism (Eq. 19) is used to stabilize the moving
direction and enhance the ability to escape from local extremum in optimiza-
tion algorithms, such as the inertia weight in PSO, and it is also introduced
into the independent search strategies for the same consideration. As is s-
tated above, robots sensing fitness will get into the phase of refining search,
and the introduction of inertia mechanism will to some extent help robots
escape from the influence scopes of nearby targets and return to the wide-
area search, so the robot swarm can obtain a superior exploration ability.
Besides, in ‘Case II and Case III’ of the triangle gradient estimation, if three
positions are collinear, robots may fall into local oscillation, which can be
overcome by introducing inertia mechanisms. In Eq. 19, vt and vs,t are the
velocity and velocity increment from strategies in the tth iteration, and w is
the inertia weight, a number within the range of [0, 1).

vt+1 = wvt + (1− w) vs,t (19)

16

4.2. A PFSM-based Search Strategy

Although following the three-phase search framework is a natural design
approach, the deterministic separation of exploration and exploitation limits
the performance of search strategies, for which reason the inertia mechanism
is introduced to strengthen group diffusion in the influence scopes of targets.
Generally, the individual robot in swarm robotics does not plan its future
actions, and takes decisions only on the basis of its sensory inputs and/or its
internal memory, and the probabilistic finite state machines (PFSMs) is one
of the most adopted methods to design such behaviors [8].

4.2.1. A Complete Three-State PFSM

In swarm robotics, PFSMs can be used to model the behaviors of individ-
ual robots in various tasks, and the first step is to analyze the task procedure
and extract typical states. As is shown in Fig. 4, three states are enough to
describe the task: diffusion, search and target processing, which can be rep-
resented as si (i = 1, 2, 3). Each state can transfer to another one (including
itself) with a certain probability.

The probability values for state transition or holding depend on the infor-
mation about each robot itself (historical positions and fitness values, current
fitness value, current state, targets) and its neighbors (current positions and
fitness values, targets), from which we can derive many decision factors,
such as ‘whether the robot has found a target or not’, ‘whether the neighbors
have found targets or not’, ‘the number of neighbors’, ‘the fitness value of
the robot’, ‘the current iteration number’, ‘the number of iterations kept by
current state’ and so on.

4.2.2. A Simplified Three-State PFSM

Let D and d denote the set of decision factors and a set of values, then
for each d, 9 probability values P (si|sj, d) (corresponding to the arrows in
Fig. 4) are needed to be designated to obtain the probability table for the
complete three-state PFSM, which will significantly increase the system com-
plexity and make it hard to optimize parameters. According to the task
characteristics, we simplify the decision-making process by introducing some
deterministic decisions and select several key decision factors on the following
considerations:

- Once a target is found by robots, it should be collected as soon as pos-
sible. Therefore, the decisions about targets should be deterministic,

17

Diffusion Search

Target Processing

Decision
Factors

Figure 4: A three-state PFSM for the multi-target search task, including diffusion, search
and target processing. Each state can transfer to another state (including itself) with a
certain probability designated according to decision factors.

and the decision factors about targets should be selected (i.e. ‘whether
the robot has found a target or not’, ‘whether the neighbors have found
targets or not’).

- In order to make a better balance between exploration and exploitation,
a smooth transition between ‘Diffusion’ and ‘Search’ is a promising
idea, thus the factor ‘the number of iterations kept by current state’ is
selected to calculate the probability of holding current state (‘Diffusion’
or ‘Search’).

- If no target is found and the probability condition for holding cur-
rent state is not satisfied, then how does a robot choose a state from
‘Diffusion’ and ‘Search’? We can just consider the probability for ‘Dif-
fusion’, and select the factor ‘the number of neighbors’, which embodies
the congestion degree of the neighborhood.

Based on the above analysis, a novel corresponding strategy is put for-
ward, which is abbreviated to PFSMS (the PFSM-based Search strategy).
As is shown in Fig. 5, the simplified PFSM also shares the same three states,
and a virtual state named ‘Start Diffusion or Search’ is introduced to help
to understand the internal process, which is not a real state but a temporary
step. Black solid arrows illustrate probabilistic decisions while red dashed
arrows represent deterministic decisions.

- If a robot finds a target, it will switch to process the target at once,
regardless of its current state.

18

Diffusion Search

Target Processing

Simplified
Decision
Factors

Start
Diffusion
or Search

Figure 5: A simplified three-state PFSM for the multi-target search task, including dif-
fusion, search and target processing. The central ‘Start Diffusion or Search’ is a virtual
state to help to understand the internal process. Black solid arrows illustrate probabilistic
decisions while red dashed arrows represent deterministic decisions.

- If a robot in ‘Diffusion’ or ‘Search’ satisfies the probability condition
of holding state, it will keep its current state, otherwise it will get into
the virtual state temporarily.

- If a robot has just finished the target processing and could find no other
targets nearby, it will also get into the virtual state temporarily.

- Robots in virtual state will make a probabilistic decision according
to the number of neighbors, if the probability condition of diffusion
is satisfied, it will start the diffusion state, otherwise it will start to
search.

In ‘Search’ state, the ‘triangle gradient estimation’ is used combining with
‘inertia mechanism’, the former prefers using neighbor information (neigh-
bors sensing the best and the worst fitness values) rather than historical
information, while the latter is only applied to robots having neighbors in
order to stabilize the direction and avoid local oscillation (the inertia weight
w = 0.55), and the details are described in Alg. 2. In ‘Diffusion’ state, robots
will select a direction where the neighbors are sparse and keep moving in a
straight line until the end of the state.

The boolean variable of ‘whether finding targets’ takes ‘yes’ if a robot or
its neighbors find targets, and robots will deterministically process or move
to targets. The ‘number of neighbors’ Nb is used to calculate the diffusion
probability Pd in Eq. 20, where Tb is a threshold value (Tb = 2.3 in our

19

Algorithm 2 Triangle Search

Require: Pr(xr, yr), fr : information of robot r
P{ni}, f{ni} : information from neighbors of robot r
P{hi}, f{hi} : history information of robot r
⇀
v last : the previous velocity of robot r
w : the inertia weight used in the InertiaMechanism
Note: Pi(xi, yi) and fi mean the robot’s position and the corresponding
fitness value respectively

Ensure:
⇀
v : the new velocity of robot r

1: P1 ← Pr, f1 ← fr
2: if number of neighbors > 1 then
3: P2, f2 ← the neighbor with the best fitness value
4: P3, f3 ← the neighbor with the worst fitness value
5: else if number of neighbors = 1 then
6: P2, f2 ← the only neighbor
7: P3, f3 ← the history with the best fitness value
8: else
9: P2, f2 ← the history with the best fitness value

10: P3, f3 ← the history with the worst fitness value
11: end if
12:

⇀
v ← TriangleGradientEstimation(P1∼3, f1∼3,

⇀
v last) {Alg. 1}

13: if number of neighbors > 1 then
14:

⇀
v ← 0.9× (

⇀
v/|⇀v |) + 0.1× RandomV ector() {RandomV ector() is a

function for generating a unit vector with a random direction}
15: else
16:

⇀
v ← w × (

⇀
v last/|⇀v last|) + (1− w)× (

⇀
v/|⇀v |) {Eq.(19)}

17: end if

20

strategy). The ‘number of iterations kept by current state’ Nh is used to
calculate the probability of holding current state Ph in Eq. 21, where Pini is
an initial probability (Pini = 0.9997 in our strategy).

4.2.3. The PFSM-based Search strategy

In Fig. 6, we show the decision flow of the search strategy based on the
simplified PFSM, and the details are described in Alg. 3. The orange diamond
shaped frames represent condition judgment, if the condition is satisfied, the
down branch will be performed, otherwise the right branch will be chosen. R1

and R2 are two random numbers uniformly distributed within the range [0,1],
while Ph and Pd denote the probability of holding current state and diffusion
probability respectively. As a small trick, the robot collecting targets will set
its Ph to 0, thus it will restart the diffusion or search process after finishing
the collection.

Pd =

{
1− Tb

Nb
, Nb > Tb

0 , Nb ≤ Tb
(20)

Ph = PNh
ini (21)

In each iteration, each robot makes a single decision (i.e. choosing one
of the blue rectangles in Fig. 6) based on the information obtained and ex-
ecutes the corresponding operations. For example, ’Move to targets’ is to
keep moving to the target before the next iteration, and ’Process targets’ is
to process one unit of the target before the next iteration (each target has
10 units). There may be multiple robots involved in the same target pro-
cessing, so the target may be processed before the next iteration, that is, the
target information is no longer perceived in the next iteration, and robots
will transfer to other states according to their new decisions.

5. Simulation Results and Discussions

In this section, several groups of experiments are conducted for two pur-
poses: parameter optimization, and performance comparison. For the former,
three parameters of the PFSMS strategy are tuned one by one, and for the
latter, three problem settings are used to study the performance compari-
son of various search strategies, including different population sizes, different
numbers of targets, and different collection times of targets (i.e. the number
of iterations needed for one robot to collect one target).

21

Algorithm 3 The PFSM-based Search strategy

Require: at iteration t
P t
r(xtr, y

t
r), f

t
r , T

t
r : information of robot r

P t
{ni}, f

t
{ni}, T

t
{ni} : information of neighbors of robot r

P t
{hi}, f

t
{hi} : history information or robot r

⇀
v
t

last : the previous velocity of robot r
w : the inertia weight used in the InertiaMechanism
vmax : the maximum speed of robot r
Note: T t

r , T
t
{ni} contain information about target (whether robots have

found targets and the targets’ positions)

Ensure:
⇀
v
t

r : the new velocity of robot r at iteration t
Or transfer to the ”Target Processing” state

1: for each robot r in the swarm at iteration t do
2: if robot r has found a target then
3: robot r will transfer to the ”Target Processing” state, and collect

one unit (total 10 units for each target)
4: else if neighbors of robot r have found a target then
5:

⇀
v
t

r ← robot r will move towards the target
6: else if R1 < Ph then
7: Ph ← Ph × Pini {Eq.(21)}
8: if robot r is in the ”Diffusion” state then
9:

⇀
v
t

r ←
⇀
v
t

last, keep the “Diffusion” state
10: else
11:

⇀
v
t

r ← TriangleSearch(), keep the “Search” state {Alg. 2}
12: end if
13: else if R2 < Pd then
14: Ph ← Pini, start the “Diffusion” state
15:

⇀
v
t

r ← choose a direction with the fewest neighbors
16: else
17: Ph ← Pini, start the “Search” state
18:

⇀
v
t

r ← TriangleSearch() {Alg. 2}
19: end if
20:

⇀
v
t

r ← vmax × (
⇀
v
t

r/|
⇀
v
t

r|)
21: end for

22

Robots
find

targets

Process
targets

Neighbors
find

targets
R1 < Ph

R2 < Pd

Move to
targets Continue

diffusion
or search

Start
diffusion

Start
search

Robots
find targets

Neighbors
find targets

R1 < Ph R2 < Pd

Process
targets

Move to
targets

Continue
diffusion
or search

Start
diffusion

Start search
N N N N

Y Y Y Y

Figure 6: The decision flow of the search strategy based on the simplified PFSM. The
orange diamond shaped frames represent condition judgment, if the condition is satisfied,
the down branch will be performed, otherwise the right branch will be chosen. R1 and R2

are two random numbers uniformly distributed within the range [0,1], while Ph and Pd

denote the probability of holding current state and diffusion probability respectively.

In each experiment, 40 random maps are generated and each strategy is
repeated for 25 times, and the results in this section are the average value
of these 1000 runs. The criteria for measuring the efficiency of searching
strategies, are the mean and standard deviation of the number of iterations
required to collect all targets, which are denoted by mI and dI, respectively.
Criterion mI indicates the searching efficiency of strategies while dI reflects
the stability. The experimental platform is built on the C# language and the
Microsoft XNA framework (for game development). It mainly has two major
functions: parallel test and visual simulation. The former is used for large-
scale performance testing of the strategy, and the latter is used for visualizing
the principles, effects and the existent problems of the strategy. A sample
map showing 10 targets and 50 robots at the beginning of a simulation is
displayed in Fig. 1.

5.1. Algorithms for Comparison

All parameters of the comparison algorithms are tuned under the same
experimental conditions, where the map size is 1000*1000, containing 50
robots and 10 targets, and each target requires 10 processing steps to be
fully collected. The optimization aims to minimize the average number of
iterations required to collect all the targets (i.e. mI). All algorithms and
their corresponding parameter configurations are as follows:

- RPSO: Robotic Particle Swarm Optimization, inertia weight w = 3.0,
cognition coefficient c1 = 1.0, social coefficient c2 = 2.0, obstacle avoid-
ance coefficient c3 = 0.0 (obstacle-free), random coefficient c4 = 0.1.

23

- A-RPSO: Adaptive Robotic Particle Swarm Optimization, inertia weight
wini = 1.0, cognition coefficient c1 = 0.6, social coefficient c2 = 0.4, ob-
stacle avoidance coefficient c3 = 0.0 (obstacle-free), random coefficient
c4 = 0.1, scale factor α = 0.3, scale factor β = 0.7.

- IGES: Improved Group Explosion Strategy, group size threshold size =
5. GES is not served as a comparison algorithm in experiments, for the
performance of IGES is much better.

- LFS: Lévy Flight Search, exponential factor u = 1.001, inertia weight
w = 0.6.

- BMS: Ballistic Motion Search, inertia weight w = 0.7.

- IS: Intermittent Search, expectation factor for phase 1: τ1 = 3.0 times
of the side length of the map, expectation factor for phase 2: τ2 = 0.3
times of the side length of the map, inertia weight w = 0.6.

- TFS: Triangle Formation Search, the parameter setting is the same as
that in [26].

- PFSMS: PFSM-based Search, initial probability for holding state Pini =
0.9997, inertia weight w = 0.55, diffusion threshold Tb = 2.3, and the
detailed experiments for parameter optimization are presented in the
following section.

5.2. Parameter Optimization for the PFSM-based Strategy

Benefiting from the simplification for the three-state PFSM, the number
of parameters of PFSMS is reduced to 3, including Pini, w and Tb. In the
experiments, each parameter is optimized separately and sequentially with
the other two parameters fixed. Firstly, the parameter Pini is optimized with
w = 0.0 (no inertia mechanism) and Tb = 2.0 (2 neighbors at least). Then
the parameter w is optimized with Pini = 0.9997 and Tb = 2.0. Finally,
the parameter Tb is optimized with Pini = 0.9997 and w = 0.55. It’s worth
mentioning that the maps used for parameter optimization are different from
those used in comparison experiments in the following parts, which to some
extent guarantees the generalization of the comparison experimental results.

Firstly, the optimization for parameter Pini is investigated. Under condi-
tions of w = 0.0 and Tb = 2.0, the first-rough-then-precise method is adopted
to adjust parameter Pini, of which the first and second optimization intervals

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
150

200

250

300

350

400

450

500

550

600

650

Pini

m
I

mI of PFSMS

Figure 7: mI of PFSMS at different Pini, which varies within [0.01, 0.99] with step length
0.01. mI denotes the mean of the number of iterations.

are [0.01, 0.99] (with step length 0.01) and [0.9900, 0.9999] (with step length
0.0001), and the corresponding experimental results are presented in Fig. 7
and Fig. 8 respectively. The optimal value of Pini in these two figures are
0.99 (mI = 185.36) and 0.9997 (mI = 153.79). Although there are some
small fluctuations on curves, the overall trend is obvious. As for the ratio-
nality of the value, since the Ph goes down exponentially with the iterations
kept by current state, parameter Pini should be big to ensure enough time
for state-keeping, meanwhile setting aside opportunities for state switching
is also important to balance the exploration and exploitation of the swarm.

And there is an interesting equation:
(
0.5

1
50

) 1
50 ≈ 0.9997, which means that

the whole robot swarm (containing 50 robots) can keep their current states
for 50 iterations with a probability of 0.5, so the state transition is possible
in the process.

Secondly, we study the optimization for parameter w. Under conditions
of Pini = 0.9997 and Tb = 2.0, the parameter w is optimized in the interval
[0.00, 1.00] with step length 0.01, and the experimental results are shown in
Fig. 9. The overall trend of the curve is obvious in spite of some fluctuations,
and the optimal value is roughly between 0.5 and 0.6. Accordingly, the
parameter w is set to 0.55 (mI = 146.26), which means the weight of the old
direction is roughly the same as that of the new direction.

Finally, the optimization for parameter Tb is studied. Under conditions
of Pini = 0.9997 and w = 0.55, the parameter Tb is optimized in the interval
[0.1, 10.0] with step length 0.1, as is presented in Fig. 10. According to the
trend of the curve, the optimal value of parameter Tb is around 2.0, which is

25

0.99 0.992 0.994 0.996 0.998 1 1.002
150

155

160

165

170

175

180

185

190

Pini

m
I

mI of PFSMS

Figure 8: mI of PFSMS at different Pini, which varies within [0.9900, 0.9999] with step
length 0.0001. mI denotes the mean of the number of iterations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
146

148

150

152

154

156

158

w

m
I

mI of PFSMS

Figure 9: mI of PFSMS at different w, which varies within [0.00, 1.00] with step length
0.01. mI denotes the mean of the number of iterations.

set to 2.3 (mI = 145.67) in the following experiments. With Tb = 2.3, the
robot will not go into the ‘Diffusion’ state if the number of its neighbors is
no more than 2. If the number of neighbors is larger than 2, the diffusion
probability increases as the number of neighbors increases.

5.3. The Performance Comparison of Various Search Strategies under Dif-
ferent Problem Settings.

In this part, three problem settings are used to study the performance
comparison of various search strategies, including different population sizes,
different numbers of targets, and different collection times of targets. Finally,
the overall performance rankings of different search strategies are given.

26

0 1 2 3 4 5 6 7 8 9 10
145

150

155

160

Tb

m
I

mI of PFSMS

Figure 10: mI of PFSMS at different Tb, which varies within [0.1, 10] with step length 0.1.
mI denotes the mean of the number of iterations.

Table 1: mI and dI of search strategies with various population size and 10 targets. mI
and dI denote the mean and standard deviation of the number of iterations respectively.

Population
RPSO A−RPSO IGES LFS BMS IS TFS PFSMS

mI dI mI dI mI dI mI dI mI dI mI dI mI dI mI dI
25 349.79 87.96 340.54 81.45 281.07 57.80 238.98 51.76 287.30 77.37 261.02 60.55 317.45 119.2 186.43 38.20
50 287.98 75.76 283.05 72.70 229.53 38.83 195.71 33.58 200.26 45.97 204.78 36.82 209.79 55.14 147.40 20.05
75 262.56 70.64 256.27 64.28 212.38 33.35 180.04 25.96 172.85 34.26 188.59 31.53 179.90 42.30 138.24 17.78
100 246.49 65.87 237.73 59.70 201.60 29.53 172.51 25.48 160.21 24.70 176.87 27.06 162.75 27.92 132.53 15.95
125 229.18 55.78 225.28 53.17 194.04 27.79 166.19 22.96 153.96 22.21 169.20 24.54 154.09 24.09 129.34 15.00
150 220.07 54.74 214.11 49.15 190.21 27.02 162.40 22.24 149.84 20.83 164.99 23.37 147.99 21.22 126.91 14.79
175 213.43 52.58 208.26 47.14 185.87 25.41 158.77 21.64 146.09 18.99 161.17 21.43 144.92 20.15 125.27 14.70
200 207.94 51.24 202.96 46.58 182.63 24.89 155.68 20.38 142.55 17.58 157.40 20.87 141.01 18.57 123.45 14.39

5.3.1. Different Population Sizes

In this section, the search efficiency of all comparison algorithms with
various population sizes is investigated. Eight tests are carried out with 25,
50, 75, 100, 125, 150, 175, 200 robots in turn, and the map size is 1000*1000,
containing 10 targets. The experimental results are presented in Tab. 1,
Fig. 11 and Fig. 12.

The significance of the PFSMS is also tested. As is shown in Tab. 1, the
mI and dI of PFSMS are obviously better than those of other strategies. In
addition, for each population size, two-side Wilcoxon rank sum tests (with
confidence level 99%) are conducted between the PFSMS and each of other
strategies, which use the iterations of all 1000 runs. The result of the statis-
tical test proves that, with every population size, the PFSMS is significantly
better than each of other strategies.

We’d like to classify the search strategies into three groups: swarm opti-
mization algorithms (RPSO, A-RPSO and IGES), independent search strate-
gies (LFS, BMS and IS), and other search strategies (TFS and PFSMS).

As the results show, the efficiency of RPSO is the lowest among eight

27

20 40 60 80 100 120 140 160 180 200
100

150

200

250

300

350

Population Size

m
I

RPSO
A−RPSO
IGES
LFS
BMS
IS
TFS
PFSMS

Figure 11: mI of search strategies with various population sizes and 10 targets. mI
denotes the mean of the number of iterations.

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Population Size

d
I

RPSO
A−RPSO
IGES
LFS
BMS
IS
TFS
PFSMS

Figure 12: dI of search strategies with various population sizes and 10 targets. dI denotes
the standard deviation of the number of iterations.

strategies, though we have introduced a random vector to improve its perfor-
mance by avoiding local oscillation. A-RPSO also performs poor, though a
simple niche technology (limiting the communication range) is introduced
to divide the swarm. We can infer that traditional heuristic algorithm-
s (such as PSO) for high dimensional optimization may not apply to the
multi-target search task in swarm robotics, for the latter focuses on two or
three-dimensional problem scenarios. In the problem of high dimensional
optimization, the cooperation of a large number of individuals can improve
the accuracy of gradient estimation while it is easy to calculate the gradient
direction using a few robots in low dimensional cases, thus the attention is
supposed to be paid to exploration instead of exploitation. Compared with
RPSO and A-RPSO, IGES performs noticeably better, mainly resulting from
its emphasis on the effect of diffusion mechanisms, which improves the ex-

28

ploration ability of the swarm. However, the diffusion action in IGES is a
reactive decision, it can only ensure a limit distance among robots rather
than further diffusion over the environment, so the exploration of the swarm
is still limited.

An interesting result is that the independent search strategies perform
better than RPSO, A-RPSO and IGES, which means the problem is simple
enough to be tackled with random walk strategies integrated with technolo-
gies for gradient estimation. In areas with fitness values, the collaboration
mechanisms of swarm optimization algorithms often lead to high degree of
connectivity, for RPSO and A-RPSO tend to gather robots into a small
area while robots in IGES tend to roughly maintain fixed relative positions,
restricting the diffusion of the swarm. However, there is no cooperation a-
mong robots in independent search strategies, i.e. each individual makes the
decision based on its own perception and history, thus there is no explicit
mechanism to bring different individuals together. In addition, the introduc-
tion of the inertia mechanism to some extent improves the diffusion ability
of the swarm. Therefore, independent search strategies lay emphasis on the
exploration of the swarm, resulting in a relatively high efficiency.

Compared to LFS, the average step length of BMS is larger while that
of IS is smaller due to the existence of phase 2 (fast motion), and it is
worth pointing out that the phase 2 of IS is inefficient or even a drag in
our problem model, without which IS could just behave as well as LFS.
When the population size is small (such as 25), small step length will restrict
significantly the exploration ability of the swarm while large ones will lead to
missing nearby fitness information. As the population size becomes larger,
the probability of missing nearby targets will decrease, so strategies with
larger step length, such as BMS, will perform better. Another thing needed
to be stated is that the ‘IS’ strategy in [26] is the equivalent of ‘BMS’ without
inertia mechanism. As the BMS strategy has a good performance and easy
to implement, its performance can serve as a benchmark in the multi-target
search task.

As is shown in Fig. 11, the population size is an important factor in
TFS. Since three-robot formation technology is adopted, the estimation for
gradient direction is accurate, ensuring excellent exploitation ability, thus
the main limiting factor is the exploration ability of the swarm. When the
population is small, the number of three-robot teams is small, restricting
the swarm exploration. Under such circumstances, some mechanisms for
maintaining connectivity, such as mutual attraction or formation control,

29

may limit the exploration range of the swarm. As the number of robots
increases, the performance of TFS improves obviously.

As for PFSMS, its performance is greatly superior to that of other s-
trategies, of which the mI in the case of 200 robots (123.45) is close to the
approximate lower bound of the problem (117.46). With a probabilistic dif-
fusion mechanism, the PFSMS bears excellent exploration ability even with
small population, and the improvement is not obvious anymore as the pop-
ulation is larger than 100, which means the PFSMS gives full play to the
exploration ability of the swarm. Compared with IGES, the diffusion state
in PFSMS could last for many iterations, giving a full play to the exploration
of the swarm. With the aid of neighbor information, the triangle gradien-
t estimation in PFSMS can obtain more accurate directions than those in
independent search strategies, i.e. better exploitation ability, and the effect
will be enhanced with larger population. In addition, the inertia mechanism
can help robots to stabilize the moving direction and avoid some local oscil-
lations, which mainly improved the exploitation ability of the swarm. When
the population size is 50, compared with other seven strategies (RPSO, A-
RPSO, IGES, LFS, BMS, IS and TFS), the efficiency of PFSMS increases
48.82%, 47.92%, 35.78%, 24.68%, 26.39%, 28.02% and 29.74% respectively,
demonstrating significant performance improvement.

As is shown in Fig. 12, PFSMS also bears the best stability while RPSO
and A-RPSO show the worst stability. If the individuals in a swarm tend to
get together and keep strong connections with others, then it’s hard to spread
the effect of accidental factors, and that’s why RPSO and A-RPSO are un-
stable. Therefore, the stability of algorithms partly reflects the exploration
ability of the swarm. As the curves’ tendencies of Fig. 11 and Fig. 12 are sim-
ilar, it demonstrates that the exploration ability is critical in low-dimensional
search. However, it is worth noting that stability is not equivalent to explo-
ration ability, for the former can be ensured by a stable diffusion mechanism
while the latter requires a stable and rapid diffusion mechanism. With the
increase of population size, the stabilities of all algorithms are improved, e-
specially for TFS and BMS. When the population is small (such as 25), the
performance of TFS is extraordinarily unstable, for the three-robot formation
mechanism intensifies the effect of accidental factors on the swarm. Although
IGES shows similar stability to that of independent search strategies, its effi-
ciency is still limited by the exploration rather than exploitation, because its
stability mainly results from a stable diffusion instead of a rapid diffusion,
which will be further illustrated in experiments with different collection times

30

Table 2: mI and dI of search strategies with various numbers of targets and 50 robots. mI
and dI denote the mean and standard deviation of the number of iterations respectively.

Targets
RPSO A−RPSO IGES LFS BMS IS TFS PFSMS

mI dI mI dI mI dI mI dI mI dI mI dI mI dI mI dI
1 96.03 36.06 98.20 39.44 105.35 42.69 89.04 31.72 92.12 37.64 94.48 35.64 94.66 46.28 85.12 29.02
5 187.12 45.79 187.97 47.15 179.70 34.61 150.77 30.72 156.19 42.51 161.16 33.52 167.54 56.61 126.25 21.09
10 292.92 76.46 281.70 71.66 228.38 38.24 196.20 32.86 200.68 46.73 205.32 36.17 212.29 56.64 148.34 20.56
15 380.26 95.80 364.65 89.08 272.52 43.66 227.43 34.00 227.65 43.32 235.46 37.81 241.80 58.71 164.02 21.92
20 437.02 94.88 414.89 85.19 301.63 50.29 245.69 36.41 249.48 44.73 254.42 40.11 261.79 62.05 175.79 20.78
30 544.09 104.16 506.65 92.64 355.33 65.66 282.03 41.43 283.73 42.50 289.45 46.31 306.15 67.58 200.63 25.26
40 627.32 109.12 560.62 93.80 408.77 63.98 309.42 40.24 313.54 45.85 316.92 46.80 348.19 76.09 222.64 29.49
50 712.58 122.77 606.38 107.38 436.35 67.35 329.20 41.70 338.02 45.91 334.33 48.41 367.50 71.15 235.35 28.44

of targets. As the swarm is getting larger to a certain size (such as 100), the
dI of strategies tends to stabilize, which means the swarm is large enough to
give a relatively full play to the exploration ability of various search strate-
gies. With 50 robots, according to stability, the strategies can be sorted as
PFSMS > LFY > IS ≈ IGES > BMS > TFS > A−RPSO ≈ RPSO.

5.3.2. Different Numbers of Targets

In this section, the search efficiency (i.e. mI) of all comparison algorithms
with various numbers of targets is investigated. Eight tests are carried out
with 1, 5, 10, 15, 20, 30, 40, 50 targets in turn, and the map size is 1000*1000,
containing 50 robots. The experimental results are presented in Tab. 2,
Fig. 13 and Fig. 14. It should be noted that the corresponding curve trend
is expected to still be similar when the number of targets exceeds 50.

The significance of the PFSMS is also tested. As is shown in Tab. 2, the
mI and dI of PFSMS are obviously better than those of other strategies.
In addition, for each number of targets, two-side Wilcoxon rank sum tests
(with confidence level 99%) are conducted between the PFSMS and each
of other strategies, which use the iterations of all 1000 runs. The result of
the statistical test proves that, with every number of targets, the PFSMS is
significantly better than each of other strategies.

As is shown in the results (Tab. 2 and Fig. 13), when there is only one
target, all search strategies have similar performance. One point to consider
is that there may be multiple robots processing the target at the same time.
To reduce the estimation error, the mean iterations for target processing can
be assumed to be 5. According to the data in Tab. 2, the mean iterations (mI)
of IGES, RPSO (A-RPSO/IS/TFS), LFS(BMS), PFSMS are around 105, 95,
90, 85, respectively. After subtracting 5 iterations for target processing, the
mean iterations required for IGES, RPSO (A-RPSO/IS/TFS), LFS (BMS),
and PFSMS are around 100, 90, 85, and 80, respectively. Calculated by

31

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

Number of Targets

m
I

RPSO
A−RPSO
IGES
LFS
BMS
IS
TFS
PFSMS

Figure 13: mI of search strategies with various numbers of targets and 50 robots. mI
denotes the mean of the number of iterations.

0 5 10 15 20 25 30 35 40 45 50
20

40

60

80

100

120

140

Number of Targets

d
I

RPSO
A−RPSO
IGES
LFS
BMS
IS
TFS
PFSMS

Figure 14: dI of search strategies with various numbers of targets and 50 robots. dI
denotes the standard deviation of the number of iterations.

Eq. (16), when the target number is 1 (T=1), the approximate lower bound
of the average number of iterations for search is 75, which shows that the
PFSMS bears the closest performance, followed by LFS (BMS), RPSO (A-
RPSO/IS/TFS) and IGES. In the task of finding and collecting one target,
good exploration ability will help to find areas with fitness values where good
exploitation ability will help to find the target. However, when there is only
one target, the advantage of good exploration is not obvious, which gradually
appears as the number of targets increases. Compared with RPSO and A-
RPSO, the initial diffusion rate of IGES is limited by its diffusion mechanism,
so its initial exploration ability is not good. All independent search strategies
(LFS, BMS and IS) use the same triangle gradient estimation, so the minor
performance difference mainly results from different exploration abilities (i.e.
basically LFS > BMS > IS with 50 robots). Although TFS has the best

32

RPSO A-RPSO IGES LFS BMS IS TFS PFSMS
0

2

4

6

8

10

12

14

E
xt

ra
 m

I
fo

r
o

n
e

ad
d

ed
 t

ar
g

et
.

Figure 15: Extra mI required for one added target of different search strategies with 50
robots. mI denotes the mean of the number of iterations.

gradient estimation, its performance is restricted by its exploration ability.
PFSMS shows the best performance, for its probabilistic diffusion mechanism
contributes to a good balance between exploration and exploitation.

In Fig. 13, the slope of each curve represents the extra number of itera-
tions required for one added target, so a smaller slope means the strategy has
a better parallelism. For each strategy (RPSO, A-RPSO, IGES, LFS, BMS,
IS, TFS and PFSMS), the slopes of the curves are 12.58, 10.37, 6.76, 4.90,
5.02, 4.89, 5.57 and 3.07 respectively, as is shown in Fig. 15. Compared with
RPSO, the advantage of A-RPSO emerges as the number of targets becomes
larger, which means that A-RPSO has better parallelism. All independent
search strategies have similar parallelism performance, which are slightly bet-
ter than that of TFS. According to parallelism, the strategies can be sorted as
PFSMS > IS ≈ LFS ≈ BMS > TFS > IGES > A − RPSO > RPSO.
Of all comparison algorithms, PFSMS shows the best parallelism, demon-
strating its superior exploration ability.

The stability of strategies with various numbers of targets is shown in
Fig. 14. With the number of targets increasing, the stabilities of IGES and
PFSMS show a trend of fall-rise, which means a small amount of targets
may help to reduce the randomness of the problem. Compared with others,
the stabilities of TFS, independent search strategies and PFSMS are less
susceptible to the number of targets, which can be seen from the trend of
curves. On the other side, RPSO and A-RPSO are not good at handling
multiple targets, for their stabilities go steeply worse as the number of targets
increases.

33

Table 3: mI and dI of search strategies with various collection times of targets, 10 targets
and 50 robots. mI and dI denote the mean and standard deviation of the number of
iterations respectively.

Collection
Times

RPSO A−RPSO IGES LFS BMS IS TFS PFSMS
mI dI mI dI mI dI mI dI mI dI mI dI mI dI mI dI

1 278.26 73.79 264.94 67.55 210.64 36.68 178.35 29.75 187.05 46.06 186.57 31.78 196.83 55.73 136.70 18.85
5 286.28 78.65 275.86 71.66 220.97 37.49 186.81 31.74 193.84 45.38 197.16 35.35 206.82 55.58 142.46 20.41
10 289.05 76.14 283.17 69.65 230.61 37.84 194.82 33.69 199.97 46.53 205.24 36.71 210.67 59.39 147.80 21.17
15 294.24 76.35 287.63 70.85 236.11 40.73 203.22 35.39 208.66 47.04 212.06 37.48 215.33 54.90 153.44 22.32
20 299.69 77.26 291.80 69.82 244.18 43.32 210.55 37.59 215.39 46.42 221.17 41.32 220.66 57.12 157.58 22.26
30 306.46 75.91 304.07 72.66 256.42 43.66 223.62 39.77 224.53 45.21 231.56 41.47 227.49 57.14 164.82 24.22
40 312.79 75.37 313.91 74.53 268.03 47.28 234.03 42.43 236.79 48.40 244.35 47.19 235.67 58.00 171.87 23.43
50 321.18 78.63 321.42 74.21 277.77 47.89 243.62 42.55 247.31 49.99 254.01 43.96 244.89 56.09 178.65 24.41

5.3.3. Different Collection Times of Targets

As is stated in the problem model, it takes one robot 10 iterations to
collect a target while one iteration for 10 robots, which is also used in the
mathematical analysis. The ‘Collection Time of Targets’ is the number of
iterations needed for one robot to collect one target. With different collection
times of targets, we can study the cooperative collection ability of robots in
different strategies, which is complementary to the parallelism ability. In
this section, the search efficiency (i.e. mI) of all comparison algorithms with
various collection times of targets is investigated. Eight tests are carried out
with 1, 5, 10, 15, 20, 30, 40, 50 collection times of targets in turn, and the
map size is 1000*1000, containing 10 targets and 50 robots. The experimental
results are presented in Tab. 3, Fig. 16 and Fig. 17.

The significance of the PFSMS is also tested. As is shown in Tab. 3, the
mI and dI of PFSMS are obviously better than those of other strategies.
In addition, for each collection time of targets, two-side Wilcoxon rank sum
tests (with confidence level 99%) are conducted between the PFSMS and
each of other strategies, which use the iterations of all 1000 runs. The result
of the statistical test proves that, with every collection time of targets, the
PFSMS is significantly better than each of other strategies.

As is shown in Fig 16, the mI of various search strategies roughly satisfies
a linear growth with the collection times increasing. With various collection
times of targets, the efficiency rankings are not changed basically, except for
RPSO and TFS, and the former gradually surpasses A-RPSO while the lat-
ter get superior to independent search strategies. The slope of curves is the
extra number of iterations required for one added collection time, indicating
the cooperative collection abilities of the swarm, so a smaller slope corre-
sponds to a more efficient cooperative collection. For each strategy (RPSO,
A-RPSO, IGES, LFS, BMS, IS, TFS and PFSMS), the average slopes of the

34

0 5 10 15 20 25 30 35 40 45 50
100

150

200

250

300

350

Collection Times of Targets

m
I

RPSO
A−RPSO
IGES
LFS

BMS
IS
TFS
PFSMS

Figure 16: mI of search strategies with various collection times of targets, 10 targets and
50 robots. mI denotes the mean of the number of iterations.

0 5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

Collection Times of Targets

d
I

RPSO A−RPSO IGES LFS BMS IS TFS PFSMS

Figure 17: dI of search strategies with various collection times of targets, 10 targets and
50 robots. dI denotes the standard deviation of the number of iterations.

curves are 0.88, 1.15, 1.37, 1.33, 1.23, 1.38, 0.98 and 0.86 respectively, as
is shown in Fig. 18. According to the ability of cooperation collection, the
strategies can be sorted as PFSMS ≈ RPSO > TFS > A − RPSO >
BMS > LFS ≈ IGES ≈ IS. The cooperation collection ability of IGES is
close to that of independent search strategies, which means they bear similar
exploitation ability. So the search efficiency of IGES is mainly limited by its
worse exploration, which has been noted previously in section 5.3.1.

Compared with the previous section, we can find that, in swarm optimiza-
tion algorithms (RPSO, A-RPSO and IGES) the one with better parallelism
usually has worse cooperative collection, which is the same in independent
search strategies (LFS, BMS and IS). As for TFS, the three-robot formation
technology leads to excellent ability of cooperative collection, and its initial

35

RPSO A-RPSO IGES LFS BMS IS TFS PFSMS
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
xt

ra
 m

I
fo

r
o

n
e

ad
d

ed
 c

o
lle

ct
io

n
 t

im
e.

Figure 18: Extra mI required for one added collection time of different search strategies
with 10 targets and 50 robots. mI denotes the mean of the number of iterations.

diffusion mechanism ensures a certain level of parallelism. Similar to TFS,
the PFSMS also have a good trade-off between parallelism and cooperative
collection, which is much more remarkable. Parallelism and cooperative col-
lection could be regarded as one of the concrete forms of exploration and
exploitation, so the experimental results could support the analysis and con-
clusions stated in the section 5.3.1 (“Different Population Size”). Since we
focus on the search efficiency of strategies rather than target processing in
this article, the collection times of targets is small (i.e. 10) and only linear
acceleration is considered (i.e. the collection efficiency is proportional to the
number of participating robots), so the efficiency improvement from good
cooperative collection is not significant. However, if the iterations required
for target processing is noticeably enlarged, things may work out differently.

As is shown in Fig. 17, the stabilities of various strategies are also insen-
sitive to the collection times of targets, especially for TFS. With 50 robots,
the stability rankings of search strategies are obvious, from which we can
see PFSMS has the best stability, followed by independent search strategies
and IGES, TFS, A-RPSO and RPSO. Compared with others, the stability
of PFSMS is rather impressive, which is important to practical application.

5.3.4. The Performance Rankings of Different Search Strategies

In the previous parts, three groups of comparative experiments were car-
ried out to study specifically the performance of search strategies under d-
ifferent problem settings (i.e. different population sizes, different numbers
of targets, and different collection times of targets), and under each setting,
the performance differences and detailed analysis and explanations are given.

36

Table 4: The performance rankings of search strategies under different problem settings.

RPSO A−RPSO IGES LFS BMS IS TFS PFSMS
Population 8.0 7.0 5.8 3.5 2.9 4.6 3.3 1.0
Targets 7.6 7.1 6.3 2.0 3.0 4.0 5.0 1.0
Collection Times 8.0 7.0 6.0 2.0 3.4 4.4 4.3 1.0
Total 7.9 7.0 6.0 2.5 3.1 4.3 4.2 1.0

Based on the data from Tab. 1, 2 and 3, this part aims to examine the over-
all performance of different search strategies from a macroscopic perspective,
and to give the performance rankings of search strategies under different
problem settings, as shown in Tab. 4.

In Tab. 4, the first row, the second row, and the third row are the av-
erage performance rankings of search strategies under different population
sizes, different numbers of targets, and different collection times of targets,
respectively; the fourth row shows the total performance rankings with al-
l three settings considered. In all rows, the search strategies ranked first,
sixth, seventh and eighth are fixed, namely PFSMS, IGES, A-RPSO, RP-
SO, highlighting the advantages of PFSMS and the disadvantages of swarm
optimization algorithms. For the other four strategies (LFS/BMS/IS/TFS),
LFS is dominant in the general population size (50 robots), but BMS and
TFS are better choices when the population size is larger (as shown by the
first row).

It should be pointed out that the performance ranking in Tab. 4 is a
rough performance measure based on the above problem settings, and the
performance in specific problems needs to be analyzed in detail, especially
considering the size of the population.

6. Conclusions

In this paper, we establish an approximate mathematical model for an
idealized multi-target search problem in swarm robotics, based on which we
derive a lower bound of the expected number of iterations required to collect
all targets. Combining random walk strategies and the triangle estimation
technology, three independent search strategies (LFS, BMS and IS) are pro-
posed, and the BMS can serve as a benchmark which is efficient and easy to
implement. A novel probabilistic finite state machine based search strategy
(PFSMS) is proposed, showing the highest efficiency and best stability in
all comparison strategies. Experiments with different population sizes show
that, with large number of robots (such as 200), the performance of PFSMS

37

is close to the approximate optimal value of the problem. Compared with
other algorithms, the PFSMS can give a better play to the exploration of the
swarm, improving greatly the search efficiency. Furthermore, experiments
with various numbers of targets show that PFSMS has the best parallelism,
and its excellent cooperative collection ability is also demonstrated by the
experiments with different collection times of targets.

As for the future work, one research direction is the multi-target search
problem in the strong interference environment, where the fitness distribu-
tion of targets may be greatly affected. Since the local exploitation ability
of current search strategies depends directly or indirectly on the estimation
of the fitness gradient, the performance of current strategies can be affected
seriously in such environments. In addition, we’d like to study the problem
with complex, especially structural obstacles (such as urban high-rise build-
ings, office environment, etc.), and to study some automatic approaches for
strategy design, such as deep learning, reinforcement learning and evolution-
ary algorithms.

Acknowledgment

This work was supported by the Natural Science Foundation of China
(NSFC) under grant no. 61375119 and 61673025 and also Supported by
Beijing Natural Science Foundation (4162029), and partially supported by
National Key Basic Research Development Plan (973 Plan) Project of China
under grant no. 2015CB352302.

[1] G. Beni, From swarm intelligence to swarm robotics, in: International
Workshop on Swarm Robotics, Springer, 2004, pp. 1–9.

[2] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, A taxonomy for swarm
robots, in: Intelligent Robots and Systems’ 93, IROS’93. Proceedings of
the 1993 IEEE/RSJ International Conference on, Vol. 1, IEEE, 1993,
pp. 441–447.

[3] L. Bayındır, A review of swarm robotics tasks, Neurocomputing 172
(2016) 292–321.

[4] M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in
a thousand-robot swarm, Science 345 (6198) (2014) 795–799.

38

[5] E. Şahin, Swarm robotics: From sources of inspiration to domains of
application, in: International workshop on swarm robotics, Springer,
2004, pp. 10–20.

[6] L. Bayindir, E. Şahin, A review of studies in swarm robotics, Turkish
Journal of Electrical Engineering & Computer Sciences 15 (2) (2007)
115–147.

[7] I. Navarro, F. Mat́ıa, An introduction to swarm robotics, ISRN Robotics
2013.

[8] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a
review from the swarm engineering perspective, Swarm Intelligence 7 (1)
(2013) 1–41.

[9] Y. Tan, Handbook of research on design, control, and modeling of swarm
robotics, IGI Global, 2015.

[10] M. F. Shlesinger, Mathematical physics: Search research, Nature
443 (7109) (2006) 281–282.

[11] J. Li, Y. Tan, The multi-target search problem with environmental re-
strictions in swarm robotics, in: Robotics and Biomimetics (ROBIO),
2014 IEEE International Conference on, IEEE, 2014, pp. 2685–2690.

[12] M. S. Couceiro, P. A. Vargas, R. P. Rocha, N. M. Ferreira, Benchmark
of swarm robotics distributed techniques in a search task, Robotics and
Autonomous Systems 62 (2) (2014) 200–213.

[13] M. Dadgar, S. Jafari, A. Hamzeh, A pso-based multi-robot cooperation
method for target searching in unknown environments, Neurocomputing
177 (2016) 62–74.

[14] V. Gazi, K. M. Passino, Stability analysis of social foraging swarms,
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics) 34 (1) (2004) 539–557.

[15] L. Xie, G. Yang, J. Zeng, Z. Cui, Swarm robots search based on artifi-
cial physics optimisation algorithm, International Journal of Computing
Science and Mathematics 4 (1) (2013) 62–71.

39

[16] K. Krishnanand, D. Ghose, A glowworm swarm optimization based
multi-robot system for signal source localization, in: Design and con-
trol of intelligent robotic systems, Springer, 2009, pp. 49–68.

[17] M. S. Couceiro, R. P. Rocha, N. M. Ferreira, A novel multi-robot explo-
ration approach based on particle swarm optimization algorithms, in:
2011 IEEE International Symposium on Safety, Security, and Rescue
Robotics, IEEE, 2011, pp. 327–332.

[18] H. N. Ataei, K. Ziarati, M. Eghtesad, A bso-based algorithm for multi-
robot and multi-target search, in: International Conference on Industri-
al, Engineering and Other Applications of Applied Intelligent Systems,
Springer, 2013, pp. 312–321.

[19] Z. Zheng, Y. Tan, Group explosion strategy for searching multiple tar-
gets using swarm robotic, in: 2013 IEEE Congress on Evolutionary Com-
putation, IEEE, 2013, pp. 821–828.

[20] M. Z. Ali, N. H. Awad, P. N. Suganthan, R. G. Reynolds, A modi-
fied cultural algorithm with a balanced performance for the differential
evolution frameworks, Knowledge-Based Systems 111 (2016) 73–86.

[21] M. Z. Ali, N. H. Awad, P. N. Suganthan, R. G. Reynolds, An adaptive
multipopulation differential evolution with dynamic population reduc-
tion, IEEE transactions on cybernetics 47 (9) (2017) 2768–2779.

[22] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. Da Luz, E. Ra-
poso, H. E. Stanley, Optimizing the success of random searches, Nature
401 (6756) (1999) 911–914.

[23] F. Bartumeus, E. P. Raposo, G. M. Viswanathan, M. G. da Luz, S-
tochastic optimal foraging theory, in: Dispersal, individual movement
and spatial ecology, Springer, 2013, pp. 3–32.

[24] G. M. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince,
H. E. Stanley, et al., Lévy flight search patterns of wandering albatrosses,
Nature 381 (6581) (1996) 413–415.

[25] D. A. Raichlen, B. M. Wood, A. D. Gordon, A. Z. Mabulla, F. W.
Marlowe, H. Pontzer, Evidence of lévy walk foraging patterns in hu-
man hunter–gatherers, Proceedings of the National Academy of Sciences
111 (2) (2014) 728–733.

40

[26] J. Li, Y. Tan, Triangle formation based multiple targets search using
a swarm of robots, in: International Conference in Swarm Intelligence,
Springer, 2016, pp. 544–552.

[27] J. Kennedy, Particle swarm optimization, in: Encyclopedia of machine
learning, Springer, 2011, pp. 760–766.

[28] A. Darvishzadeh, B. Bhanu, Distributed multi-robot search in the real-
world using modified particle swarm optimization, in: Proceedings of
the Companion Publication of the 2014 Annual Conference on Genetic
and Evolutionary Computation, ACM, 2014, pp. 169–170.

[29] K. Krishnanand, D. Ghose, Glowworm swarm based optimization al-
gorithm for multimodal functions with collective robotics applications,
Multiagent and Grid Systems 2 (3) (2006) 209–222.

[30] R. Akbari, A. Mohammadi, K. Ziarati, A novel bee swarm optimiza-
tion algorithm for numerical function optimization, Communications in
Nonlinear Science and Numerical Simulation 15 (10) (2010) 3142–3155.

[31] X. Yang, J. Yuan, J. Yuan, H. Mao, A modified particle swarm optimiz-
er with dynamic adaptation, Applied Mathematics and Computation
189 (2) (2007) 1205–1213.

[32] Y. Tan, Y. Zhu, Fireworks algorithm for optimization, in: International
Conference in Swarm Intelligence, Springer, 2010, pp. 355–364.

[33] Z. Zheng, J. Li, J. Li, Y. Tan, Improved group explosion strategy for
searching multiple targets using swarm robotics, in: 2014 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC), IEEE,
2014, pp. 246–251.

[34] F. Bartumeus, M. E. da Luz, G. Viswanathan, J. Catalan, Animal search
strategies: a quantitative random-walk analysis, Ecology 86 (11) (2005)
3078–3087.

[35] G. M. Viswanathan, M. G. Da Luz, E. P. Raposo, H. E. Stanley, The
physics of foraging: an introduction to random searches and biological
encounters, Cambridge University Press, 2011.

41

[36] A. Dhariwal, G. S. Sukhatme, A. A. Requicha, Bacterium-inspired
robots for environmental monitoring, in: Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
Vol. 2, IEEE, 2004, pp. 1436–1443.

[37] D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J. Brad-
shaw, J. W. Pitchford, A. James, M. Z. Ahmed, A. S. Brierley, M. A.
Hindell, et al., Scaling laws of marine predator search behaviour, Nature
451 (7182) (2008) 1098–1102.

[38] O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Intermittent search
strategies, Reviews of Modern Physics 83 (1) (2011) 81.

[39] O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Two-dimensional
intermittent search processes: An alternative to lévy flight strategies,
Physical Review E 74 (2) (2006) 020102.

[40] U. A. Force, Air combat command manual 3-3, 1992.

[41] T. Balch, R. C. Arkin, Behavior-based formation control for multirobot
teams, IEEE transactions on robotics and automation 14 (6) (1998)
926–939.

[42] T. R. Balch, R. C. Arkin, Motor schema-based formation control for
multiagent robot teams., in: ICMAS, 1995, pp. 10–24.

[43] Z. Zheng, J. Li, J. Li, Y. Tan, Avoiding decoys in multiple targets search-
ing problems using swarm robotics, in: 2014 IEEE Congress on Evolu-
tionary Computation (CEC), IEEE, 2014, pp. 784–791.

42

