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1.Brief Introduction to Swarm Intelligence 

1.1 Swarm Intelligence (SI) refers to   

 Simple individuals or information 
processing units 

 Interaction between individuals or with 
environment 

 

 

from nature to 
artificial systems 
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1.Brief Introduction to SI 

 1.2 Some Famous SI Algorithms: 

 Particle Swarm Optimization (PSO) 

 Ant Colony Optimization (ACO) 

 Artificial Immune System (AIS) 

 Bee Colony Optimization (BCO) 

 Bacterial Foraging Optimization (BFO) 

 Fish School Search (FSS) 

 Seeker Optimization Algorithm (SOA) 

To name a few 
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1. Motivation 

 Biological population 

 Social phenomenon 

 Other laws in a swarm in nature 
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1.2.1 Particle Swarm Optimization (PSO) 

Inspired by the  

search food  

of flocks 
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1.2.1 Particle Swarm Optimization 

 A birds flock is searching for a food, and every bird does 
not know where the food is. But, they know presently the 
distance of each bird to the food  

This seeking behavior was associated with that of an 
optimization 

 

 how to make a strategy 
that the bird can get to the 

food fastest? 
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1.2.1 PSO principle 

solutions 

How to choose ? 
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1.2.1 Visual demonstration of PSO 
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1.2.2 Ant Colony Optimization (ACO)  

 Ant system searches Food from Nest  

 

 ANT.EXE (AVI1) 

 

ANT.EXE
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Double Bridge Experiment 

Auto-catalytic (positive feedback) process 
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Welcome to  
ICSI 2012  
Shenzhen, CN. 
 
www.ic-si.org  
 

http://www.ic-si.org/
http://www.ic-si.org/
http://www.ic-si.org/
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1.3 Introduction to Fireworks Algorithm 

When a firework is set Off, a shower of sparks will 
fill the local space around the firework. 

 The explosion can be viewed as a search in 
the local Space around a firework. 

 

 

 

http://en.wikipedia.org/wiki/File:4thFireworks1.JPG
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from Nature to Mathematical Modeling 

 Definition of firework 
 

Good firework:  firework can generate a big 

population of sparks within a small range. 

Bad firework: firework that generate a small  

Population of sparks within a big range. 

 

 

 

The basic FA algorithm is on the basis of simulating  

the process of the firework explosion illuminating  

the night sky. 
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2. Basic Firework Algorithm (FA) 

2.1 Problem description 
2.2 Flowchart of FA   

2.3 Design of basic FA 

 Selection operators  
 Number of son sparks 

2.4 Experimental results 
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2.1 Problem description 


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2.2 FA’s Flowchart 

Set N 
firework 

Obtain the 
sparks 

Evaluate the 
sparks, 
select N 
fireworks 

for next 
generation 

Terminal 
criterion?  

Repeat 

N 

Y 
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2.3 Design of basic Firework Algorithm 


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2.3 Design of basic Firework Algorithm 
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2.3 Design of basic Firework Algorithm 

BIG RANGE 
LITTLE SPARKS 

SMALL RANGE 
MORE SPARKS 
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2.3 Design of basic Firework Algorithm 

Generating Sparks. In explosion, sparks may 
undergo the effects of explosion from random z 

directions (dimensions).  
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2.3 Design of basic Firework Algorithm 



Crowd 

Sparse 

KEEP DIVERSITY! 
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2.3 Design of basic Firework Algorithm 

To keep the diversity of sparks, we design another 
way of generating sparks----Gaussian explosion. 
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2.4 Experiments results of basic FA 
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2.4 Experiments results of basic FA 
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2.4 Experiments results of basic FA 
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2.4 Experiments results of basic FA 
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Explosion Search Demonstrations of FA 

 Sphere (AVI2) 

 
 Benchmark function f18 (AVI3) 

  

sphere.avi
f18.avi
f18.avi
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3. FA variants 

  3.1 Motivation of FA variants 
3.2 Definition for FA variants   

3.3 FA with fixed minimal explosion  

 amplitude 
3.4  FA with dynamic minimal explosion  

 amplitude 
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3.1 Motivation of FA variants 
 

 
 By comprehensively analyzing the techniques of 

fireworks explosion, our findings suggest that 
some of the generated sparks can hardly make 
any contribution to the optimization  if they do 
not come to a local space  while take a lot 
of ”resource”. 

LOW 
DIVERSITY!! 

Too Many Sparks in such a 
small range 
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3.2 Definition for FA variants 
 
Core Firework: In 
iterative process, 
there is fixed number 
of fireworks which can 
generate sparks. 
Among the fireworks 
in each iteration, the  
firework with minimal 
fitness is defined as 
Core Firework. 
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3.2 Definition for FA variants 

Significance Improvement In order to determine 
whether the Core Firework can generate better sparks, 

we define that if it generates a spark in the next 
generation whose fitness is Best Fitness in the next 
iteration as Significance Improvement. 
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3.2 Definition for FA variants 
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3.3 FA with fixed minimal explosion  
 amplitude 
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3.3 FA with fixed minimal explosion  
 amplitude 
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3.3 FA with fixed minimal explosion  
 amplitude 

 As can be seen, the bigger fixed minimal scope can 
accelerate the process of searching the optimal solution at 
the first iterations. However, when it comes to the local 
minimal space, the higher the fixed minimal scope, the 
harder it searches the optimal solution.  

 
 It would seem that function Ackley is uni-modal function. 

And multi-modal function is the same, the difference is 
that only when the swarm comes to a local minimal space 
rather than a global minimal space compared to uni-
modal functions. 
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3.4 FA with dynamic minimal explosion  
amplitude 

 

 Experiments with fixed dynamic explosion amplitude 
suggest that FA should be loaded with a higher  
explosion amplitude while it does Not come to a local 
minimal space,  thus to enhance the possibility of  
obtain a better solution. When it got to a local 
minimal space, then the fireworks begin to search 
the Space within a small range from the found good 
solution. 
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3.4 FA with dynamic minimal explosion  
amplitude 

If FA have not get 
any better 

positions in N 
consecutive steps? 
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3.4  Two cases: 

  the population of the 

swarm (excluding the 

core firework) is too 

small. 

 the search range of 

the core firework is too 

small 

LOW 
DIVERSITY 
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3.4 Dynamic minimal explosion  
amplitude strategy 

A better 

position : B 

A 

C 

Yes, it finds a better solution at B 

So it load with the smallest explosion amplitude 

Iteration by iteration, it can not obtain any  

improvement, so a bigger explosion amplitude 

Should be exploited till it reaches point C.  
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3.4 FA with dynamic minimal explosion  
amplitude 

Set N 
firework 

Obtain 
the 

sparks 

Evaluate 
the 

sparks, 
select N 
fireworks 

Terminal 
criterion?  

Repeat 

Minimal Explosion 
Amplitude Checking 
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3.4 FA with dynamic minimal 
explosion  amplitude 

 25 Benchmark 

Test Functions 
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3.4 FA with dynamic minimal explosion  
amplitude 

 Experimental 

Results of FA-DEA 

on f1-f14 
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3.4 FA with dynamic minimal 
explosion  amplitude 

 Experimental 

Results of FA-DEA 

on f15-f25 
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Performance Comparison on Various 
Dimensions 
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4. Application Research 

 4.1 FA for NMF 

 

 4.2 FA for Clustering 
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4.1 FA for NMF 

 4.1.1 NMF description 

 

 4.1.2 Algorithm for NMF Computing 

 

 4.1.3 Experimental results 
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4.1.1 NMF description 

 Lee and Seung publish a paper on Nature in 
1999 about the property. 

 Low-rank approximations are utilized in several 
content based retrieval and data mining 
applications. 
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4.1.1 NMF description 

Figure - Scheme of very coarse NMF approximation with very low rank k. 

Although k is significantly smaller than m and n, the typical structure of the 

original data matrix can be retained (note the three different groups of data 

objects in the left, middle, and right part of A). 

 

Minimal 
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4.1.1 NMF description 

 

 Mathematically, we consider the problem of 
finding a “good” (ideally the global) solution of 
an optimization problem with bound constraints . 
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4.1.1 NMF description 

 The nonlinear optimization problem underlying 
NMF can generally be stated as  

   

2

, ,

1
min ( , ) min || || .

2
W H W H Ff W H A WH 
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4.1.2 Algorithm for NMF Computing 

  

  

 

 

Figure  – Illustration of the optimization process for row l of the NMF factor W. The 

lthrow of A (al
r) and all columns of H0 are the input for the optimization algorithms. 

The output is a row-vector wl
r (the lthrow of W) which minimizes the norm of dl

r, 

the lthrow of the distance matrix D. The norm of dl
r is the fitness function for the 

optimization algorithms (minimization problem). 
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4.1.2 Algorithm for NMF Computing 

 General structure of NMF algorithms  
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4.1.2 Algorithm for NMF Computing 

 NMF Initialization 
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4.1.2 Algorithm for NMF Computing 

 Iterative 
Optimizati
on 
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4.1.2 Datasets for NMF Computing by FA 

 DS-RAND is a randomly created, fully dense  matrix which is used in 

order to provide unbiased results. To evaluate the proposed methods in a 

classification context we further used two data sets from the area of email 

classification (spam/phishing detection).  

 

 Data set DS-SPAM1 consists of 3000 e-mail messages described by 133 

features, divided into three groups: spam, phishing and legitimate email.  

 

 Data set DS-SPAM2 is the spambase data set taken from (Kjellerstrand 

2011) which consists of 1813 spam and 2788 non-spam messages. DS-

SPAM1 represents a ternary classification problem; DS-SPAM2 

represents a typical binary classification problem. 

 



58 

11/1/2011 

Figure 4.1.1 – Left hand-side: average approximation error per 

row (after initializing rows of W). Right hand-side: average 

approximation error per column (after initializing of H). NMF rank k 

= 5. Legends are ordered according to approximation error (top = 

worst, bottom = best). 

First W First H 
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Figure 4.1.2 Accuracy per Iteration when updating only the row of W, 

m=2, c=20. Left: k=2, right: k=5 
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Experiments results of NMF 

Figure 4.1.3 – Proportional runtimes for achieving the same accuracy as 

basic MU after 30 iterations for different values of k when updating only 

the rows of W. (m=2, c=20) 
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4.2 FA for Document Clustering 

 4.2.1 Document Clustering Description 

 

 4.2.2 Dataset 

 

 4.2.3 Experimental Result 
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4.2.1 Document Clustering description 

 Automatically group the related 
documents into clusters. 

   • Example 

 – Medical documents 

 – Legal documents 

 – Financial documents 

 If a collection is well clustered, it is 
much more efficient to search only the 
cluster that will contain relevant 
documents . 
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4.2.2 Dataset: Newsgroups-18828 

predecessor：Newsgroups 

 The 4.5% document belongs to the two or more 
than two news group 

 The remaining documents only belongs to one 
newsgroup 

modification ：Jason Rennie from MIT do some 
necessary processings to Newsgroups, so that each 
document belongs to only one News group 
characters： A total of 18828 documents, all 
documents belong to 20 different new newsgroups 

 widely used in document classification 
and clustering 



 
 
4.2.3. Experimental Result 
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Concluding Remarks 

 By mimicking the explosion process of fireworks in our 
festivals, the so-called FA is proposed and implemented 
for function optimization, with a promising performance 
against Clonal PSO and Standard PSO. 

 

 FA-DEA, by introducing an explosion amplitude control 
strategy, has shown its great advantages in hybrid-modal 
problems, which can achieve the optima 50% on average. 

 

 The use of Firework Algorithm to solve practical 
engineering and scientific problems like clustering and 
NMF has gained great success compared to traditional 
methods. 
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