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ABSTRACT
Several theoretical analyses of the dynamics of particle
swarms have been offered in the literature over the last
decade. Virtually all rely on substantial simplifications, in-
cluding the assumption that the particles are deterministic.
This has prevented the exact characterisation of the sam-
pling distribution of the PSO. In this paper we introduce
a novel method, which allows one to exactly determine all
the characteristics of a PSO’s sampling distribution and ex-
plain how they change over any number of generations, in
the presence stochasticity. The only assumption we make
is stagnation, i.e., we study the sampling distribution pro-
duced by particles in search for a better personal best. We
apply the analysis to the PSO with inertia weight, but the
analysis is also valid for the PSO with constriction.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Performance

Keywords
Particle Swarm Optimisation, Theory

1. INTRODUCTION
We consider the basic form of PSO with inertia weight

shown in Algorithm 1. Despite its apparent simplicity, this
PSO has presented formidable challenges to those interested
in swarm intelligence theory. Firstly, the PSO is made up of
a large number of interacting elements (the particles). Al-
though the nature of the elements and of the interactions
is simple, understanding the dynamics of the whole is non-
trivial. Secondly, the particles are provided with memory
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Algorithm 1 Classical PSO.

1: Initialize a population array of particles with random
positions and velocities on D dimensions in the problem
space.

2: loop
3: For each particle, evaluate the desired optimization

fitness function in D variables.
4: Compare particle’s fitness evaluation with its personal

best fitness pbest i. If current value is better than
pbest i, then set pbest i equal to the current value, and
yi equal to the current location xi in D–dimensional
space.

5: Identify the particle in the neighbourhood with the
best success so far, and assign its position to the vari-
able ŷ.

6: Change the velocity and position of the particle ac-
cording to the following equations:

vi
t+1 = wvi

t + φ1 ⊗ (yi − xi
t) + φ2 ⊗ (ŷ − xi

t) (1)

xi
t+1 = xi

t + vi
t+1 (2)

7: If a criterion is met, exit loop.
8: end loop

Note: φi represents a vector of random numbers uniformly
distributed in [0, ci] and ⊗ is component-wise multiplication.

and (albeit limited) intelligence, which mean that from one
iteration to the next a particle may be attracted towards a
new yi or a new ŷ or both. Thirdly, forces are stochastic.
This prevents the use of standard mathematical tools used in
the analysis of deterministic dynamical systems. Fourthly,
the behaviour of the PSO depends crucially on the structure
of the fitness function. However, PSOs have been used on
such a wide range of fitness functions that it is difficult to
characterise a useful function space in which to study the
role of the fitness function, and so it is hard to find gen-
eral results. Nonetheless some progress has been made, by
considering simplifying assumptions such as isolated single
individuals, search stagnation (i.e., no improved solutions
are found) and, crucially, absence of randomness.

For example, Ozcan and Mohan [3] studied the behaviour
of one particle, in isolation, in one dimension, in the absence
of stochasticity and during stagnation. Also, y and ŷ were
assumed to coincide, as is the case for the best particle in a
neighbourhood. The work was extended in [4] where mul-
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tiple multi-dimensional particles were covered. Similar as-
sumptions were used by Clerc and Kennedy’s model [5]: one
particle, one dimension, deterministic behaviour and stag-
nation. Under these conditions the swarm is a discrete-time
linear dynamical system. The dynamics of the state (posi-
tion and velocity) of particle can be determined by finding
the eigenvalues and eigenvectors of the state transition ma-
trix. The model, therefore, predicts that the particle will
converge to equilibrium if the magnitude of the eigenvalues
is smaller than 1.

A similar approach was used by van den Bergh [6] (see
also [2]), who, again, modelled one particle, with no ran-
domness and during stagnation. As in previous work, van
den Bergh provided an explicit solution for the trajectory
of the particle. He showed that the particle is attracted to-
wards a fixed point. He also argued that the analysis would
be valid also in the presence of stochasticity. [6] also sug-
gested the possibility that particles may converge on a point
that is neither the global optimum nor indeed a local opti-
mum. This implies that a PSO is not guaranteed to be an
optimiser.

A simplified model of particle was also studied by Yasuda
et al. [7]. The assumptions were: one one-dimensional par-
ticle, stagnation and absence of stochasticity. Inertia was
included in the model. Again an eigenvalue analysis of the
resulting dynamical system was performed with the aim of
determining for what parameter settings the systems is sta-
ble and what classes of behaviours are possible for a particle.
Conditions for cyclic behaviour were analysed in detail.

Blackwell [19] investigated how the spatial extent of a par-
ticle swarm varies over time. A simplified swarm model
was adopted which is an extension of the one by Clerc and
Kennedy where more than one particle and more than one
dimensions are allowed. This allowed particles to interact, in
the sense that they could change their personal best. Con-
striction was included but not stochasticity. [19] suggested
that spatial extent decreases exponentially with time.

Brandstätter and Baumgartner [10] drew an analogy be-
tween Clerc and Kennedy’s model [5] and a damped mass-
spring oscillator, making it possible to rewrite the model
using the notions of damping factor and natural vibrational
frequency. Like the original model, this model assumes one
particle, one dimension, no randomness and stagnation.

Under the same assumptions as [5] and following a simi-
lar approach, Trelea [11] performed a lucid analysis of a 4-
parameter family of particle models and identified regions in
the parameter space where the model exhibits qualitatively
different behaviours (either stability, harmonic oscillations
or zigzagging behaviour).

The dynamical system approach proposed by Clerc and
Kennedy has recently been extended by Campana et al. [12,
13] who studied an extended PSO. Under the assumption
that no randomness is present, the resulting model is a dis-
crete, linear and stationary dynamical system, for which
[12, 13] formally expressed the free and forced responses.
However, since the forced response depends inextricably on
the specific details of the fitness function, they were able to
study in detail only the free response.

To better understand the behaviour of the PSO during
phases of stagnation, Clerc [16] analysed the distribution of
velocities of one particle controlled by the standard PSO
update rule with inertia and stochastic forces. In particular,
he was able to show that a particle’s new velocity is the sum

of three components: a forward force, a backward force and
noise. Clerc studied the distributions of these forces.

Kadirkamanathan et al. [17] were able to study the sta-
bility of particles in the presence of stochasticity by using
Lyapunov stability analysis. They considered the behaviour
of a single particle – the swarm best – with inertia and dur-
ing stagnation. By representing the particle as a non-linear
feedback system, they were able to apply a large body of
knowledge from control theory. E.g., they found sufficient
conditions on the PSO parameters to guarantee convergence.
Since Lyapunov theory is very conservative, the conditions
found are very restrictive, effectively forcing the PSO to have
little oscillatory behaviour.

In summary, with very few exceptions all mathematical
models of PSO behaviour have been obtained under rather
unrealistic assumptions. In particular, very little is known
regarding how the sampling distribution of particles changes
over time. In this paper we introduce a novel method, which
allows one to exactly determine all the characteristics of a
PSO’s sampling distribution and explain how they change
over any number of generations. The only assumption we
make is stagnation, i.e., we study the sampling distribution
produced by particles in search for a better personal best.

We will apply the analysis to the PSO with inertia weight
(Algorithm 1). However, we should note that a PSO with
constriction (see[5]) is algebraically equivalent to a PSO with
inertia. Indeed, in this PSO, particles are controlled by the
equation

vi
t+1 = χ

“
vi

t + φ̃1 ⊗ (yi − xi
t) + φ̃2 ⊗ (ŷ − xi

t)
”

(3)

which can be transformed into one Equation (1) via the

mapping χ → w and χφ̃i → φi. So, the theory developed in
the rest of this paper will apply to the PSO with constriction
as well.

The paper is organised as follows. In Section 2 we derive
recursions for the dynamics of first and second order statis-
tics of the sampling distribution of a PSO’s particle during
stagnation. We study the fixed-points for these quantities
and stability in Section 3. In Section 4 we show the results of
numerically integrating the dynamic equations for the dis-
tribution’s statistics. Finally, we provide some discussion,
indications for future work and our conclusions in Section 5.

2. DYNAMICS OF FIRST AND SECOND
MOMENTS OF THE PSO SAMPLING
DISTRIBUTION

If the PSO in a stagnation phase (i.e., there are no fit-
ness improvements), each particle effectively behaves inde-
pendently. Also, each dimension is treated independently.
So, we can analyse each particle’s behaviour in isolation.
Droping the superscript i in Equations (1) and (2), we can
rewrite them as a single (second order) difference equations,
as was done other researchers (e.g., in [6]), by making use
of the fact that vt = xt − xt−1. We obtain

xt+1 = xt(1 + w) − xt(φ1 + φ2) − wxt−1 + φ1y + φ2ŷ. (4)

2.1 Dynamics of E[xt]

Unlike previous research, we will not make the simplify-
ing assumption that φ1 and φ2 are constant in Equation (9).
Instead, we treat them for what they are, i.e., uniformly dis-
tributed stochastic variables, and we apply the expectation
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operator to both sides of the equation obtaining

E[xt+1] = E[xt](1 + w) − E[xt](E[φ1] + E[φ2])

− wE[xt−1] + E[φ1]y + E[φ2]ŷ (5)

where we performed the substitution E[xtφi] = E[xt]E[φi]
because of the statistical independence between φi and xt.

1

Because φi is uniformly distributed in [0, ci] we have

E[φ1] =
c1

2
E[φ2] =

c2

2
(6)

and, so,

E[xt+1] = E[xt](1+w− c1 + c2

2
)−wE[xt−1]+

c1

2
y+

c2

2
ŷ (7)

Let p be a fixed point for this equation. This requires

p =
c1y + c2ŷ

c1 + c2
(8)

For the sake of simplicity let us now restrict our attention to
the case c1 = c2 = c. Furthermore, let us rename (1 + w) =
w′. So

xt+1 = xtw
′ − xtφ1 − xtφ2 − wxt−1 + φ1y + φ2ŷ (9)

and

E[xt+1] = E[xt](w
′ − c) − wE[xt−1] + c

y + ŷ

2
(10)

Naturally, the stability of this equation is determined by
the magnitude of the roots of the associated character-
istic polynomial, or of the eigenvalues of the associated
first-order vectorial difference equation. Figure 1 plots the
magnitude of the largest eigenvalue of the equation for
c = 0.01, 0.02, ..., 4.00 and w = 0.01, 0.02, ..., 1.0. The line
on the surface encloses the stable region.

Note that if we assumed that that φ1 and φ2 are constant
and equal to their maximum value, c, Equation (9) would
become

xt+1 = xt(w
′ − 2c) − wxt−1 + c(y + ŷ) (11)

This equation has been studied extensively in previous re-
search and has exactly the same form as Equation (10), ex-
cept that here we have 2c instead of c and the magnitude
of the forcing term, c(y + ŷ), is doubled. So, the stability
of Equation (10) has effectively been studied in previous re-
search (e.g., [11], [6] and [5]; see also [2] for an extensive
review). Indeed, the stable region depicted in Figure 1 is
exactly the same as reported in [11, Figure 1(a)], and the
explicit dynamics of E[xt] is explicitly given in previous work
(e.g., [6]) if parameters are appropriately rescaled.

1Note, φi are stochastic variables sampled at iteration t.
At that iteration they are independent of xt. They are not
independent of xt+1, xt+2, etc.

1.0
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3.0
4.0
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max(|eigenvalue|)= 1

c

w

Magnitude of largest eigenvalue

Figure 1: Stability analysis based on the difference
equation for E[xt] as a function of the parameters w
and c. The line on the surface encloses the presumed
stable region.

2.2 Dynamics of E[x2
t ], E[xtxt−1] and StdDev[xt]

Let us now compute x2
t+1:

x2
t+1 = (xtw

′ − xtφ1 − xtφ2 − wxt−1 + φ1y + φ2ŷ)2

= x2
tw

′2 − x2
tφ1w

′ − x2
tφ2w

′ − wxt−1xtw
′ + φ1yxtw

′

+ φ2ŷxtw
′ − x2

tw
′φ1 + x2

tφ
2
1 + x2

tφ2φ1 + wxt−1xtφ1

− φ2
1yxt − φ2ŷxtφ1 − x2

tw
′φ2 + x2

tφ1φ2 + x2
tφ

2
2

+ wxt−1xtφ2 − φ1yxtφ2 − φ2
2ŷxt − xtw

′wxt−1

+ xtφ1wxt−1 + xtφ2wxt−1 + w2x2
t−1 − φ1ywxt−1

− φ2ŷwxt−1 + xtw
′φ1y − xtφ

2
1y − xtφ2φ1y − wxt−1φ1y

+ φ2
1y

2 + φ2ŷyφ1 + xtw
′φ2ŷ − xtφ1φ2ŷ − xtφ

2
2ŷ

− wxt−1φ2ŷ + φ1yφ2ŷ + φ2
2ŷ

2

Again we apply the expectation operator to both sides of
the equation, obtaining

E[x2
t+1]

= E[x2
t ]

`
w′2 − 4μw′ + 2ν + 2μ2

´
+ E[xt−1xt]

`−2ww′ + 4wμ
´

+ E[x2
t−1]

`
w2

´
+ E[xt]

`
2μyw′ + 2μŷw′ − 2νy − 2μ2ŷ − 2μ2y − 2νŷ

´
+ E[xt−1] (−2μyw − 2μŷw)

+ νy2 + 2μ2yŷ + νŷ2

where we set μ = E[φi] = c/2 and ν = E[φ2
i ] = c2/3, for

brevity.
As we discussed in Section 2.1, we have a recursion (and in

fact an explicit solution) for E[xt], so the recursion in Equa-
tion (17) could be solved if we had a recursion for E[xtxt−1].
Let us obtain such a recursion.

We multiply both sides of Equation (9) by xt, obtaining

xt+1xt = x2
tw

′−x2
t (φ1+φ2)−wxtxt−1+xtφ1y+xtφ2ŷ (12)

thereby

E[xt+1xt] = E[x2
t ](w

′−c)−wE[xtxt−1]+E[xt]c
y + ŷ

2
(13)
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With this additional equation we are now in a position to
determine the dynamics of E[x2

t ] and E[xtxt−1], in addition
to the dynamics of E[xt] we derived in Section 2.1. Then,
by using the relation

StdDev[xt] =

q
E[x2

t ] − (E[xt])
2 (14)

one can derive the dynamics for the standard deviation of
the sampling distribution of a PSO during stagnation.

2.3 Initial conditions
The recursions for E[xt], E[x2

t ] and E[xtxt−1] form the
following set of coupled difference equations8>>>>>>>>>><
>>>>>>>>>>:

E[xt+1] = E[xt](w
′ − c) − wE[xt−1] + c y+ŷ

2

E[x2
t+1] = E[x2

t ]
`
w′2 − 4μw′ + 2ν + 2μ2

´
+

E[xt−1xt] (−2ww′ + 4wμ) +
E[x2

t−1]
`
w2

´
+

2E[xt](y + ŷ)
`
μw′ − ν − μ2y

´−
2wμE[xt−1](y + ŷ) + νy2 + 2μ2yŷ + νŷ2

E[xt+1xt] = E[x2
t ](w

′ − c) − wE[xtxt−1] + E[xt]c
y+ŷ

2

(15)
Let us evaluate the initial conditions for this system. To do
so, we must specify how we perform the initialisation of the
particle swarm. As an example, let us consider the following
very typical conditions: a) a particle’s initial position, x0, is
chosen uniformly at random in a symmetric range [−Ω, Ω],
b) a particle’s initial velocity, v0, is also chosen uniformly at
random in the same range.

In these conditions, clearly, E[x0] = 0 and E[v0] = 0. So,
E[x1] = E[x0+v1] = E[x0]+E[v1] = E[v1]. Let us compute
E[v1]. We have that

E[v1] = E[wv0 + φ1(y − x0) + φ2(ŷ − x0)]

= wE[v0] + E[φ1](y − E[x0]) + E[φ2](ŷ − E[x0])

= c
y + ŷ

2
.

So, E[x1] = c y+ŷ
2

. We also have that E[x2
0] = E[v2

0 ] = Ω2

3
,

while E[x1x0] = E[(x0 + v1)x0] = Ω2

3
+ E[v1x0], the second

term of which is given by

E[v1x0] = E[wv0x0 + φ1(yx0 − x2
0) + φ2(ŷx0 − x2

0)]

= wE[v0]E[x0] + E[φ1](yE[x0] − E[x2
0])

+ E[φ2](ŷE[x0] − E[x2
0])

= −cE[x2
0]

= −c
Ω2

3
,

resulting in E[x1x0] = (1 − c)Ω2

3
.

The only remaining initial condition we need is E[x2
1] =

E[(x0+v1)
2] = E[x2

0]+2E[v1x0]+E[v2
1 ] = (1−2c)Ω2

3
+E[v2

1 ],

which, after similar additional calculations leads to E[x2
1] =

7c2−12c+6w2+6
18

Ω2 + c2 (y+ŷ)2

3
.

3. STABILITY ANALYSIS FOR
PARTICLES WITH RANDOMNESS

The system of equations (15) can be written in matrix
notation as an extended first order system obtaining

z(t + 1) = Mz(t) + b (16)

where

z(t) =
`
E[xt] E[xt−1] E[x2

t ] E[x2
t−1] E[xtxt−1]

´T

and the matrix M and the forcing vector b are given in
Figure 2.

It is then trivial to verify under what conditions E[xt],
E[x2

t ] and E[xtxt−1] (thereby also StdDev[xt]) will converge
to stable fixed-points. We need to have that all eigenvalues
of M must be within the unit circle, i.e. Λm = maxi |λi| <
1. The analysis of the stability of the system can be done
easily. Any good computer algebra system can provide these
eigenvalues in symbolic form. Two of them are simply:

1 + w − c ± p
(w − c)2 − 2c − 2w + 1

2

The expressions for remaining three, however, are too big
to report in this paper. The analysis reveals that none of
the eigenvalues depends on either y or ŷ (nor p). That is,
whether or not the system is stable does not depend on
where personal best and swarm best are located in the search
space.

Naturally, when Λm < 1, in principle we could symbol-
ically derive the fixed-point for the system, which we will
denote as z∗. This would be simply given by

z∗ = (I − M)−1b

For simplicity, below we will find explicit expressions for
some components of z∗ by other means.

When the system is stable, by the simple change of vari-
ables z̃(t) = z(t) − z∗ can then represent the dynamics of
the system via following linear homogeneous equation

z̃(t + 1) = M z̃(t)

which can trivially be integrated to obtain the explicit solu-
tion

z̃(t) = M tz̃(0).

Naturally, all these operations can be performed numeri-
cally once c and w are fixed. For example, in Figure 3 shows
a plot of Λm as a function of c and w for y = −1 and ŷ = 1.
The plot also shows a line where Λm = 1. As we explained
earlier, although in order to compute M we have to specify
y and ŷ as well as c and w, Λm is not affected by what val-
ues y and ŷ have. So, one obtains exactly the same plot, for
example, for y = 9 and ŷ = 10 (same distance as y = −1
and ŷ = 1, but different p) or y = −10 and ŷ = 10 (different
distance, but same p as for y = −1 and ŷ = 1).

Naturally, knowing the region where the system is stable
allows one to perform an informed choice of the parame-
ters of the PSO. We should note that in this respect the
region of convergence provided by the analysis of the E[xt]
alone, as it has effectively been done in previous research,
does not provide enough information to guarantee conver-
gence of the particles. It only guarantees convergence of the
mean. Compare, for example Figure 3 with Figure 1. Note
how the actual region of stability shown in Figure 3 lays
completely inside the presumed region of stability obtained
by analysing E[xt] only (Figure 1). Interestingly, by choos-
ing parameters between the two curves, one obtains PSOs
where E[xt] → p, but StdDev[xt] drifts (perhaps slowly) to
infinity, which might be a desirable property if one wants to
obtain PSOs capable of escaping from local optima. Note
also, that choosing parameters c and w within the region of
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M =

0
BBB@

w′ − c −w 0 0 0
1 0 0 0 0

4p
`
μw′ − ν − μ2

´ −4μwp w′2 − 4μw′ + 2ν + 2μ2 w2 2w (2μ − w′)
0 0 1 0 0
cp 0 w′ − c 0 −w

1
CCCA b =

0
BB@

cp
0

νy2 + 2μ2yŷ + νŷ2

0
0

1
CCA

Figure 2: State update matrix M and forcing vector b (see Equation (16)).
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Figure 3: Magnitude of the largest eigenvalue of M
as a function of the parameters w and c when y = −1
and ŷ = 1. The curved line on the surface encloses
the stable region.

convergence does not imply that StdDev[xt] → 0. In the
following we clarify when this is the case.

Simple inspection of the equations in Equation (15), re-
veals that the dynamics of E[xt] is independent from those
of E[x2

t ] and E[xtxt−1], while the converse is not true. This
means that E[x2

t ] and E[xtxt−1] cannot be at a fixed-point
unless also E[xt] is. Let us assume that (c, w) is in the re-
gion of convergence for E[xt]. Then, for sufficienlty large t,
E[xt] becomes almost indistiguisheable from the fixed-point
p = y+ŷ

2
. In these conditions, for the purpose of finding

fixed-points for E[x2
t ] and E[xtxt−1], we can replace E[xt]

and E[xt−1] with p in the second and third equations of
Equation (15), obtaining

E[x2
t+1] = E[x2

t ]
`
w′2 − 4μw′ + 2ν + 2μ2´

+

E[xt−1xt]
`−2ww′ + 4wμ

´
+ (17)

E[x2
t−1]w

2 + 4p2 `
μ − ν − μ2´

+

νy2 + 2μ2yŷ + νŷ2

E[xt+1xt] = E[x2
t ](w

′ − c) − wE[xtxt−1] + p2c (18)

We know that if (c, w) are additionally within the conver-
gence region for the system, shown in Figure 3, then also
E[x2

t ] and E[xt−1xt] will tend to a fixed-point. Let us find
such fixedpoints. To do so we will assume we are at those
fixed points, which we call px2 and pxx, respectively. We

substitute these into Equations (17) and (18) to obtain

px2 = px2
`
w′2 − 4μw′ + 2ν + 2μ2

´
+

pxx

`−2ww′ + 4wμ
´

+ (19)

px2w2 + 4p2
`
μ − ν − μ2

´
+ νy2 + 2μ2yŷ + νŷ2

pxx = px2(w
′ − c) − wpxx + p2c (20)

The second equation allows us to compute

pxx = px2

“
1 − c

w′

”
+ p2 c

w′ (21)

Substitution of this in the first equation in (17) gives the
fixed-points shown in Figure 4.

In order for a particle to converge, i.e., limt→∞ xt = p,
it is not enough to have limt→∞ E[xt] = p: we must
also have limt→∞ StdDev[xt] = 0. This in turns requires
limt→∞ E[x2

t ] = p2. That is, we require px2 = p2. To see
when this can be the case, let us analyse Equation (22) in
more detail.

For conciseness let us define

Δ = 1 −
h `

w′2 − 4μw′ + 2ν + 2μ2´
(24)

+
“
1 − c

w′

”
2w

`
2μ − w′´ + w2

i
.

Then, with little algebra one can see that

px2 =

„
Δ − 2(μ2 − ν)

Δ

«
p2 (25)

+

„
4y(μ2 − ν)

Δ

«
p +

„
2y2(ν − μ2)

Δ

«

where we used the substitution ŷ = 2p − y.
So, in general px2 �= p2 except if y = p, i.e., ŷ = y. Then

px2 = p2. So, except for the best particle in the swarm, the
standard deviation of the sampling distribution, StdDev[xt],
does not converge to 0, but to

psd

=

s„−2(μ2 − ν)

Δ

«
p2 +

„
4y(μ2 − ν)

Δ

«
p +

„
2y2(ν − μ2)

Δ

«

=

r
2
(ν − μ2)

Δ
(p2 − 2yp + y2)

=

r
2
(ν − μ2)

Δ
(p − y)2

=

r
2
(ν − μ2)

Δ
· |p − y|
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px2 =
4p2

`
μ − ν − μ2

´
+ νy2 + 2μ2yŷ + νŷ2 + p2 c

w′ 2w (2μ − w′)

1 − ˆ
(w′2 − 4μw′ + 2ν + 2μ2) +

`
1 − c

w′
´
2w (2μ − w′) + w2

˜ (22)

pxx =
4p2

`
μ − ν − μ2

´
+ νy2 + 2μ2yŷ + νŷ2 + p2 c

w′ 2w (2μ − w′)

1 − ˆ
(w′2 − 4μw′ + 2ν + 2μ2) +

`
1 − c

w′
´
2w (2μ − w′) + w2

˜ “
1 − c

w′

”
+ p2 c

w′ (23)

Figure 4: Fixed-points for E[x2
t ] and E[xtxt−1].

which we can finally rewrite as

psd =

r
2
(ν − μ2)

Δ
·

˛̨̨
˛ ŷ − y

2

˛̨̨
˛ (26)

Hence the search continues unless y = ŷ.
It is interesting to note that the observation that led to

the definition of the bare-bones PSO [18] that the standard
deviation of the search distribution is proportional to

˛̨
ŷ−y

2

˛̨
was fundamentally correct. There is, however, a multiplica-
tive factor,

p
2(ν − μ2)/Δ, in Equation (26) which depends

on the parameters c and w and that was not previously de-
tected. This factor may explain part of the differences in
performance observed when comparing the bare-bones PSO
and the classical algorithm.

4. NUMERICAL INTEGRATION
In this section we report the results of numerical integra-

tion of the dynamic equations for E[xt], E[x2
t ] and E[xtxt−1]

(Equation (15)).
We start (Figure 5) by considering the case c = 1.49618

and w = 0.7298 which corresponds to the parameter values
recommended in [5] for the PSO with constriction. Note
how, while E[xt] converges to p = 3 within 30 generations,
StdDev[xt] never converges to zero, settling onto a value of
just over 2.0 within about 70 generations. The picture is
very different, however, if y = ŷ, as shown in Figure 6. In
this case, E[x2

t ] and E[xtxt−1] converge to p2. As a result,
StdDev[xt] decreases to zero. The decrease is exponential,
corroborating Blackwell’s analysis of how the spatial extent
of a particle swarm varies over time [19] (see Section 1).

Examples of configurations where the mean converges to
its fixed-point while StdDev[xt] does not converge to 0 are
shown in Figure 8. Note that this is not necessarily an un-
desirable behaviour. In some situations having a sampling
distribution that progressively widens if improvements can-
not be found might be exactly what one needs. What is
important is to be able to control whether or not there is
growth of StdDev[xt] and a what rate. This is exactly what
our model allows one to do.

By an appropriate setting of parameters we can even
achieve a self-limiting growth in StdDev[xt], and, further-
more, we can fix its asymptote by design. A way to achieve
this is to note that if c = w′ = 1 + w, the fixed-point for
E[xtxt−1] in Equation (21) simplifies to pxx = p2. Then we
have

px2 = px2
`
w′2 − 4μw′ + 2ν + 2μ2´

+

p2 `−2ww′ + 4wμ
´

+ (27)

px2w2 + 4p2
`
μ − ν − μ2

´
+ νy2 + 2μ2yŷ + νŷ2
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Figure 5: Numerical integration of the system of
difference equations in Equation (15) for c = 1.49618,
w = 0.7298, y = 2, ŷ = 4 and Ω = 5.
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Figure 6: Numerical integration of the system of
difference equations in Equation (15) for c = 1.49618,
w = 0.7298, y = ŷ = 3 and Ω = 5.
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Figure 8: Numerical integration of the system of
difference equations in Equation (15) for values of c
and w where E[xt] is convergent, but StdDev[xt] �→ 0.

which can be solved for px2 , obtaining, after simplification,
the fixed-point in Figure 7. With this in hand one can then
compute psd =

p
px2 − p2. For example, for w = 0.5, y =

−3 and ŷ = 9, we obtain px2 = 45 and psd =
√

45 − 9 =
6, while for w = 0.7 one obtains px2 = 621 and psd =√

621 − 9 = 24.739. As one can see in Figure 9, there are
indeed the asymptotes to which the system converges.

5. DISCUSSION AND CONCLUSIONS
Several theoretical analyses of the dynamics of particle

swarms have been offered in the literature over the last
decade. These have been very illuminating. However, vir-
tually all have relied on substantial simplifications, and in
particular on the assumption that the particles are deter-
ministic. Naturally, this assumption makes it impossible to
derive an exact characterisation of the sampling distribu-
tion of the PSO. This distribution has therefore remained
the “holy grail” of PSO research for almost a decade.

By using of surprisingly simple techniques, in this paper
we have been able to exactly determine perhaps the most
important characteristic of a PSO’s sampling distribution,
its variance, and we have been able to explain how it changes
change over any number of generations. The only assump-
tion we made is stagnation, so our characterisation is valid
for as long as a particle searches for a better personal best.
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Figure 9: Numerical integration of the system of
difference equations in Equation (15) for values of
c and w where E[xt] is convergent to p, E[xtxt−1] is
convergent to p2 and E[x2

t ] is convergent to the value
given in Equation (28).

We applied the analysis to the PSO with inertia weight,
but, as we explained in Section 1, the analysis is also valid for
the PSO with constriction via a simple parameter mapping.

Knowing the dynamics of the variance of the PSO’s sam-
pling distribution and being able to control it, as, for exam-
ple, we illustrated in Section 4, is very important because it
allows one to understand the search behaviour of the PSO
and adapt it to a problem at hand.

The dynamics of the variance of the PSO’s sampling
distribution is also important from a theoretical stand-
point. In order for a particle to converge, it is not
enough to require limt→∞ E[xt] = p: we must also have
limt→∞ StdDev[xt] = 0. In the absence of accurate in-
formation on StdDev[xt], previous research has effectively
assumed that limt→∞ E[xt] = p would eventually drive
StdDev[xt] to zero. This assumption has, for example, been
used in the proof provided in [6] and [2] that the PSO is not
guaranteed to be an optimiser. However, as we have shown
in this work, limt→∞ StdDev[xt] = 0 only if y = ŷ, and so
whether or not the PSO is an optimiser is still effectively a
conjecture.

How could our results help obtain a formal proof of con-
vergence? The stagnation assumption essentially removes
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px2 =
(w + 1)2(2p − y)2/3 + 0.5y(2p − y)(w + 1)2 + y2(w + 1)2/3 + 2(w − 7

6
(w + 1)2 + 1)p2

− 1
6
(w + 1)2 − w2 + 1

(28)

Figure 7: Fixed-point for E[x2] when c = 1 + w.

the dependence on the details of the fitness function. Our
results can be used to prove convergence when stagnation
has occurred. So, a proof of convergence for the PSO would
require finding under which conditions and for what fitness
functions the system stagnates. We will pursue this line of
attack in future research.

Although we have applied our analysis only to first and
second order statistics of the sampling distribution, nothing
prevents one from constructing higher order statistics. In
future research we want to study these. This would provide
us with a deeper theoretical characterisation of the PSO.
Because of the complexity of the calculations involved, this
may require mechanisation via a symbolic algebra system.
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