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ABSTRACT
We apply a novel theoretical approach to better understand
the behaviour of different types of bare-bones PSOs. It
avoids many common but unrealistic assumptions often used
in analyses of PSOs. Using finite element grid techniques, it
builds a discrete Markov chain model of the BB-PSO which
can approximate it on arbitrary continuous problems to any
precision. Iterating the chain’s transition matrix gives pre-
cise information about the behaviour of the BB-PSO at each
generation, including the probability of it finding the global
optimum or being deceived. The predictions of the model
are remarkably accurate and explain the features of Cauchy,
Gaussian and other sampling distributions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Performance

Keywords
Particle Swarm Optimisation, Bare-bones PSO, Theory

1. INTRODUCTION
PSO theorists have often been forced to make simplifying
assumptions in order to obtain models that could be stud-
ied mathematically. These include: isolated single individu-
als, search stagnation (i.e., no improved solutions are found)
and absence of randomness. So, the resulting mathematical
models are approximate and need to be verified empirically.

The first attempt at providing a theoretical model of PSO
was presented in [1]. The model was a simplified model
of the type mentioned above, where the behaviour of one
particle, in isolation, in one dimension, in the absence of
stochasticity and during stagnation was considered. Also
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the personal best of a particle, �pi, and and the swarm best,
�pg, were assumed to coincide, as is the case for the best
particle in a neighbourhood. No inertia, velocity clamping
nor constriction were used. The work was extended in [2]
where multiple multi-dimensional particles were covered and
�pi and �pg were not required to coincide.

Similar assumptions were used in [3]: one particle, one
dimension, deterministic behaviour and stagnation. Under
these conditions the swarm is a discrete-time linear dynam-
ical system. The dynamics of the state of particle can be
determined by finding the eigenvalues and eigenvectors of
the state transition matrix. The model, therefore, predicts
that the particle will converge to equilibrium if the magni-
tude of the eigenvalues is smaller than 1. Since the eigen-
values of the system are functions of the parameters of the
PSO, the model can suggest which parameter settings would
guarantee convergence.

A similar approach was used in [4], where, again, one par-
ticle, without randomness and during stagnation was mod-
elled. As in previous work, an explicit solution for the tra-
jectory of the particle was provided. [4] also suggested the
possibility that particles may converge on a point that is nei-
ther the global optimum nor indeed a local optimum. This
implies that a PSO is not guaranteed to be an optimiser.

A simplified model of particle was also studied in [5]. The
assumptions were: one one-dimensional particle, stagnation
and absence of stochasticity. Inertia was included in the
model. Again an eigenvalue analysis of the resulting dy-
namical system was performed with the aim of determining
for what parameter settings the systems is stable and what
classes of behaviours are possible for a particle.

Blackwell [6] investigated how the spatial extent of a par-
ticle swarm varies over time. A simplified swarm model
was adopted which is an extension of the one in [3] where
more than one particle and more than one dimensions are
allowed. This allowed particles to interact, in the sense that
they could change their personal best. Constriction was in-
cluded but not stochasticity.

Under the same assumptions as [3] and following a simi-
lar approach, [7] presented a lucid analysis of a 4-parameter
family of particle models and identified regions in the param-
eter space where the model exhibits qualitatively different
behaviours (e.g., stability, harmonic oscillations etc.).

The dynamical system approach proposed of [3] has re-
cently been extended in [8, 9] where an extended PSO
was studied. Under the assumption that no randomness is
present, the resulting model is a discrete, linear and station-
ary dynamical system, for which [8, 9] formally expressed
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the free and forced responses. However, since the forced
response depends inextricably on the specific details of the
fitness function, only the free response was studied in detail.

To better understand the behaviour of the PSO during
phases of stagnation, [10] analysed the distribution of veloc-
ities of one particle controlled by the standard PSO update
rule with inertia and stochastic forces. In particular, a par-
ticle’s new velocity was shown to be the sum of a forward
force, a backward force and noise.

The stability of particles in the presence of stochasticity
was studied in [11] by using Lyapunov stability analysis.
The behaviour of a single particle – the swarm best – with
inertia and during stagnation was considered. By repre-
senting the particle as a non-linear feedback system, a large
body of knowledge from control theory could be applied.
Sufficient conditions on the PSO parameters to guarantee
convergence were derived, but, being Lyapunov theory very
conservative, these conditions are very restrictive, effectively
forcing the PSO to have little oscillatory behaviour.

In summary, despite valiant efforts, a comprehensive
mathematical model of particle swarm optimisation has
eluded researchers for almost a decade. By applying a sim-
ple idea borrowed from the field of solid modelling, in this
paper we make a significant first step towards this goal for
a special type of PSO: the bare-bones PSO [13]. In Sect. 2
we describe our finite element method Markov approach.
Sect. 3 provides a generic model of bare-bones PSOs, which
we apply in Sect. 4 to BB-PSOs with different sampling dis-
tributions. We compare the predictions of these models with
actual runs in Sect. 6. We draw some conclusions in Sect. 7.

2. FINITE ELEMENT MODELS OF
CONTINUOUS OPTIMISERS

In [12], we proposed a method to build discrete Markov
chain models of continuous stochastic optimisers that, in
principle, can approximate them on arbitrary continuous
problems to any precision. The idea is to discretise the ob-
jective function using a finite element method grid which
produces corresponding distinct states in the search algo-
rithm. The discretisation makes it easy to compute the
transition matrix for the system. Iterating the transition
matrix gives precise information about the behaviour of the
optimiser at each generation, including the probability of it
finding the global optima, the expected run time, etc. In
[12] we tested the approach on (1+1) evolutionary strate-
gies, real-valued genetic algorithms and a bare bones PSO
with Gaussian sampling distribution. In the case of the bare
bones PSO, it was able to model the real system. I.e., a
stochastic swarm with multiple interacting individuals on
two simple fitness functions (a linear function and a decep-
tive function). Preliminary empirical results revealed that
the predictions of the Markov chain are accurate.

The purpose of [12] was to introduce the idea and to test
on a small but diverse group of optimisers. No in-depth
analysis of the Markov chains nor of alternative parameter
settings and sampling distributions was carried out. In this
paper, instead, we concentrate on the bare-bones PSO, and
study the resulting Markov chains in a variety of conditions.
Our method works as follows.

We start by partitioning a continuous N-dimensional
search space Ω into a finite number (n) of compact non-
overlapping sub-domains Ωi. For simplicity, we take the fit-

ness of each sub-domain Ωi as the fitness at its centre. (I.e.
fi = f(xci) where xci is the centroid of cell i) and we adopt
the convention of ordering sub-domains by fitness so that
fi ≤ fj for i < j. Again for simplicity, we consider Ω to be an
N-dimensional cube, which we partition using a regular grid
of hypercubic cells:

Ωi = [xci1
−r, xci1

+r]×[xci2
−r, xci2

+r]×· · ·×[xciN
−r, xciN

+r]

(1)
where r is the cell “radius” and xcij

is the j-th component

of a lattice point xci .
We then discretise the algorithm by only allowing it to

be in discrete states, effectively disallowing all points in the
search space except the centroids, xci of the domains.

3. MODELLING THE BARE-BONES PSO
We apply the technique in Sect. 2 to the bare-bones

PSO [13]. This optimiser is inspired by the observation that,
at least until a better location in the search space is sam-
pled, the pseudo chaotic particle orbits in a PSO can be
approximated by a fixed probability distribution centred on
the point lying halfway between the particle best and the
neighbourhood best. Its width is modulated by the distance
between them. The exact nature of the distribution is not
clear: it is bell shaped like a Gaussian distribution but the
tails appear to be heavier, like a Cauchy distribution. So,
[13] suggested to cut out the integration needed to find each
particle’s position, and instead draw it from a Gaussian dis-
tribution of mean 1

2
(�pi+�pg) and standard deviation |�pi−�pg|.

This means we no longer need to track each particle’s posi-
tion and velocity: we only need its personal best.

Let us consider a fully-connected bare bones PSO to start
with. In this PSO the particles simply randomly sample the
neighbourhood of their personal best and swarm best using
a fixed probability density function. This continues until
either their personal best or the swarm best is improved.
When this happens, the parameters of the sampling distribu-
tion are recomputed and the sampling process is restarted.

In the unlikely event that more than one particle’s
personal-best fitness is the same as the best fitness seen so
far by the whole swarm, we assume that swarm leadership
is shared. That is, each particle chooses as its swarm best a
random individual out of the set of swarm bests.

Naturally, at any given time the personal best for each
particle and the swarm best will be located in some sub-
domain Ωi. In a discretised bare bones PSO both the parti-
cle best xp and swarm best xs can only take one of a discrete
set of values, namely xp = xck and xs = xcj for some j and
k in {0, · · · , n − 1}. So, the discretised algorithm can only
be in one of a finite set of states. However, we don’t need to
represent explicitly the swarm best, since the information is
implicit in the fitness values fi of each centroid. So, if P is
the population size, there are nP such states – one for each
particle’s personal best – and we can represent states of the
whole algorithm as P dimensional vectors with integer ele-
ments, i.e. s = (s1, · · · , sP ). Let us now focus on computing
state transition probabilities.

Let p(x|xs, xp) be the sampling probability density func-
tion when swarm best is xs and particle best is xp. The
standard sampling distribution used in the BB-PSO is a
Gaussian distribution but our approach can also be applied
to Cauchy or other distributions.

Normally in PSOs random numbers are chosen indepen-
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dently for each dimension when computing velocity vec-
tors. In a bare bones PSO we do the same thing. So
each dimension of p(x|xs, xp) can be calculated separately,
and we can write the probability of a particle sampling
x, given its personal best xs and the swarm best xp, as

p(x|xs, xp) =
QN

j=1 p(xj |xsj , xpj ) where xj , xsj , and xpj are
the j-th components of vectors x, xs and xp, respectively.

The probability of sampling domain Ωi, Pr(Ωi), is given
by the integral of p(x|xs, xp) across Ωi. Since the sub-
domains Ωi are arranged in a cubic lattice, cf. Equation 1,
the probability of landing in cell Ωi is given by the product
of integrating along each dimension, i.e. we have

Pr(Ωi|xs, xp) =
Y

j

Z xcij
+r

xcij
−r

p(xj |xsj , xpj ) dxj . (2)

Since particle personal bests can only change if there is a
fitness improvement, only certain state transitions can oc-
cur. That is, a transition from state s = (s1, · · · , sP ) to state
s′ = (s′1, · · · , s′P ) is possible only if the fitness of at least one
particle improves.

Typically in a fully-connected PSO there is only one
particle with the best fitness value. However in a dis-
cretised PSO, it is not uncommon to have more than
one. So, in general, we have a set B(s) of swarm
bests: B(s) =

S
i:f(si)=fm(s){si}, where the union includes

all members of the population with the maximum fitness
fm(s) = maxj fsj . More generally, to allow other communi-
cation topologies, we need to allow each particle to have
its own neighbourhood and so its own set of neighbour-
hood bests. We will denote these best sets as B(s, i), for
i = 1, · · · , P . Often the best particle in one neighbourhood
will also be one of the best in an overlapping neighbourhood,
so B(s, i) may overlap each other.

In a BB-PSO, at each iteration, the particles sample the
search space independently. So, if the i-th particle’s best
is in domain k (that is, si = k), then the probability of it
changing to domain l is given by:

Pr(l|B(s, i), k) = (3)8>><>>:
1

|B(s,i)|
P

b∈B(s,i) Pr(Ωl|xcb , xck) if k �= l and fl > fk,

0 if k �= l and fl ≤ fk,

1 − P
l:fl>fk

Pr(l|B(s, i), k) if l = k.

This ensures the particle remains in domain k if any of the
following conditions is met: 1) the new sample is in Ωk,
2) the new sample is in a lower fitness cell, 3) the sample is
outside Ω.

Because of the independence of the particles (over one
time step), we can then write the state transition probability
for the whole PSO as

ms,s′ =
Y

i

Pr(s′i|B(s, i), si) (4)

where further decompositions can be obtained using Equa-
tions 3 and 2.

4. BB-PSO SAMPLING DISTRIBUTIONS
It is interesting to study how the behaviour and perfor-

mance of the BB-PSO is affected by changes in its sampling
distribution. In the following sub-sections we describe the
distributions considered in this paper.

4.1 Uniform sampling distributions
Consider the simplest possible form of sampling distribution:
a symmetric flat uniform distribution of width (1 + 2α)Δ,
where Δ is the distance between the particle’s best and its
neighbourhood best and α ≥ 0 ensures we also sample out-
side the range between them. I.e. a distribution of the form:

p(xj |xsj , xpj ) =(
1/(1 + 2α)Δ if x ∈ [xmin − αΔ, xmax + αΔ]

0 otherwise,

where xmin = min(xsj , xpj ), xmax = max(xsj , xpj ), Δ =
xmax − xmin and α ≥ 0 is a constant. Note that this dis-
tribution becomes a Dirac delta function when the particle
and neighbourhood best coincide, i.e. when xsj = xpj .

If the particle and neighbourhood best are different, i.e.
xsj �= xpj , we have thatZ xcij

+r

xcij
−r

p(xj|xsj , xpj ) dxj = max

„
0,

β2 − β1

(1 + 2α)Δ

«

where β1 = max(xcij
− r, xmin − αΔ) and

β2 = min(xcij
+ r, xmax + αΔ). If the particle and neigh-

bourhood best are the same, i.e. xsj = xpj , then the integral
is 1 when the particle samples cell i (i.e., xpj = xcij

) and 0

otherwise.
In the rest of the paper we will limit our attention to the

distributions obtained for α = 0 and α = 0.5, which we will
term “uniform” and “extended uniform”, respectively.

4.2 Gaussian sampling distributions
For a Gaussian sampling distribution the mean is half way

between the swarm and particle bests, whilst we set the
standard deviation equal to the distance between them, i.e.

p(xj|xsj , xpj ) = G

„
xsj + xpj

2
,
˛̨
xsj − xpj

˛̨«
.

Note that also this distribution becomes a Dirac delta func-
tion when xsj = xpj .

The integral of the Gaussian distribution is the erf func-
tion. So, if xsj �= xpj , we haveZ xcij

+r

xcij
−r

p(xj|xsj , xpj ) dxj =

1

2

0@erf

0@xcij
+ r − xsj

+xpj

2˛̨
xsj − xpj

˛̨√
2

1A − erf

0@xcij
− r − xsj

+xpj

2˛̨
xsj − xpj

˛̨√
2

1A1A
while, again, if xsj = xpj the integral is 1 when xpj = xcij

and 0 otherwise.

4.3 Cauchy sampling distribution
For a Cauchy sampling distribution we have

p(xj |xsj , xpj ) =
γ

π
ˆ
γ2 + (x − μ)2

˜
where μ =

xsj
+xpj

2
and γ = |xsj − xpj |. Note that also this

distribution becomes a Dirac delta function when xsj = xpj .
So, for this distribution, when xsj �= xpj , we have
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Z xcij
+r

xcij
−r

p(xj |xsj , xpj ) dxj =

1

π

0
B@tg−1

0
B@ xcij

+ r − xsj
+xpj

2

|xsj − xpj |

1
CA − tg−1

0
B@ xcij

− r − xsj
+xpj

2

|xsj − xpj |

1
CA

1
CA

where tg−1 is the arc tangent function. If, instead, xsj =
xpj , again the integral is 1 when xpj = xcij

and 0 otherwise.

4.4 Non-collapsing Uniform, Gaussian and
Cauchy distributions

We also consider BB-PSO sampling distributions which
continue to explore even when the particle’s best is also the
best in the neighbourhood. This can easily be done by en-
suring the width of the distribution never shrinks below ν.

So, we propose a variation of the uniform sampling distri-
bution where

p(xj|xsj , xpj ) =8>><>>:
1/ max(αΔ, 2ν) if x ∈ [x̄− 1

2
max(αΔ, 2ν), x̄−

1
2

max(αΔ, 2ν)],

0 otherwise,

where x̄ = (xmin + xmax)/2 and ν is a small positive con-
stant. Also, we propose a variation of the Gaussian sampling
distribution, where

p(xj|xsj , xpj ) = G

„
xsj + xpj

2
, max(

˛̨
xsj − xpj

˛̨
, ν)

«
where ν is a small positive constant. Finally, we propose the
following variant for the Cauchy distribution:

p(xj |xsj , xpj ) =
γ̃

π
ˆ
γ̃2 + (x − μ)2

˜
where γ̃ = max(γ, ν). For all distributions we will concen-
trate on the case ν = 0.5.

These changes prevent the sampling distributions from
becoming a delta when xsj = xpj . This, as we will see, has
important consequences.

5. SUCCESS PROBABILITY AND
CONVERGENCE TIME

In a BB-PSO (and many other optimisers) each initial
state is equally likely. That is, if π0 represents the initial
probability distribution over states, the components of π0

are all 1/nP . Given π0 and the transition matrix M , we can
compute the probability distribution of a BB-PSO being in
any particular state at generation t, from πt = M tπ0.

The success probability is obtained by summing the com-
ponents of πt corresponding to states where at least one
particle is in fittest domain. I.e., if J is the set of such
states, then the success probability is

P
i∈J πti at genera-

tion t. Naturally, J could represent any other set of states
of interest. E.g., if J represents all the states where all par-
ticles are in the same domain (i.e., the PSO has converged),
then

P
i∈J πti represents the probability of the BB-PSO be-

ing converged (whether on the global optimum or elsewhere)
at generation t.

We can also estimate the expected time before the BB-
PSO achieves a particular goal or settles in a particular state
by computing the expected waiting time of the corresponding
discrete Markov chain to visit a particular target state or set
of states J . This is given by (see [14, pages 168–170])

EWTJ =
X
i�∈J

π0iηi,J

where π0 is the distribution of initial states and ηi,J is the
mean passage time for going from state i to the set of states
J , given that it is currently outside the set, which is obtained
by solving the following system of simultaneous equations:

ηi,J −
X
k �∈J

mi,kηk,J = 1 (5)

where mi,j are the elements of Markov matrix for the sys-
tem.

If we represent Equations 5 in matrix notation as fMJηJ =

1, it is clear that ηJ can only be computed if fMJ is invertible
for a particular set J . Note that this is the case only if the
system can reach J with non-zero probability from all initial

conditions. Also, note that the matrix fMJ may be invertible
for some J but not others (as we will see later).

Assuming invertibility, when the set of states J represents
all states where at least one particle is in the domain contain-
ing the global optimum, then EWTJ effectively represents
the expected time required for a BB-PSO to solve a prob-
lem (run-time). If instead J represents all the states where
all particles are in the same domain, then EWTJ represents
the expected time to convergence (somewhere, i.e., not nec-
essarily on an optimum). If, finally, J contains only the
state where all particles are in the same domain and such a
domain contains the global optimum, EWTJ represents the
expected time to convergence to the global optimum.

6. RESULTS

6.1 Test problems and set up
We used the domain Ω = [−5, 5] and the following three 1–

D maximisation problems to our models (see Figure 1): the
linear function f(x) = x, the Rastrigin function f(x) = 3 −
0.1x2 + cos(2πx), and the sphere function f(x) = 3− 0.1x2.

We tested our model of BB-PSO against real runs on
these three problems and with eight distributions (see
Sect. 4): uniform, Gaussian, Cauchy, extended-uniform,
non-collapsing (NC) uniform, NC Gaussian, NC Cauchy and
NC extended-uniform. We constructed models with resolu-
tions, n, of 11, 21, 31, 41, 51, and 61 elements. To obtain
accurate statistics, for each set up, we performed 5 000 in-
dependent runs of the BB-PSO. In all tests we focused on
the case of a PSO with two particles.1

6.2 Model accuracy
Our Markov chain is an approximate model of a real, con-

tinuous BB-PSO, so we cannot expect it to exactly model
its continuous counterpart for a large number of generations.
We should expect, however, good accuracy for several gen-
erations. So, it is important to assess where the accuracy of

1We have demonstrated that it is possible to run models of
larger swarms on an ordinary PC if the mesh is coarse [12].
Here we limit our attention to two particles, so that we can
test finer resolutions.
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the model becomes unacceptable. To do so we compared the
model predictions vs. real runs at generations 10 and 50.2

Figure 2 shows a comparison between the probability of
the whole population converging to the global optimum pre-
dicted by the chain vs. that obtained in real runs at genera-
tions 10. As one can see there is excellent agreement between
model and real runs, with only a handful of very low resolu-
tion models (n = 21) diverging substantially from the main
diagonal. A similar picture was obtained when we focused
on the success probability (i.e., the probability that at least
one member of the population visited the domain containing
the global optimum), as shown in Figure 3.

Except for some off diagonal outliers, the predictions at
generation 50 are still quite good, cf. Figure 4. Most of the
poor predictions are BB-PSOs using Cauchy sampling. The
Cauchy distribution is very peculiar. It has fat tails and
an infinite variance. As a result, even when particles are
very near to each other, there is a good chance of produc-
ing large displacements. So, in real runs nearly converged
populations continue to progress slowly towards the global
optimum. However this is something that the Markov chain
cannot predict, since it violates the main assumption under
which our finite elements model is built: that the elements
are sufficiently small that we can describe the behaviour of
particles within them with simple functions.

Overall, these results indicate that provided the resolu-
tion of the mesh is high-enough, our Markov chain model
can predict the short term behaviour of a BB-PSO very ac-
curately. The long term prediction accuracy can also be
very good provided that the assumptions behind FEM are
not violated.

6.3 Comparison of Distributions
Let us now consider our results by grouping them accord-

ing to sampling distribution and problem type. Figure 5
shows how the probability of a member of the population
sampling the domain containing the global optimum varies
generation after generation. Similar results were obtained
for the probability of converging to the global optimum. As
one can see the predictions of the model are very accurate
even over the 50 generations in many configurations. As
indicated before exceptions are the Cauchy distributions,
where after 10 or 15 generations the resolution of the model
(n = 41 in the figure) shows its limits. Interestingly, on
the Rastrigin function, the hardest to optimise, the model
correctly predicts the dynamics of the system even with the
Cauchy distribution. This is because the 10 local optima
of the function can trap particles for longer. This means
that the distance between them remains higher, for longer.
This delays the violation of the FEM assumptions until later
generations.

What can we learn from these plots? Firstly we can see
that, on the two unimodal functions in our set, Sphere and
Linear, the non-collapsing versions of the uniform, Gaussian
and Cauchy sampling distributions invariably lead to sam-
pling the domain of the global optimum. That is, for those
functions the transition matrix of the chain is ergodic and
so irrespective of where one starts from, the global optimum
is guaranteed to be found.

For multimodal functions, such as Rastrigin, only the non-
collapsing Gaussian and Cauchy guarantee convergence to

2Because the population is small and the test problems are
1–D, all PSOs exhibit rapid convergence.
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Figure 2: Comparison between the probability of
convergence to the global optimum predicted by the
chain vs. that obtained in 5 000 independent runs of
real BB-PSOs at generation 10. Data for all resolu-
tions, fitness functions and distributions are plotted.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

M
ar

ko
v 

ch
ai

n

Runs

n=21
n=31
n=41
n=51
n=61
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ation 10. Data for all resolutions, fitness functions
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Figure 4: Comparison between the probability of
convergence to the global optimum predicted by the
chain vs. that obtained in 5 000 independent runs of
real BB-PSOs at generation 50. Data for all resolu-
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the global optimum, at least with ν = 0.5. With ν = 0.5, if
both particles reach the basin on attraction of a local opti-
mum, they cannot escape it with the uniform and extended
uniform sampling. With Gaussian and Cauchy, however,
this is possible thanks to their infinite tails.

Naturally the “convergent” versions of the distributions
can converge before the global optimum is sampled, leading
to success probabilities < 1, for all fitness functions con-
sidered. It is surprising to see that even in the unimodal
functions the population freezes in non-optimal states in a
large proportion of runs, proving that also the BB-PSO is
not guaranteed to be an optimiser as is the case for ordinary
PSOs [4] (see Sect. 1). Such premature convergence is less
frequent with the Cauchy and Gaussian distributions than
with the uniform ones, and it is completely absent in the
non-collapsing versions of Cauchy and Gaussian.

6.4 Solution time of BB-PSO
As explained in Sect. 5, the Markov chain model makes it

possible to calculate the expected first hitting times for a va-
riety of events. In particular, for the sampling distributions
which are guaranteed to lead to sampling the global opti-
mum, namely the non-collapsing Gaussian and Cauchy, one
can compute the expected time to convergence to the global
optimum, EWTJ , where J is the set containing the state
where all particles are in the domain of the global optimum.

We can also investigate ηi,J , the mean time for going from
any state i to the solution state J (see Sect. 5). Large values
of ηi,J indicate initial conditions that are particularly hard
for the optimiser. We show plots of ηi,J for different prob-
lems and two BB-PSO sampling distributions in Figure 6.

Generally the non-collapsing Cauchy distribution is faster
than the non-collapsing Gaussian. This is particularly true
for the Rastrigin function. However, there are conditions
where Gaussian beats Cauchy. Such as when at least one
of the particles is near the global optimum (domain num-
ber 40). This suggests that starting the search with a non-
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Figure 5: Success probability for the Linear (a),
Sphere (b) and Rastrigin (c) fitness functions for
different sampling distributions. Grid resolution
n = 41.
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collapsing Cauchy distribution and then progressively turn-
ing it into a non-collapsing Gaussian might be beneficial.

Note the raggedness of the plots for Sphere and Rastrigin.
In the case of the Sphere there are regular ripples parallel to
the main diagonal. These are because the function is sym-
metric and its optimum is in the middle of the search interval
[−5, 5]. Therefore two particles with exactly the same fit-
ness can either be at symmetric positions (say, x and −x)
or at the same position (say both x). Because in Figure 6
domains are ordered by fitness, these two distinct states are
represented by neighbouring points. In the symmetric case
the mode of the BB-PSO’s sampling distribution is 0 while
in the other it is x. Thus it is much easier for the BB-PSO
to reach the origin and so solve the problem by starting
from the (x,−x) configuration than from (x,x). Hence two
neighbouring points in Figure 6 have very different heights.
This is also true of the Rastrigin distribution. Here, how-
ever, we also have another important effect: particles can be
temporarily trapped by local optima and this is easier the
closer they are to a local optimum. This is the cause for the
ridges parallel to the x and y axes in Figure 6 (bottom).

7. CONCLUSIONS
We have applied a novel theoretical tool to the analysis

of different types of bare-bone particle swarm optimisers.
This allows the creation of discrete Markov chain models
which approximate the behaviour of a BB-PSO exploring a
continuous space. Being Markov chains, the models allow
one to compute everything that one needs to estimate about
the distribution of states of a search algorithm for any fitness
function. The models can be made arbitrarily accurate by
increasing the resolutions of the discretisation mesh.

We have shown that even with the modest resolutions we
adopted the models are very accurate over 10 or more gen-
erations (and, in fact, in many case for entire runs). The
analysis of the models reveals important features of differ-
ent sampling distributions. In particular, it reveals that a
minor change to the sampling distribution — preventing its
variance from ever becoming zero — transforms the Gaus-
sian and Cauchy BB-PSO into global optimisers, at least for
the three fitness functions we have studied.

The drawback of our models is their scalability. I.e., the
size of the transition matrix grows quadratically with the
number of domains in the discretisation grid and exponen-
tially with the number of particles and the number of dimen-
sions. So, we should not expect that this approach will solve
all problems of theoretical interest. It is clear, however, that
in principle the method overcomes many of the limitations
presented by previous theoretical analyses: a) it allows the
analysis of the dynamics of more than one particle, b) it
can be applied to the case where fitness is present, c) it can
be applied to any fitness function, d) it models stochasticity,
e) it provides accurate predictions over multiple generations.

In future research we intend to apply this technique to
study classical PSOs with velocity and inertia/constriction.
Also, we want to adopt a sparse matrix representation to
allow the study PSOs with larger populations and different
communication topologies.
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Figure 6: Convergence times to the global optimum for a BB-PSO with a population of two particles estimated
using a Markov chain model with n = 41 elements. Domains are numbered (0–40) in increasing fitness order.
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