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ABSTRACT
A method is presented that allows one to exactly determine
all the characteristics of a PSO’s sampling distribution and
explain how it changes over time, in the presence stochastic-
ity. The only assumption made is stagnation (particles are
in search for a better personal best).

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Performance
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1. INTRODUCTION
We start by considering the basic form of PSO with inertia

weight, which is controlled by the following two equations

vi
t+1 = wvi

t + φ1 ⊗ (yi − xi
t) + φ2 ⊗ (ŷ − xi

t) (1)

xi
t+1 = xi

t + vi
t+1 (2)

where φi represents a vector of random numbers uniformly
distributed in [0, ci] and ⊗ is component-wise multiplication.
Traditionally this model (and the related PSO with constric-
tion) has been studied theoretically under strong simplifying
assumptions such as isolated single individuals, search stag-
nation (i.e., no improved solutions are found) and absence
of randomness [3, 4, 5, 6, 2, 7, 20, 10, 11, 12, 13].

Only very few attempts to understand the behaviour of
the PSO in the presence of stochasticity have been made.
For example, Clerc [16] analysed the distribution of veloci-
ties of one particle controlled by the standard PSO update
rule with inertia and stochastic forces and was able to show
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that a particle’s new velocity is the sum of three compo-
nents: a forward force, a backward force and noise. Kadirka-
manathan et al. [17] were able to study the stability of par-
ticles in the presence of stochasticity by using Lyapunov
stability analysis. However, it is fair to say that for a very
long time very little has been known regarding the shape of
the sampling distribution of particles and its changes over
time.

In recent work[24] we introduced a novel method, which
allowed us to exactly determine the mean and standard de-
viation of the sampling distribution of the canonical PSO as
well as their changes over any number of generations. The
only assumption we made was stagnation, i.e., we studied
the sampling distribution produced by particles in search for
a better personal best.

In this paper we generalise the technique and apply it to
determine higher order moments of the sampling distribu-
tion of PSOs.

We start with a summary of the results presented in[24].

2. FIRST AND SECOND MOMENTS OF
THE PSO SAMPLING DISTRIBUTION

During stagnation each particle behaves independently.
Also, each dimension is treated independently. So, we can
analyse each particle’s behaviour in isolation. Dropping the
superscript i in Equations (1) and (2), we rewrite them as

xt+1 = xt(1 + w) − xt(φ1 + φ2) − wxt−1 + φ1y + φ2ŷ (3)

where we used of the relation vt = xt − xt−1. We apply the
expectation operator to both sides of the equation obtaining

E[xt+1] = E[xt](1 + w) − E[xt](E[φ1] + E[φ2])

− wE[xt−1] + E[φ1]y + E[φ2]ŷ (4)

where we performed the substitution E[xtφi] = E[xt]E[φi]
because of the statistical independence between φi and xt.
Assuming that the φi’s are uniformly distributed in [0, c] we
have E[φi] = c

2
and, so,

E[xt+1] = E[xt](w
′ − c) − wE[xt−1] + c

y + ŷ

2
(5)

where we renamed (1 + w) = w′.
Let us now compute x2

t+1. From Equation (3) we obtain:

x2
t+1 = (xtw

′ − xtφ1 − xtφ2 − wxt−1 + φ1y + φ2ŷ)2 (6)

Expanding and applying the expectation operator to both
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sides of the equation, one obtains

E[x2
t+1]

= E[x2
t ]
`

w′2 − 4µw′ + 2ν + 2µ2
´

+ E[xt−1xt]
`

−2ww′ + 4wµ
´

+ E[x2
t−1]

`

w2´ (7)

+ E[xt]
`

2µyw′ + 2µŷw′ − 2νy − 2µ2 ŷ − 2µ2y − 2νŷ
´

+ E[xt−1] (−2µyw − 2µŷw)

+ νy2 + 2µ2yŷ + νŷ2

where we set µ = E[φi] = c/2 and ν = E[φ2
i ] = c2/3, for

brevity.
If we multiply both sides of Equation (3) by xt and apply

the expectation operator we obtain

E[xt+1xt] = E[x2
t ](w

′−c)−wE[xtxt−1]+E[xt]c
y + ŷ

2
. (8)

The recursions for E[xt], E[x2
t ] and E[xtxt−1] form the

following set of coupled difference equations
8
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:

E[xt+1] = E[xt](w
′ − c) − wE[xt−1] + c y+ŷ

2

E[x2
t+1] = E[x2

t ]
`

w′2 − 4µw′ + 2ν + 2µ2
´

+
E[xt−1xt] (−2ww′ + 4wµ) +
E[x2

t−1]
`

w2
´

+
2E[xt](y + ŷ)

`

µw′ − ν − µ2y
´

−
2wµE[xt−1](y + ŷ) + νy2 + 2µ2yŷ + νŷ2

E[xt+1xt] = E[x2
t ](w

′ − c) − wE[xtxt−1] + E[xt]c
y+ŷ

2

(9)
This system of equations can be written in matrix nota-

tion as an extended first order system obtaining

z(t + 1) = Mz(t) + b (10)

where

z(t) =
`

E[xt] E[xt−1] E[x2
t ] E[x2

t−1] E[xtxt−1]
´T

and the matrix M and the forcing vector b are given in
Figure 1.

It is then trivial to verify under what conditions E[xt],
E[x2

t ] and E[xtxt−1] will converge to stable fixed-points. We
need to have that all eigenvalues of M must be within the
unit circle, i.e. Λm = maxi |λi| < 1. When this happens we
will say that the PSO is order-2 stable.

Naturally, when Λm < 1, in principle we could symbol-
ically derive the fixed-point for the system, which we will
denote as z∗. This would be simply given by

z∗ = (I − M)−1b

When the system is order-2 stable, by the simple change of
variables z̃(t) = z(t)− z∗, we can represent the dynamics of
the system via following linear homogeneous equation

z̃(t + 1) = M z̃(t)

which can trivially be integrated to obtain

z̃(t) = M tz̃(0).

3. HIGHER-ORDER MOMENTS
In the previous section we obtained recursions which de-

scribe the dynamics of first and second order moments of
the sampling distribution of a standard PSO during stagna-
tion. One may then wonder whether it would be possible to

follow a similar approach to study the dynamics of higher-
order moments.

The fundamental question in: what quantities would we
have to deal with if we took higher powers of both sides of
Equation (3) as we did to derive Equation (6)? Generally,
the r.h.s. we would be a sum of terms of the form

a0 xa1

t xa2

t−1 wa3 φa4

1 φa5

2 ya6 ŷa7 (11)

where ak are suitable constants. Naturally, taking powers of
Equation (3) and then multiplying both sides by some power
of xt would also lead to equations involving terms such as
those in Equation (11). That is, for any choice of b1 ∈ N

and b2 ∈ N,

xb1
t+1x

b2
t =

X

i

a0i x
a1i
t x

a2i
t−1 wa3i φ

a4i
1 φ

a5i
2 ya6i ŷa7i (12)

where aki are suitable constants. If we then take expecta-
tions for both sides we obtain

E[xb1
t+1x

b2
t ] =

X

i

a0i wa3i ya6i ŷa7i E[φ
a4i
1 ] E[φ

a5i
2 ] E[x

a1i
t x

a2i
t−1]

(13)
where we used the independence of φ1, φ2, xtxt−1 and, of
course, their powers. Because φj is uniformly distributed in
the range [0, c], it is easy to verify that

E[φn
j ] =

cn

n + 1
. (14)

So,

E[xb1
t+1x

b2
t ] =

X

i

ωi E[x
a1i
t x

a2i
t−1] (15)

where

ωi =

„

a0i wa3i ca4i
+a5i ya6i ŷa7i

(1 + a4i )(1 + a5i)

«

. (16)

It is important to note here that, because Equation (3) is
linear in xt and xt−1, all the terms on the r.h.s. of Equa-
tions (12) and (15) respect the relation a1i + a2i ≤ b1 + b2.
This implies that it is possible to construct recursions for

moments of arbitrary order.
For example, if one wanted to push the analysis up to

order 3, one would need to instantiate Equation (15) for
E[x3

t+1], E[x2
t+1xt], E[xt+1x

2
t ] and add the resulting equa-

tions to the three in Equation (9). If one wanted to
go to order four, an additional set of four equations (for
E[x4

t+1], E[x3
t+1xt], E[x2

t+1x
2
t ] and E[xt+1x

3
t ]) would be

needed, bringing the total to 10.
More generally, in order to compute statistics of order n

one needs to construct and iterate

Q(n) =
n × (n + 1)

2
(17)

second order difference equations. Since, after expansion,
the r.h.s. of Equation (3) contains 7 atomic terms of the
form in Equation (11), the r.h.s. of Equation (15) contains
7b1 terms.1 So, the total number of terms one needs to

1The exponent b2 does not influence the number of terms.
This is because the recursion for E[xb1

t+1x
b2
t ] in obtained as

follows: a) we compute xb1
t+1, which is given by an expression

containing 7b1 terms; b) we multiply each term by xb2
t , which

changes the exponents a1i but does not alter the number of
terms; c) we apply the expectation operator, which again
does not modify the number of terms.
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M =

0

B

B

B

@

w′ − c −w 0 0 0
1 0 0 0 0

4p
`

µw′ − ν − µ2
´

−4µwp w′2 − 4µw′ + 2ν + 2µ2 w2 2w (2µ − w′)
0 0 1 0 0
cp 0 w′ − c 0 −w

1

C

C
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A

b =
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0

νy2 + 2µ2yŷ + νŷ2

0
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C

C

A

Figure 1: State update matrix M and forcing vector b (see Equation (10)).

compute to construct the equations for order-n statistics is:
7 (for the order 1 equations) plus (72 + 7) (for the order 2
equations) plus (73 +72 +7) (for the order 3 equations) etc.,
which gives us a total of

T (n) =

n
X

i=1

(n − i + 1) × 7i

terms. E.g., T (1) = 7, T (2) = 63, T (3) = 462, T (4) = 3262
and T (5) = 22869. Note that T (n) grows exponentially
approximately as 1.36 × 7n. So, although the number of
equations one needs to deal with grows quadratically, the
computational effort required to instantiate them is expo-
nential. The growth in number of terms can be reduced if
one makes explicit use of w′ (i.e., by adding the factor w′a8

in Equation (11). Then T (n) = O(6n). Either way, man-
ually deriving equations for moments of order 3 is already
vary laborious. The process, however, is clearly mechanis-
able. This can be using computer algebra systems, or by
explicitly representing and manipulating the ωi’s for each
equation (this is what we did). As a result of mechanisation,
computing the equations for up to order 6 or 7 is feasible
with an ordinary personal computer.

Some of the ωi’s in Equation (15) present the same pattern
of exponents for w, c, y and ŷ, so terms can be collected lead-
ing to more compact equations (for example, compare Equa-
tions (6) and (7)). Also, given their size, one will normally
want to study (e.g., integrate) Equations (15) numerically.
In this case w, c, y and ŷ are all numerical parameters. So,
the ωi’s become constants and, after collecting terms, each
equation contains at most Q(n) terms, which, as we know,
is quadratic in the order n. As a result, although the com-
plexity of the construction of the motion equations for the
moments is exponential in the order of the moments, their
numerical integration is only of order O(n4).

Naturally, the system of Q(n) second order difference
equations necessary to predict the dynamics of moments of
order 1 to n can be turned into a system of order 1 of the
form in Equation (10), via the choice in Figure 2.

This effectively means adding artificial update equations
of the form E[xk

t ] = E[xk
t ] for k = 1, · · · , n, bringing the

total to Q′(n) = Q(n) + n. The transition matrix for the
system is therefore of size Q′(n) × Q′(n). We will denote
this with Mn. For example, for n = 4, which would allow
one to study the mean, variance, skewness and kurtosis of
the sampling distribution as a function of t, M4 is merely a
14 × 14 matrix.

Interestingly, Q′(n) grows so slowly that one can perform
an eigenvalue analysis for any Mn that one is able to com-
pute. That is, the expensive part of the process is the con-
struction of Mn. Once this is done, iterating the system,
establishing its stability or finding its fixed-points is a triv-
ial matter.

In the next section we provide results for statistics of order
3 and 4, i.e., n = 4, a value of n for which computing Mn

takes only a few seconds. However, before we do this, we
need to consider the initial conditions for the system. In
particular we need to compute E[xk

0 ] and E[xk
1xl

0] for generic
k > 0 and l ≥ 0.

Under the assumption that a particle’s initial position, x0,
is chosen uniformly at random in a symmetric range [−Ω, Ω],
we have

E[xk
0 ] =

(

0 if k is odd,
Ωk

k+1
otherwise.

(18)

In order to compute E[xk
1xl

0] we need to consider the equa-
tion

x1 = x0 + wv0 − x0(φ1 + φ2) + φ1y + φ2ŷ (19)

where a particle’s initial velocity, v0, is a stochastic variable
uniformly distributed the range [−Ωv, Ωv] (often Ωv = Ω).
By taking the k-th power of both sides of the equation, mul-
tiplying by xl

0, and taking expectations, as we did to con-
struct Equation (15), one obtains the desired expressions
for E[xk

1xl
0]. Like for Equation (15), these expressions con-

tain a number of terms that grows exponentially for with n.
However, this process, too, can be trivially mechanised.

4. SKEWNESS AND KURTOSIS OF THE
PSO’S SAMPLING DISTRIBUTION

We constructed the recursions for moments of up to order
4 as described in the previous section for the canonical PSO.
In principle, we could do for these exactly the same type of
analysis we did for the mean and standard deviation of the
sampling distribution.

For easier comparison we show the lines where Λm = 1
for M1, M2, M3 and M4 in Figure 3 (ordered from top to
bottom, respectively). The regions of order-1, -2, -3 and -4
stability are nested. Note how the Λm = 1 lines for M2 and
M3 coincide for many values of w. Note also that the stan-
dard setting, c = 1.49618 and w = 0.7298, lays within the
narrow region of order-3 stability. This implies that while
mean, variance and skewness of the standard PSO tend to
a fixed-point, kurtosis is unstable and will tend to grow in-
definitely. Interestingly, a growth in the kurtosis of samples
was observed by Kennedy[19], although this was effectively
computed under the assumption that the sampling distribu-
tion is time-independent. So, the values of xt recorded in
a run at t grows were treated as different samples from the
same distribution, while we know this may be incorrect.

That the predictions of the model are exact is also con-
firmed by the comparison of the dynamics of predicted and
recorded higher order moments. Figure 4(top) shows a com-
parison between the skewness E[(xt − µt)

3]/σ3
t computed
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z(t) =
`

E[xt] E[xt−1] E[x2
t ] E[xtxt−1] E[x2

t−1] E[x3
t ] E[x2

txt−1] E[xtx
2
t−1] E[x3

t−1] . . . E[xn
t−1]

´T

Figure 2: Extended state variable for analysis of higher order moments.
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Figure 3: Plot of the regions of order-1, -2, -3 and
-4 stability for the canonical PSO.

using our model and the average positions of the parti-
cle recorded in one billion (1,000,000,000) real runs in the
first 30 iterations for the case c = 1.49618, w = 0.7298,
y = 0, ŷ = 1 and Ω = 5. As one can see there is a
very good match between the model’s predictions and the
stagnation behaviour of particles in real runs. Only after
about 20-25 generations the sampling errors start accumu-
lating enough to show significant differences. As shown
in Figure 4(bottom) the model also predicts very well the
behaviour of the (excess) kurtosis E[(xt − µt)

4]/σ2
t − 3 of

the sampling distribution.2 Note that for c = 1.49618 and
w = 0.7298 the system is order-3 stable, and so, although
the oscillations of the skewness shown in Figure 4(top) ap-
pear to grow bigger and bigger, suggesting instability, this is
actually only a transient effect, as shown in Figure 5 where
we integrate the equations over 200 generations instead of
30.

5. COMPARISON BETWEEN PSOS
In the previous sections we studied the canonical PSO

with the restriction that the acceleration coefficients, c1 and
c2, were identical: c1 = c2 = c. One may wonder, however,
whether allowing such coefficients to differ would produce
qualitatively very different dynamics. For example, what
would happen if we set one of the ci to zero as in a purely
cognitive or purely social PSO model? This effectively would
reduce to one the sources of random influences on a particle’s
dynamics. Conversely, one might wander what would hap-
pen if we increased such sources of influence, as is done, for
example, in the Fully Informed Particle Swarm (FIPS) [14,
15].

To answer these (and other) important questions on the
sampling distribution of different PSO models we adopt a

2Following standard practice, in this paper whenever we
use the term “kurtosis” we will refer to the excess kurto-
sis E[(xt − µt)

4]/σ2
t − 3. The excess kurtosis of the normal

distribution to 0.
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Figure 4: Comparison between predicted and exper-
imental skewness and (excess) kurtosis of the PSO
sampling distribution for c = 1.49618, w = 0.7298,
y = 0, ŷ = 1 and Ω = 5. Kurtosis grows exponentially
and, so, it is plotted on a logarithmic scale. The first
point is not plotted because the excess kurtosis was
negative (-1.2).
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FIPS-like general class of PSOs described by the following
difference equation

xt+1 = xt + wvt +
m
X

i=1

φi(ŷi − xt) (20)

where the φi’s are stochastic variables uniformly distributed
in the range [0, ci], ci being constants, and the ŷi’s are the
personal best positions of neighbours of the particle (the
particle itself may be included in its own neighbourhood).
Naturally, this equation can be converted into the following

xt+1 = xt(1 + w) − wxt−1 −
m
X

i=1

φixt +
X

i

φiŷi (21)

which is a generalisation of Equation (3). All of the steps we
performed in Section 3 can be repeated for Equation (21).
These lead to recursion of the form in Equation (15) with
the only difference that the coefficients ωi take the more
general form

ωi =

 

a0i wawi c
ac1i
1 · · · c

acmi
m ŷ

ay1i
1 · · · ŷ

aymi
m

Qm

j=1(1 + acji)

!

(22)

where a0i , awi , ac1i , · · · , acmi , ay1i , · · · , aymi are appropri-
ate constants.

Because Equation (21) contains 3 + 2 × m terms, the
complexity of the expansion now grows exponentially as
O ((3 + 2 × m)n), where n is the order of the moments we
are interested in. So, the larger m, the heavier the compu-
tation load required to compute Mn. Once the transition
matrices Mn are computed, however, they are exactly of
the same size for all PSO models within the class defined by
Equation (20). Initial conditions can be found following the
approach described in Section 3. Calculations are expen-
sive but can be mechanised. We did this for the examples
described below.

An extensive comparison of different PSOs is beyond the
scope of this paper. However, as an example of the kind of
comparisons one can make using our approach, we consid-
ered the PSOs in Equation (20) with N = 3. Within this
class of PSOs we considered three variants:

a) a purely social variant of PSO, which we will call social

PSO for brevity, where c1 > 0 and c2 = c3 = 0 (due to
symmetries, the behaviour of a purely cognitive PSO
where c2 > 0 and c1 = c3 = 0 is effectively identical to
that of this social PSO);

b) the canonical PSO we have studied so far in the paper,
which is obtained by setting c1 = c2 > 0 and c3 = 0;

c) the simplest version of FIPS with a neighbourhood of
three individuals, e.g., obtained using an lbest topology
and an interaction radius of 1, where c1 = c2 = c3 > 0.
We will call this version FIPS3.

In order to perform a fair comparison of the stability prop-
erties of these PSO variants, we study them in conditions
where the sum of the amplitudes of the random components,
φi, is identical across models. That is, we set c =

P

i
ci, we

compare models with the same c value. Again we analyse
eigenvalues. Figures 6–9 show the lines in the (w, c) plane
where the magnitude of the largest eigenvalue of Mn, Λm, is
1 for n = 1, 2, 3, 4 and for the three PSO variants mentioned
above. Let us analyse these figures in detail.
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w

Social PSO
PSO

FIPS 3

Figure 6: Lines below which the mean of the sam-
pling distributions for a social PSO, a canonical PSO
and FIPS with a neighbourhood of three individu-
als have a fixed point (order-1 stability). Note: the
three lines coincide.

Firstly, we should note that the regions of order-1 stabil-
ity for the three models are identical. This is because the
dynamics of the mean of the three models is governed by
equations of the same form, namely:

E[xt+1] = E[xt]
“

1 + w −
c

2

”

− wE[xt−1] + constant, (23)

where the constant term may differ in different PSO vari-
ants.3 Note also that the rightmost point in each plot is
an artifact due to the fact that, at w = 1, Λm = 1 for M1

irrespective of the value of c.
The regions where the variance is stable for the three mod-

els, instead, are different, with FIPS3 having the largest
region of order-2 stability, followed by the canonical PSO,
and, finally, by the social PSO. Exactly the same happens
with skewness (Figure 8) and kurtosis (Figure 9), with the
order-3 stability region largely coinciding with the order-2
ones also for FIPS3 and the social PSO. These results are
counter intuitive. One would expect that the more sources
of randomness, the φi’s, there are, the more a PSO should
be unstable. However, the exact opposite happens. The so-
cial PSO, where the only influence is φ1, is the least stable
of all models, while FIPS3, which has three sources of ran-
domness, is the most stable. What are the reasons for this
behaviour?

We can understand this by rewriting Equation (21) as
follows

xt+1 = xt(1 + w) − wxt−1 − xtΦm + Ψm (24)

where Φm =
Pm

i=1 φi and Ψm =
P

i
φiŷi. Both Φm and Ψm

are the sum of independent and uniformly distributed vari-
ables: the variables φi in the case of Φm and the variables
ŷiφi in the case of Ψm.

We know that
P

i ci = c. To simplify our treatment, let
us further assume that the φi’s are i.i.d., i.e., that all ci are
identical, and, so, ci = c/m. We can then apply the central
limit theorem to Φm. This predicts that for sufficiently large
m, the distribution of Φm is approximately Gaussian with
mean

P

i
ci/2 = c/2 and variance

P

i
(c2

i /3 − (ci/2)
2) =

P

i c2
i /12 = c2/(12m). So, the larger m, the smaller the

variance of Φm and the stochasticity of Equation (24).

3This is irrelevant for the stability of the system, since stabil-
ity is determined by the homogeneous part of the equation.
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Figure 7: Lines below which the variance of the
sampling distributions for a social PSO (bottom), a
canonical PSO (middle) and FIPS with a neighbour-
hood of three individuals (top) have a fixed point
(order-2 stability).
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Figure 8: Lines below which a social PSO, a canoni-
cal PSO and FIPS3 are order-3 stable (from bottom
to top, respectively).
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Figure 9: Lines below which the kurtosis of the
sampling distributions for a social PSO (bottom),
a canonical PSO (middle) and FIPS3 (top) have a
fixed point (order-4 stability).

In the case of the stochastic variable Ψm, the quantities
φiŷi are not identically distributed even if all ci are identical.
This is because, in principle, each ŷi may be different. This
prevents the use of the standard central limit theorem. We
can, however, apply Lyapunov’s central limit theorem to
Ψm. The conditions for its application are:

1. the variables φiŷi must have finite mean, which is the
case since µi = E[φiŷi] = ciŷi/2 = cŷi/(2m),

2. the φiŷi must have finite variance, which, again, is
the case since σ2

i = E[(φiŷi − µi))
2] = (ciŷi)

2/12 =
(cŷi/m)2/12,

3. φiŷi must have finite third central moment, which is
satisfied since r3

i = E[(φiŷi − µi))
3] = 0, and, finally,

4. the Lyapunov condition, limm→∞

(
Pm

i=1
r3

i )1/3

(
Pm

i=1
σ2

i )1/2
= 0,

must be satisfied, which, again, is the case since all
r3

i = 0.

Then for sufficiently large m, also the distribution of Ψm

is approximately Gaussian with mean
P

i cŷi/(2m) = c

2
×

“
P

i ŷi

m

”

and variance c2

12 m
×
“

P

i ŷ2

i
m

”

. Note that
P

i ŷi

m
and

P

i ŷ2

i
m

are the mean ŷi and the mean ŷ2
i , respectively. So,

these are finite quantities if, as is normally the case, all ŷi

are finite.4 So, like for Φm, the larger m, the smaller the
variance of Ψm, and, consequently the less the stochasticity
of Equation (24).

Effectively the larger m the more Φm and Ψm become
deterministic and approach constant values. This explains
why adding more and more sources of randomness – while
keeping c constant – produces progressively more and more
stable PSOs.

6. THE DENSITY FUNCTION OF THE
PSO SAMPLING DISTRIBUTION

The technique described in this paper, in principle, would
allow one to determine all the moments of the sampling dis-
tribution of the PSO at all times. The question then is, could
we derive the PSO sampling distribution itself? The answer
is of course in the positive since knowing all the moments of
a distribution implies knowing its moment generating func-
tion. This, in turn, allows one to obtain the density function
of the distribution via inverse Laplace transform.

In practice, however, it is impossible to compute all the
moments of the PSO sampling distribution. This is for two
reasons. Firstly, there are infinitely many such moments.
Secondly, as we have seen in the previous sections, the cost
of computing moments is exponential in the order of the
moments. The next question is then, to what extent can
we still reconstruct the PSO’s density function from a finite
number of moments? This is an instance of the well-known
truncated moment problem, a difficult, inverse ill-posed prob-
lem for which many approaches have been proposed. Here
we consider only one such approach.

A particularly simple idea is to consider a family of den-
sity functions f(x; λ1, λ2, ...) with parameters λ1, λ2, etc.
with sufficient expressive power to represent distributions

4PSO search is normally confined to a pre-fixed, finite region
of R

N , and so, all ŷi must be finite.
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Figure 10: Examples of GLD density functions.

with widely different shapes, with more or less asymme-
tries, with tails of different characteristics, etc.. Then one
can use optimisation techniques to identify the parameters
of the distribution f which minimise the difference between
the moments of f and the moments of the PSO’s sampling
distribution. This is called the moment matching method.
Once the parameters λ1, λ2, etc., are identified, f can be
used as an approximation of the true PSO sampling distri-
bution. This approach to reconstructing probability distri-
butions from moments was proposed [23] (see also [22, 21])
where a Generalised Lambda Distribution (GLD) was used.
We adopt this same approach here.

GLD is a four-parameter distribution defined via its quan-
tile function:

Q(u) = λ1 +
1

λ2

„

uλ3 − 1

λ3
+

1 − (1 − u)λ4

λ4

«

(25)

where u ∈ [0, 1]. Its density function is given by

f(x; λ1, λ2, λ3, λ4) =

„

dQ(u)

du

«

−1

=
λ2

u(λ3−1) + (1 − u)(λ4−1)
.

where u = Q−1(x).
The GLD is enormously flexible in terms of the shape of

the distribution. For example, as shown in Figure 10, the
uniform, Gaussian, exponential and Gamma distribution are
all special cases of GLD. Effectively λ1 is determines the
location of the distribution, λ2 determines its scale, while λ3

and λ4 determine other shape characteristics. In particular,
only if λ3 = λ4 the distribution is symmetric.

Because GLD has 4 parameters, all we need are four mo-
ments – the mean, variance, skewness and kurtosis – of the
PSO’s sampling distribution in order to identify such param-
eters with the moment-matching method described above.

As an illustration, we apply this technique to reconstruct
the sampling distribution during stagnation of a canonical
PSO with parameters c = 1.49618, w = 0.7298, y = 0,
ŷ = 10 and Ω = 5. In Figure 11 we show snapshots at
times t = 0, 2, 4, 12 and 24 of the theoretical sampling dis-
tribution together with estimates of the distribution based
on 1,000,000 actual runs. In all cases the match between
the moments of the GLD and those of the PSO sampling
distribution was exact (within experimental errors). Also,
there is considerable agreement between the theoretical lines
and histograms obtained in real runs. Note how widely the
mean of the density function oscillates in the first few gen-
erations. Also note the asymmetry in the distributions due
to the oscillations of the skewness.
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Figure 11: Estimates of the sampling distribution of
a canonical PSO with parameters c = 1.49618, w =
0.7298, y = 0, ŷ = 10 and Ω = 5 during stagnation,
reconstructed via GLD best fitting vs. histograms
over 1,000,000 real runs. Snapshots at times t = 0,
2, 4, 12 and 24 are shown. For each theoretical
sampling distribution we report the parameters of
the corresponding GLD.

7. DISCUSSION AND CONCLUSIONS
Several theoretical analyses of the dynamics of particle

swarms have been offered in the literature over the last
decade. These have been very illuminating. However, virtu-
ally all have relied on substantial simplifications, and on the
assumption that the particles are deterministic. Naturally,
these simplifications make it impossible to derive an exact
characterisation of the sampling distribution of the PSO.

In previous work[24], by using of surprisingly simple tech-
niques, we started by exactly determining perhaps the most
important characteristic of a PSO’s sampling distribution,
its variance, and we have been able to explain how it changes
change over any number of generations. The only assump-
tion we made is stagnation. Here we extended this tech-
nique to the study of higher order statistics. In particular we
analysed in detail the skewness and kurtosis of the distribu-
tion. Because of the complexity of the calculations involved,
this required mechanising the derivation of the recursions for
these moments.

We applied the analysis to the PSO with inertia weight,
but the analysis is also valid for the PSO with constriction,
because of the well-known equivalence of these two models
(via a simple parameter mapping). We also generalised our
model so as to include FIPS. This made it possible to explic-
itly compare the stability of different forms of PSO, leading
to a deeper understanding of their properties. In particu-
lar, we showed that, while FIPS and standard forms of PSO
present exactly the same order-1 stability, in FIPS higher
order moments are more stable than in the other PSOs, and
we were able to explain why this is the case using two forms
of central limit theorem (Section 5).

Finally, with all these tools in hand, we went in search
for the “holy grail” – the actual PSO sampling density func-
tion. We treated the problem as an ill-posed inverse prob-
lem, which we regularised thanks to the use (and best fit) of
a family of distributions – the Generalised Lambda Distri-
bution (GLD). All empirical evidence we have suggests that
this distribution approximates very closely the sampling be-
haviour of PSOs. So, much so that one would be tempted to
try to prove that, indeed, the PSO’s sampling distribution
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is always and exactly a GLD, albeit, naturally, with param-
eters that are functions of time, i.e., λi = λi(t). We will
explore this issue in future research.

Whether or not GLD is the exact PSO sampling distribu-
tion or just a very good approximation, if one could deter-
mine (again either exactly or approximately) how the λi(t)’s
are affected by the parameters c, w, y and ŷ and by the ini-
tial conditions x0 and v0, it would then be possible to accu-
rately simulate the behaviour of the PSO by sampling from
f(x; λ1(t), λ2(t), λ3(t), λ4(t)). This is easily done since GLD
deviates can trivially be produced by picking u uniformly
at random in the interval [0, 1] and applying Equation (25),
i.e., Q(U [0, 1]) is Generalised Lambda distributed. We will
study this more sophisticated form of bare-bones PSO in
future research.

Acknowledgements
I would like to acknowledge support by EPSRC
(GR/T11234/01) and help and comments from Mau-
rice Clerc, David Broomhead, Susanna Wau Men Au-Yeung
and Roberto Renó.
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