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The Particle Swarm—Explosion, Stability, and
Convergence in a Multidimensional Complex Space

Maurice Clerc and James Kennedy

Abstract—The particle swarm is an algorithm for finding op- A. The Particle Swarm

timal regions of complex search spaces through the interaction of A lati f particles is initialized with d iti
individuals in a population of particles. Even though the algorithm, population of particies IS initialized with random positions

which is based on a metaphor of social interaction, has been shown Z; and velocities’; and a functiory is evaluated, using the par-
to perform well, researchers have not adequately explained how ticle’s positional coordinates as input values. Positions and ve-

it works. Further, traditional versions of the algorithm have had |gcities are adjusted and the function evaluated with the new
some undesirable dynamical properties, notably the particles’ ve- coordinates at each time step. When a particle discovers a pat-

locities needed to be limited in order to control their trajectories. ¢ that is better th it has found . IV it st th
The present paper analyzes a particle’s trajectory as it moves in ern that Is better than any it has tound previously, it stores the

discrete time (the algebraic view), then progresses to the view of coordinates in a vectgs;. The difference betweep (the best

it in continuous time (the analytical view). A five-dimensional de- point found by: so far) and the individual’s current position
piction is developed, which describes the system completely. Thesejs stochastically added to the current velocity, causing the tra-
analyses lead to a generalized model of the algorithm, containing ;atory to oscillate around that point. Further, each particle is

a set of coefficients to control the system’sconvergencetendencies.d fined within th text of a topoloaical neiahborhood
Some results of the particle swarm optimizer, implementing modi- efined within the context of a topological neighborhood com-

fications derived from the analysis, suggest methods for altering the Prising itself and some other particles in the population. The
original algorithm in ways that eliminate problems and increase stochastically weighted difference between the neighborhood’s
the ability_ofthe particle swarm to find optima of some well-studied pest positionﬁg and the individual’s current position is also
test functions. added to its velocity, adjusting it for the next time step. These
Index Terms—Convergence, evolutionary computation, opti- adjustments to the particle’s movement through the space cause
mization, particle swarm, stability. it to search around the two best positions.
The algorithm in pseudocode follows.

|I. INTRODUCTION

ARTICLE swarm adaptation has been shown to SU(I:n-tlallze population

cessfully optimize a wide range of continuous function[s),O _ i )
[1]-[5]. The algorithm, which is based on a metaphor of social _For = ! to, TOpwaﬂon AS'Ze#
interaction, searches a space by adjusting the trajectories of " /(¥:) < /(7:) then 5. =&
individual vectors, called “particles” as they are conceptualized 7¢ = "in{(Preiswers)
as moving points in multidimensional space. The individual For d=1 to Dimension
particles are drawn stochastically toward the positions of via = ia + @1(pia = Tia) + 72(Poa = Tia)
their own previous best performance and the best previous Via = SIgN (via) - Min(ADS (via), Umax)
performance of their neighbors.

While empirical evidence has accumulated that the algorithm
“works,” e.g., it is a useful tool for optimization, there has '[huantiI rermination criterion is met
far been little insight intchow it works. The present analysis
begins with a highly simplified deterministic version of the par-
ticle swarm in order to provide an understanding about how it The variablegy; andy» are random positive numbers, drawn
searches the problem space [4], then continues on to analffgen a uniform distribution and defined by an upper liif.,
the full stochastic system. A generalized model is proposed, iihich is a parameter of the system. In this version, the term vari-
cluding methods for controlling the convergence properties 8blev;q is limited to the ranget:V;,.x for reasons that will be
the particle system. Finally, some empirical results are givegxplained below. The values of the elementgjjnare deter-
showing the performance of various implementations of the dnined by comparing the best performances of all the members
gorithm on a suite of test functions. of i's topological neighborhood, defined by indexes of some

other population members and assigning the best performer’s

. . . index to the variablgy. Thus,p, represents the best position
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implementation of &7, parameter, which limits step size or The present paper analyzes the particle swarm as it moves in

velocity. The current paper, however, demonstrates that the idiscrete time (the algebraic view), then progresses to the view of

plementation of properly defined constriction coefficients caibin continuous time (the analytical view). A five-dimensional

prevent explosion; further, these coefficients can induce paifb-D) depiction is developed, which completely describes the

cles to converge on local optima. system. These analyses lead to a generalized model of the al-
An important source of the swarm’s search capability is thgorithm, containing a set of coefficients to control the system’s

interactions among particles as they react to one another’s fimdnvergence tendencies. When randomness is reintroduced to

ings. Analysis of interparticle effects is beyond the scope of thise full model with constriction coefficients, the deleterious ef-

paper, which focuses on the trajectories of single particles. fects of randomness are seen to be controlled. Some results of

the particle swarm optimizer, using modifications derived from

B. Simplification of the System the analysis, are presented; these results suggest methods for al-
We begin the analysis by stripping the algorithm down to tgring the original algorithm in ways that eliminate some prob-

most simple form; we will add things back in later. The particlems and increase the optimization power of the particle swarm.

swarm formula adjusts the velocifly by adding two terms to it.

The two terms are of the same form, i@ (p — 7;), whereg'is Il. ALGEBRAIC POINT OF VIEW

the best position found so far, by the individual particle in the The pasic simplified dynamic system is defined by

first term, or by any neighbor in the second term. The formula

can be shortened by redefinipg,; as follows: { Ut41 = Ut + QU

Yer1 = —ve + (1 — )y (1)

P1Pid + P2Pgd
Pide——————— -

w1+ @2 wherey; = p — 4.
Thus, we can simplify our initial investigation by looking at Let
the behavior of a particle whose velocity is adjusted by only one po_ |
term TR
Vg (t 4+ 1) = via (8) + @ (pia — xia (1)) be the current point iR? and
whereg = ¢1 4 2. This is algebraically identical to the stan- M= 1 ®
dard two-term form. -1 1—¢

When the particle swarm operates on an optimizati : . _
problem, the value op; is constantly updated, as the syste%ne matrix of the system. In this case, we hdye, = MF

o . !
evolves toward an optimum. In order to further simplify theigr(‘jr; T:t): gbe?\;rally?t = M'F,. Thus, the system is defined
system and make it understandable, we eto a constant pietely byaz.

value in the following analysis. The system will also be The eigenvalues alf are

more und_e_rstandable if we makea constant as well; where B 0 \/m
normally it is defined as a random number between zero and a er =1-— 5 + s
constant upper limit, we will remove the stochastic component 2 _ 4, (2.2)
Lo . L . _ 14 14 14
initially and reintroduce it in later sections. The effectybn ez =1- F R S

the system is very important and much of the present paper is

involved in analyzing its effect on the trajectory of a particle. ~ We can immediately see that the valpe= 4 is special.
The system can be simplified even further by consideringBglow, we will see what this implies.

one-dimensional (1-D) problem space and again further by refFor ¢ # 4, we can define a matrix so that

ducing the population to one particle. Thus, we will begin by

looking at a stripped-down particle by itself, e.g., a population AMA ' =L = [601 (? } (2.3)
of one 1-D deterministic particle, with a constant 2
Thus, we begin by considering the reduced system (note that4A—! does not exist whep = 4).
v(t+1) =v(t) + ¢ (p—x(t)) (1.1) For example, from the canonical forfh= {CCL ﬂ , we find
2+ 1) =xz(t) +o(E+1) '
wherep and ¢ are constants. No vector notation is necessary o= PT Ve —ap Vo2 —dp
and there is no randomness. 2p ) (2.4)
In [4], Kennedy found that the simplified particle’s trajectory c= ¥~ i
is dependent on the value of the control paramgtend recog- 2¢

nized that randomness was responsible for the explosion of thef L .

: ; n order to simplify the formulas, we multiply b8 to pro-
system, although the mechanism that caused the explosion Wa3e 2 matrixd
not understood. Ozcan and Mohan [6], [7] further analyzed the
system and concluded that the particle as seen in discrete time A= |? + Vo2 —4dp 20

“surfs” on an underlying continuous foundation of sine waves. o—Ve2—4dp 20 (2.5)
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TABLE | ] 2
SOME ¢ VALUES FORWHICH THE SYSTEM IS CycLIC 1
- v v
[ Cycle period -2 -1 ‘ 2 N
s -4 -3 -2 1 2 3 4
3 3 (see Figure 1(a)) 1\[] -1%\
2 4 )
y
5445 5 (see Figure 1(b) for the sum and -2
2 Figure 1(c) for the difference) (@) (b)
1,3 6,3
> 9 2 2
1,2,3, 2+43 6,4,3,12
1
v (\ v
So, if we define); = AP;, we can now write 2 1\\1\1‘ 2 -2 2
Py =A'LAP, Ay
APt+1 :LAPt (C)
Qt+1 =L0, (2.6) Fig. 1. (a) Cyclic trajectory of a nonrandom particle wher= 3. (b) Cyclic
trajectory of a nonrandom particle when= (5 4+ +/3)/2. (c) Cyclic trajectory
and finally Q, = Lth of a nonrandom particle whep = (5 — f\/ﬁ)/z. (d) Particle’s more typical

. . . . uasi-cyclic behavior wheg does not satisfy (2.11). Herg, = 2.1.
However,L is a diagonal matrix, so we have simply q Y en fy (2.11). Here

t — —
It— [el Ot } ' @2.7) For example, fow, = 0 andyy = 1, we have
0 ¢
In particular, there is cyclic behavior in the system if and only 20 max 1|3¢* — dp+ V/op* — 8¢° + 1647
if @, = Qo (or, more generally, i€, = Q;). This just means 2 2p* — 8p®

that we have a system of two equations

{etl =1 (2.8)

ehb=1"

v

2]

v

2
L . (2.13)
max (‘3(,02 — 4o £ /5t — 8p3 + 16(,02‘)

A. Casep < 4

For0 < ¢ < 4, the eigenvalues are complex and there E Casep > 4
always at least one (real) solution for More precisely, we can  If ¢ > 4, thene; ande;, are real numbers (ard;| < |ez|),

write so we have either:
e1 = cos(6) + i sin(6) 1) e = e = _1 (for ¢ even) W_hich impliesp = 0, not
{ ¢s = cos(8) — i sin(6) (2.9) consistent with the hypothesjs > 4;
2) e; = —ep = 1 (or —1), which is impossible;
with cos(6) = 1 — (¢/2) andsin(f) = \/W/Q_ Then 3) e = e; = —1, thatis to sayy = 4, not consistent with
the hypothesig > 4.
{ el = cos(tf) + i sin(t) (2.10) So, and this is the point: there is no cyclic behaviorfar 4
ch = cos(tf) — i sin(t) ' and, in fact, the distance from the poifit to the center (0,0) is

strictly monotonic increasing withh which means that
and cycles are given by amysuch that) = (2kn)/t. y g with

So for eacht, the solutions forp are given by Q. =AP,

t
<p:2<1—cos <2]€T7r>> forke {1,2,...,t—1}. (2.11) L@ =4R. (214)
So

Table | gives some nontrivial valuesgffor which the system
is cyclic. L Qol| < AN NI B

Fig. 1(a)—(d) show the trajectories of a particle in phase space, Lt Qo] <P 215
for various values op. Wheney takes on one of the values from Al — 12 - (2.15)
Table I, the trajectory is cyclical, for any other value, the system _
is just quasi-cyclic, as in Fig. 1(d). One can also write

We can be a little bit more precise. Belgy is the 2-norm P4t
(the Euclidean one for a vector) r=ATG

|12 < HAAH 1Q¢]|
1Qell = [[AP]| = || Qoll 12 <] A7 || L' Qo] - (2.16)

1 1 Qoll
Al oll 2 I = 50 (212) 0, finally, | P4|| increases liké| Lt Qo]
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In Section 1V, this result is used to prevent the explosion @fs long ag1 + 10t)e? < 10y, which means thaf 7;|| de-
the system, which can occur when patrticle velocities increaseases as long as
without control.

1
—1ig T Yo
C. Casep = 4 t<1+ Integetpart(%) . (2.22)
In this situation .
After that, || P;|| increases.

M= { L4 } ] The same analysis can be performedggk 0. In this case,
-1 =3 e < 0, as well, so the formula is the same. In fact, to be even

In this particular case, the eigenvalues are both equalito More precise, if

and there is just one family of eigenvectors, generated by 5
a=—10ype + ¢

V= [_ﬂ . 8 =10¢2
So, we haveMV = —V. then we have
Thus, if Fy is an eigenvector, proportional 16 (that is to say, ( a)
if vo + 2yo = 0), there are just two symmetrical points, for 3 a—3 P2
) [Pl =t %+ — |+ ” tg” : (2.23)
Pi=+ [ yyo } =-P. (2.17)
— Y0

Thus, it can be concluded thif|| decreases/increases al-
most linearly whert is big enough. In particular, even if it
begins to decrease, after that it tends to increase almost like
/5 |vo + 20l

In the case wheré’, is not an eigenvector, we can directly
compute how]| Z;|| decreases and/or increases.

Let us defineA, = [|[Ppq|” — |||} By recurrence, the
following form is derived:

Ay = a3 + brvoyo + s (2.18) [1l. ANALYTIC POINT OF VIEW

wherea,, by, ¢, are integers so thak, = 0 for vy + 2yo = 0. A Basic Explicit Representation

The integers can be negative, zero, or positive. From the basic iterative (implicit) representation, the fol-
Supposing for a particuldrwe haveA; > 0, one can easily lowing is derived:

computed;, = v? + ldvy; + 24y?. This quantity is pos-

itive if and only if v; is not between (or equal to) the roots vt +2)=vt+1)+ey(t+1)
{—2u, 120} = vt +1) — u(t) + (1 — Q)(t + 1) — v(t)
Now, if A,y; is computed, then we have\,;; = ot +2) + (0 — 2)u(t+ 1) +0(t) = 0. (3.1)

11v2 + 54vyy, + 642 and the roots aré—2y,, —(32y,)/11}.

As (32/11) < 12, this result means thak,,, is also positive. Assuming a continuous process, this becomes a classical
So, as soon a%|| begins to increase, it does so infinitely, bUL ..o nd-order differential equation

it can decrease, at the beginning. The question to be answered
next is, how long can it decrease before it begins increasing? 2y A
Now take the case ak, < 0. This means that, is between Ero 111((31@2)8— +In(er) In(ez)v =0 (3.2)

—2y0 and—12y,. For instance, in the case whejg > 0!
wheree; ande, are the roots of

vg = —21y9 — &, With £ €]0, 10yo][. (2.19)
o M4 (p—2)A+1=0. 3.3
By recurrence, the following is derived: (p=2) 33
Ao = — 10yoe + €2 As a result
A; = — 10ype + 112 47 ©? —dp
Ay = — 10yge + 212 o 2 2 . (3.4)
% ©* —dp
Apyr =— A+ 24,1 =1-g -5
= — 10yoe + ki1, with
Fopo = — ki + 2kpys. (2.20) The general solution is
Finally v(t) = cret + cach. (3.5
Ay = —10yoe + (1 + 10t)e? (2.21)  Asimilar kind of expression fog(#) is now produced, where

INote that the present paper uses the Bourbaki convention of representing 1
open intervals with reversed brackets. Thus, Ja,b[ is equivalent to parenthetical == t 1 t _1 3.6
notation (a,b). y(t) crej(er )+ caes(en ). (3.6)
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The coefficients:; andes depend ony(0) andy(0). If e; # :l (excrel(er — 1) + eacach(ez — 1)
¥

ez, We have
¢ = —2u(0) = (1 — c2)v(0) — e ((62% —((sa - 22)) o1+ 11))
Cy — C _ ‘ B B N
oy = ¢y(0) + (21 - él)v(O) : 3.7) ) Caez(e3 — (¢ €2
ez — €1 =y(t+1). (3.13)

In the case where; = ¢; (¢ = 4), (3.5) and (3.6) give
C. General Implicit and Explicit Representations

v(0) = clc—ll—_c’?@ (3.8) A more general implicit representation (IR) is produced by
y(0) = ———5— "7 adding five coefficients «, 3, v, 8,7}, which will allow us to
identify how the coefficients can be chosen in order to ensure
so we must have convergence. With these coefficients, the system becomes
v(0) + 2y(0) = 0 (3.9) { Vi1 = vy + By,
in order to prevent a discontinuity. yt+1* = —yur+ (8 = ne)ye
Regarding the expressions ande,, eigenvalues of the ma- p e Ry
trix M, as in Section Il above, the same discussion about the YVt € N,{yt, v} € R2. (3.14)
sign of (* — 4¢) can be made, particularly about the (non) ex-
istence of cycles. The matrix of the system is now
The above results provide a guideline for preventing the ex-
plosion of the system, for we can immediately see that it depends M = [ o Py } )
on whether we have = -y

(3.10) Let ¢] andé, be its eigenvalues.

max (|e1|, |ea]) > 1. ; e :
The (analytic) explicit representation (ER) becomes

B. A Posteriori Proof o(t) = c1 (¢})" + ez (ch)'
One can directly verify that(¢) andy(t) are, indeed, solu- y(t) = a%; 1 () () — a) + co (eh) (eh — a))
tions of the initial system. .
On one hand, from their expressions g€ Ry
vt e N, {y(t),v(t)} € R? (3.15)
v(t+1) = ercrel + eacach
y(t+1) = é(elcleﬁ(el — 1)+ egcaeh(en — 1)) (3.11)  with
o =Beu(0) = (= (0)
and on the other hand i . (3.16)
o, = B0 + (o —)o(0)
v(t) + @y(t) =ciet + cach + (clei(el -1 eh— ¢}
+eaeh(en — 1) Now the constriction coefficients (see Section IV for details)
=cieie] + excach andy- are defined by
=o(t + 1) (3.12) ;L
{ G = xa (3.17)
and also €2 = X262
—o(t) + (1= P)y(t) = — crel — each Wi
1 /02 —
+ . (cref(er — 1) + caeb(ez — 1)) ep=1— g + ¢T490
(3.18)
— (eref(er — 1) + cael(ez — 1)) ey =1 v Vet
1 2 2

=" |(erciet(er — 1) + eacach(ea — 1
® ( 1eei(er = 1)+ eaczer(es )) which are the eigenvalues of the basic system. By computing

— (610163(61 — 1) + eacoch(es — 1)) the eigenvalues directly and using (3.1y),andy; are

_ t t
4 61(,31 vee " Y1 = atb—np+a/ (19)2 +2¢(an—61—28~)+(a—6)2
+ (cret(er = 1) + eaeh(er — 1)) ' 2ot/ 4

. (3.19)
— ¢ (excl(er — 1) + cachlez — 1)) xp = ez el Ee(on =35+ o)
2—p—/ =4
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The final complete ER can then be written from (3.15) anB. From ER to IR
(3.16) by replacing’; andc;, respectively, byxie; andxzca The ER will be useful to find convergence conditions. Nev-
and theney, ez, x1, x2 by their expressions, as seen in (3.18)1heless, in practice, the iterative form obtained from (3.19) is
and _(3'_19)' . ) ) ) very useful, as shown in (3.24) at the bottom of the page.

It is immediately worth noting an important difference be- ajthough there are an infinity of solutions in terms of the five
tween IR and ER. In the IR,is always an integer ang(#) an_d arameterga, 3, v, 6,1}, it is interesting to identify some par-
y(t) are real numbers. In the ER, real numbers are Obta'”ecﬁgular classes of solutions. This will be done in the next section.

and only ift is an integer; nothing, however, prevents the assign-
ment of any real positive value toin which cases(t) andy(t) E. Particular Classes of Solutions
become true complex numbers. This fact will provide an elegant

o ) : -~ " 1) Class 1 Model:The first model implementing the five-
way of explaining the system’s behavior, by conceptualizing it R ) . S
. ) : : parameter generalization is defined by the following relations:
in a 5-D space, as discussed in Section IV.

Note 3.1: If x; andy. are to be real numbers for a given —5
. . o =
¢ value, there must be some relations among the five real coef- { By=n?" (3.25)
ficients{«, 3,7, 6, n}. If the imaginary parts of; andy- are
set equal to zero, (3.20) is obtained, as shown at the bottom ofy, this particular casey andy are
the page, with
A =sign(p”® — 4¢p) a=j <2 (x14x2)+x1—x2) <\/<p2 — 4o+ w%))
9 w?—4p
Blet e 7 1<X +x2 + == (x1 — X2) .
1 . =3 1 2 = 1 — X2
022—<P+§\/|<P2—4¢|<1+5'9n(¢2—4¢)> : e (3.26)
! 1 /1, .2 H 2
¢ =2-¢- 2 0% = del{ 1+ S|gn(<p - 4<p) An easy way to ensure real coefficients is to haye= x> =
1 2 x € R. Under this additional condition, a class of solution is
D=C?%+ 1 |0? — 4| <1 — sign(e”® — 4<p)> simply given by
E =(n¢)” + 20 (am — 6n — 287) + (e — 6)° . (3.21) a=fB=y=6=n=x. (3.27)
The two' equalities of (3.20) can be combined and simplified 2) Class1’ Model: A related class of model is defined by
as follows: . .
_ the following relation:
{\/|E| (1—sign(E)) (2—¢)—(a+6 — ng) VB(1-A)=0_
VIEIVE sign(E) (1 + 4) = 0 { «=p_ (3.28)
(3.22) y=6=n

The solutions are usually not completely independent df The expressions in (3.29), shown at the bottom of the next
order to satisfy these equations, a set of possible conditions age, fore and~ are derived from (3.24).
E>0 If the conditiony; = x> = x is added, then
A=-1(ep<4d. 3.23
{a+6_$7¢fo ) N @=@-@)xte-1 (3.30)
T=x0ry = ' '
However, these conditions are not necessary. For example,
an interesting particular situation (studied below) exists wheykithout this condition, one can choose a value forfor ex-
a=f=vy=6=n=x € R}.Inthis casex; = x2 = x for ample,y = 1 and a corresponding value (x1, x2), which give
any ¢ value and (3.20) is always satisfied. a convergent system.

VIEI(1 = sign(E)) € = (a+6 = ng + 3 /[EI(1 + sign(E)) ) VB(1 - 4) =0 020
VIE] (1 - sign(E)) ¢’ — (a +8—np— LB+ sign(E))) VB(1— A4) =0 '

{2(a+5—n<p)=(X1+X2)(2—¢)+(X1—X2)\/<p2—4<p (3.2
2/ (n)? + 2 (cn — 61— 267) + (o — 67 = (x1 + x2) V&E — dp+ (0 — x2) (2~ ) |
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3) Classl1” Model: A second model related to the Class 1 2) Forthe Clas$’ models, with the conditiong; = x2 = x

formula is defined by andy < 2
5 2 (44t 2)+4 1
a=p=7=n @31) [l =pela-5)+ VEEERIREITED o -y
26+ (it x2)(0w—=2)—(a —x2) Ve* — 4y oy :
= . o X2 (d4ete? Hx (o2 1
o 2(p—1) |e’2|:}x(l—%)—\/Y( H;Y(‘P—H(SD—) <xles|=x
(3.32) (3.38)
For historical reasons and for its simplicity, the cdse 1 has 3) Forthe the Class 2 models, see (3.39) at the bottom of the
been well studied. See Section IV-C for further discussion. page, WithA = /©? — 4.
4) Class 2 Model: A second class of models is defined by This means that we will just have to chooge< 1/|es|,
the relations x < 1,andy < 2, x < 1/|ez, class?|, respectively, to have a
convergent system. This will be discussed further in Section IV.
{a:ﬁ:% (3.33)
n=2y ' ' F. Removing the Discontinuity
Under these constraints, it is clear that Depending on the parametefsy, 3,v,6,n} the system

may have a discontinuity i due to the presence of the term
2(36 = 279) = (xa+x2) (2= 9) + (x1 — x2) V92 —4p \/(W)2 —4Byp + (a—8)* + 2np(a— §) in the eigen-

values.
2Pvp — 6l = (x1 tx2) Vol —de+ (x1 —x2) (2—9) Thus, in order to have a completely continuous system, the
(3-34) values for{«, 3, v, 8,n} must be chosen such that
which gives usy ands§, respectively. { {o, 8,7, 6,n} < R’ , .
Again, an easy way to obtain real coefficients for every (V¢ € RY, (ne)” —4Pve + (a = 6)" +2np(a—6) 2 0
value is to havey; = x2 = x. In this case (3.40)
36— 2vp =x(2— @) By computing the discriminant, the last condition is found to
{ 1290 — 8| = x/97 — 4" (3-35) be equivalent to
In the case wheryy > &, the following is obtained: Py (=fy+n(a=8)>0. (3.41)
In order to be “physically plausible,” the parameters
§ =y etV e \2892—4@ = e {a, 3,7, 6,7} must be positive. So, the condition becomes
o ot 3/ —ip ' (3.36) By <n(a—29). (3.42)

7= i The set of conditions taken together specify a volum&in

From the standpoint of convergence, it is interesting to not@ the admissible values of the parameters.
that we have the following.

. " G. Removing the Imaginary Part
1) For the Class 1 models, with the conditign = x2 = x

When the condition specified in (3.42) is met, the trajectory
leh ] = xleil (3.37) is usually still partly in a complex space whenever one of the
leh| = xlea| : eigenvalues is negative, due to the fact that)* is a complex

a = (X1+X2)(2—‘P)+(2X1—X2)\/ @2 —dp fo—1

o (batxe)(e=2) - ha —xe) vV — e (3.29)
1T :F\/Zx% (0 -0 +2- 0V —p) + 23 (92— 4o+ 2+ 0V/e? — 49) +8xux2 (20— 1)

3 3 3 1 1 3 1
|@3|IX‘§—Z<P+ZA—§<P2+Z<P3—Z<P2A+Z|2—<P—2<P2—2<P3+A—3<P2A|‘=X|61,c1a552|
3.39
, 3 3 3 1, 145 3, 1 9 3 9 ( )
|@2|:X§—Z<P+ZA—§<P T ¥ A—Z|2—<P—2<P —2¢° + A — 30" A|| = x |e2class 2
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number whert is not an integer. In order to prevent this, we - 1.20
must find some stronger conditions in order to maintain positive ;
eigenvalues. r1.00
Since L 0.80
v
! / /
Cl > 0 Cl + 62 > 0 4
{e’2>0©{e’le’2>0 (3.43) L 0.60
the following conditions can be used to ensure positive eigen- L 0.40
values:
- 0.20
a(6 —np) + B¢ >0
. (3.44)
a+6—ne >0
) . . . - -0.10 -0.05
Note 3.2: From an algebraic point of view, the conditions y
described in (3.43) can be written as @
det(M) >0
{trace(M) >0 (3.45) 60 -
Now, these conditions depend @nNevertheless, if the max- -
imum ¢ value is known, they can be rewritten as Y 40
ana_’éry’@ > <)0Hla.X 7]
(3.46) 20 -
até -
7 > Qamax
Under these conditions, all system variables are real numbers T T T T
in conjunction with the conditions in (3.42) and (3.44), the pa- 100 200 300 400
rameters can be selected so that the system is completely con- t
tinuousandreal. (b)
Fig. 2. (a) Convergent trajectory in phase space of a particle when? = 1
H. Example andé = 5, wheree = 4. Both velocityv andy, the difference between the

previous besp, and the current positian converge to 0.0. (by increases over

Asan example’ Suppose that= § = 1 andé = 7. Now the time, even when the parameters are real and not complex.

conditions become

1 . .
6 < The answer is no. It can be demonstrated that convergence is
5 Pmax . (3.47) hot always guaranteed for real-valued variables. For example,
max — 1 i i i ion:
(¢ ) <y < 8(1-8) given the following parameterization:
Qalnax _
<Pmax - 10
For example, when vo = 0,v0 = 1
YPmax = 10 o = /3 =1.1 (350)
Yo =0,v0=1 ~v=0.0891495
a=p=1 (3.48) 6 =n=0.099
_ 1 ‘5(‘{/‘nmx*1 _ — =4 . )
7= 2 ( e T ‘5)) =0.08915 the relations are
6=n= 29 =009 M g5
max ) ) ) a/]’] _ ’7/3 max 3 51
the system converges quite quickly after about 25 time steps a+6 (3.51)
and at each time step the valuegyadndv are almost the same = 1211 > ¢max

over a large range af values. Fig. 2(a) shows an example of

convergencey > 0 andy > 0) for a continuous real-valued Which will produce system divergence when= 0.1 (for in-
system withy = 4. stance), sincé} | = 1.09 > 1. This is seen in Fig. 2(b)

I. Reality and Convergence IV. CONVERGENCE ANDSPACE OF STATES

The quick convergence seen in the above example suggestsrom the general ER, we find the criterion of convergence
an interesting question. Does reality—using real-valued vari-

ables—imply convergence? In other words, does the following { le1] <1 4.1)

hold for real-valued system parameters: les| > 1
ﬁ > Qmax ef] < 1 where v(¢) and y(¢) are usually true complex numbers.
{|e}| <1 (3.49) Thus, the whole system can be represented in a 5-D space
6
> Pmax 2 (Re(y), Im(y), Re(v), Im(v), ).
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In this section, we study some examples of the most simple 1

k=1
class of constricted cases: the ones with just cowstriction 08 =T
coefficient These will allow us to devise methods for control- X 0.6 ’
ling the behavior of the swarm in ways that are desirable for 0.4 |
optimization. 0.2
A. Constriction for Model Type 1 T 2- T ‘:' T é T 5';
Model Type 1 is described as follows: ¢
{ vt +1) = x (v(t) + @y(t)) w2 @
y(t+1) = —x (v(t) + (1 — )y(?))

We have seen that the convergence criterion is satisfied when
x < min(1/|e1],1/|ez]). Sincelei| < |ez|, the constriction
coefficient below is produced

X:i,/«;e]o,l[. (4.3)
|ez]

B. Constriction for Model Typ&’

Just as a constriction coefficient was found for the Type 1 0.0 AT g
model, the following IR (withy instead ofv) is used for Typéd': 1.0 20 8.0 4.0
¢
{ v(t+1) = x(v(t) + eu(t)) (4.4) ()
t+1)=—v(t 1- t)’ '
y( + ) U( ) + ( <p)y( ) Fig. 3. (a) Type 1 constriction coefficientas a function of> andx. It drops
The coefficient becomes belowx only whe_n_cp > 40 (p) Typel’ co_efficient is less than 1.0 when < )
4.0. These coefficients identify the conditions for convergence of the particle
¥ = ﬁ % €]0, 1, for ¢ €0, 2[. (4.5) System
€2

mean and minimally acceptablevalues for sure convergence.

However, as seen above, this formulaigriori valid only le. fors — h : . hold
wheny < 2, so it is interesting to find another constrictio or éxample, Tok> = 3, t_e_constramk = 0.536 must hold,
there is no such restriction ane 0, 1] if ¢ = 1.

coefficient that has desirable convergence properties. We h

here Note 4.1: The above analysis is fasr = constant. Ife is
random, it is nevertheless possible to have convergence, even
Y+1—g \/(X —1)% 4% — 20— 2y with a small constriction coefficient, when at least gnealue
eh = 5 — 5 (4.6) is strictly inside the interval of variation.

The expression under the square root is negativexfog C. Constriction Typd”

IL+¢ -2/, 1+ ¢ +2/0[ Inthis case, the eigenvalue is & Referring to the Class” model, in the particular case where

true complex number arjdy| = /x. Thus, ifl+¢—2,/¢ <1, s _ 1 \ye use the following IR (with instead ofx)
that is to say, ifp < 4, a x needs to be selected such that

x €]1+ ¢ — 2./, 1[ in order to satisfy the convergence cri- v(t+1) = x(v(t) + ¢y(t))
terion. So, for example, defing as y(t+1) = —xv(t) + (1 — xp)y(t)

2 -2 In fact, this system is hardly different from the classical par-
= Ehal detivid \/57 for ¢ €]0,4[. B y P

(4.8)

2 (4-7) " ticle swarm as described in the Section |
Now, can another formula for greatgwvalues be found? The { ot + 1) = x(v(t) + (p — (1)) (4.9)
answer is no. For in this cass, is a real number and its absolute w(t+1) =v(t+1)+a(t)

value is: soitmay be interesting to detail how, in practice, the constriction

1) strictly decreasing omx & 10,1+ ¢~ 2/p] and the coefficient is found and its convergence properties proven.
minimal value is,/¢ — 1 (greater than 1); Step 1) Matrix of the System
2) strictly decreasing o € [1+4 ¢+ 2/, 0], with a We have immediately

limit of 1.
For simplicity, the formula can be the same as for Type 1, M= { X X } ) (4.10)
not only for ¢ < 2, but also fory < 4. This is, indeed, also -x l-x¢

possible, but ther cannot be too small, depending gnMore

precisely, the constraint > (14 ¢ — 2,/p) |e2| must be sat-
isfied. However, as fop < 4, we havele;| = 1, which means
that the curves in Fig. 3(a) and (b) can then be interpreted asthe ~ Z? — trace(M) Z + determinantM) = 0 (4.11)

Step 2) Eigenvalues
They are the two solutions for the equation
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or
2P~ (x+1-x9)Z+x=0. (4.12) 0
Thus
L -1 -
o = xtloxet+vVA £
L 2 (4.13) £
o — x+l—xg—VA £
2 2 T -2 -
, 2
with o
. -3
A =trace(M)* — 4determinan(A/)
1
=x’ <<P2—4<P+2<P <1——) 4
X
1 2 Fig. 4. Discriminant remains negative within some boundg pflepending
+|1- ; . (4-14) on the value ok, ensuring that the particle system will eventually converge.
Step 3) Complex and Real Areas gn TABLE 1I

VALUES OF » BETWEEN WHICH THE DISCRIMINANT IS NEGATIVE,

The discriminantA is negative for the values in FOR TWO SELECTED VALUES OF £

J1+((/x) = /), 1+ (1)) + 2/yx)[ In

this area, the eigenvalues are true complex numbers K Pmin Pmax
and their absolute value (i.e., module) is simpfy.

Step 4) Extension of the Complex Region and Constriction 0.4 0.3377 8.07
Coefficient

In the complex region, according to the conver- 0.99 0.000025 3979916

gence criteriony < 1 in order to get convergence.

So the idea is to find a constriction coefficient dezﬁg + 1 — 253/2) /x2. This relation is valid as soon as> 1/9.

pending ony so that the eigenvalues are true ComIfig. 4 shows how the discriminant depends wnfor two »

plex numbers for a large field @b values. _In this values. It is negative between thevalues given in Table II.
case, the common absolute value of the eigenvalues

IS D. Moderate Constriction
5 N . o
—=r ___ fore >4 While it is desirable for the particle’s trajectory to converge
o o2 _ 45’ )
{aéﬁ s (4-15) 1y relaxing the constriction the particle is allowed to oscillate

through the problem space initially, searching for improvement.
which is smaller than one for all values as soon as Therefore, it is desirable to constrict the system moderately,
x is itself smaller than one. preventing explosion while still allowing for exploration.
This is generally the most difficult step and sometimes neetls demonstrate how to produce moderate constriction, the
some intuition. Three pieces of information help us here:  following ER is used:

1) the determinant of the matrix is equalxto

t
2) this is the same as in Constriction Type 1; { u(t) = clletl +t62 (xe2) .
3) we know from the algebraic point of view the system is u(t) = 5 (areiler — 1)+ ex(xea) (xe2 — 1))
(eventually) convergent lik@/ 7. X :i, k €]0,1[ (4.18)
So it appears very probable that the same constriction coeffi- ez
cient used for Type 1 will work. First, we try that is to say
X =—— kelo1] (4.16) {Xlzl
] X2 =X

that is to say From the relations between ER and IR, (4.19) is obtained, as

— 2 forp>4 shown at the bottom of the next page.
{ P2Vt —de . (4.17) There is still an infinity of possibilities for selecting the pa-
elsex rametersxy - - - 77. In other words, there are many different IRs

. . . h r h me explicit one. For exampl
Itis easy to see thak is negative only betweep,,;;, andy,.x, that produce the same explicit one. For example

depending on:. The general algebraic form @f,,. is quite o2x—x¢ o2 —dgp
i ial in<5 wi ici i = 2 +5—0-x)

complicated (polynomial in<® with some coefficients being ) ) )

roots of an equation im*) so it is much easier to compute /3=—§(¢—3X¢—¢ +Xx +\/<P2—4<P(1+X<P—X—<P))
it indirectly for somex values. If¢,,;, is smaller than four, \~v=6=n=1

thenxy = & and by solvingA = 0 we find thaty,;, = (4.20)
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t=0..50
©=0..6
y(0)=0.0
v(0)=1.0
x=0.8

or Re(v) g|Re
6
a=p=1 2 Re(y)
y = @(1+><)*\/2F(1*X) 421) 1 : — —
§ =y FHXE=2 =/ oap(l—x) 5
== 2(p—1) N
From a mathematical point of view, this case is richer than (a) (b)

the previous ones. There is no more explosion, but there is r~*
always convergence either. This system is “stabilized” in tt
sense that the representative point in the state space tend
move along an attractor which is not always reduced to a sin(
point as in classical convergence.

E. Attractors and Convergence

Fig. 5 shows a three-dimensional representation of the
real restriction (Re(y), Re(v),») of a particle moving in
the 5-D space. Fig. 6(a)-(c) show the “real” restrictions
(Re(y), Re(v), o) of the particles that are typically studied. We
can clearly see the three cases:

1) “spiral” easy convergence toward a nontrivial attractor for
¢ < 4 [see Fig. 6(a)];

2) difficult convergence fop ~ 4 [see Fig. 6(b)];

3) quick almost linear convergence fpr> 4 [see Fig. 6(c)].
Nevertheless, it is interesting to have a look at the true system,
InCIUdmg t,he complex dimensions. Elg' G(d)_(f) shows SOIT}_Qg. 6. Trajectories of a particle in phase space with three different values of
other sections of the whole surfacefii. ¢. (a) (c) and (e) Real parts of the velocitand position relative to the previous

Note 4.2: There is a discontinuity, for the radius is equabesty. (b) (d) and (f) Real and imaginary partsiof(a) and (d) show the attractor
for a particle withy = 2.5. Particle tends to orbit, rather than converging to

to zero fory > 4 (see Fig. 7). . S . 0.0. (b) and (e) show the same views wjth= 3.99. (c) and (f) depict the
Thus, what seems to be an “oscillation” in the real space isihsy” convergence toward 0.0 of a constricted particle wits 6.0. Particle

fact a continuous spiralic movement in a complex space. Moresillates with quickly decaying amplitude toward a point in the phase space
importantly, the attractor is very easy to define: it is the “circlg®d the search space).

c1et [center (0,0) and radiug]. Wheny < 4, p = |e1eq| and

wheng > 4, thenp = 0 (limy_.oo |c1e}| With |e;| < 1), for  the partes (xez)" of v(#) tends to zero. This provides an intu-
the constriction coefficient has been precisely chosen so thative way to transform this stabilization into a true convergence.

{2(a+6—77<p)=(1+X)(2—<P)+(1_X) ¢? — 4o (4.19)

2\/(77<P)2+2<P(0”7—577—2/3’Y)+(a—5)2:(1+X) ¢?—do+(1-x)(2-¢)
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Upon computing the constriction coefficient, the following
form is obtained:

I I
X =— =
|ea] ‘1 e/ ele—4)
2 2
2K

2-—p— \/¢(¢—4)‘
2K

7

2— 1 — 2 — /(g1 +92) (o1 + 92— 4)
it (p1+¢2) >4
=k else
k€]0,1]. (5.3)

Coming back to they(, ) systemp andz are

(b)

v(t+1) = v(t) + 1(p1 — 2(1)) + ¢2(p2 — 2(1))
Fig. 7. “Trumpet” global attractor whep < 4. Axis (Re(v), Im(v), ), k = { - st .
8. (a) Effect ony of the real and imaginary parts of (b) Effects of thgreal and a:(t + 1) - Xv(t + 1) + Xx(t) + (1 - X) “ﬁh;im
imaginary parts of. (5-4)

The use of the constriction coefficient can be viewed as arec-
mmendation to the particle to “take smaller steps.” The conver-
Ence is toward the point (= 0,z = (¢1p1 + wap2)/ (01 +

©2)). Remember is in fact the velocity of the particle, so it will
indeed be equal to zero in a convergence pbiakample

We just have to use a second coefficient in order to reduce
attractor, in the case < 4, so that

!
er = x'en, X' < Hﬂ‘i/ €1]0,1[. (4.22)
pL=3,p2=4
Pmax,l = 0.1, Pmax,2 = )

{Uo =1,x9 =4.5

The models studied here have only one constriction coeffi-
cient. If one sety’ = x, the Type 1 constriction is produced,

but now, we understand bettehy it works. 1 andy, are uniform random variables between 0 ang.

andymax 2 respectively. This example is shown in Fig. 8.

V_ GENERAL|ZAT|ON OF THE PAR'“CLE_SNARM SYSTEM VI RUNN|NG THE PART|CLE SNARM W|TH CONSTR|CT|ON
COEFFICIENTS
Thus far, the focus has been on a special version of the particl

swarm system, a system reduced to scalars, collapsed terms a

nonprobabilistic behavior. The analytic findings can easily ek he conceived of In such a way that the systenv’s explosion

generalized to the more usual case wheie random and two can be controlled, without resorting to the definition of any ar-

vector terms are added to the velocity. In this section the reaﬁf&rafy or problem-specific parameters. Not only can explosion

are generalized back to the original system as defined by N preventegl, but the mode| can be parameterized in such away

that the particle system consistently converges on local optima.
(Except for a special class of functions, convergence on global
{ v(t +1) = v(t) + 1(p1 — (1)) + w2(p2 — 2(t)) (5.1) OPptima cannot be proven.)

e . . .
ﬁAds aresult of the above analysis, the particle swarm algorithm

z(t+1) =v(t+1)+ () The particle swarm algorithm can now be extended to include
many types of constriction coefficients. The most general mod-
Now ¢, p, andy(t) are defined to be ification of the algorithm for minimization is presented in the
following pseudocode.
© =1+ P2 .
11+ pop2 ASSIgN K, Pmax
- w1 + @2 Calculate X,a, 3,9,6,1n
y(t) =p— a:(t) (5'2) Initialize population: random Ty, U;
Do
For : =1 to population size
to obtain exactly the original nonrandom system described in
Section I. 2Convergence implies velocity= 0, but the convergent point is not neces-

Fori if th . le for — h h . sarily the one we want, particularly if the systemas constricted. We hope to
or instance, It there Is a cycle Tgr = ¢., then there Is an show in a later paper how to cope with this problem, by defining the optimal

infinity of cycles for the valuegy: , w2} so thatp; + @2 = .. parameters.
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4.6 X in the Typel” version,x = 1.0 results in slow convergence,
meaning that the space is thoroughly searched before the popu-
4.5 lation collapses into a point.
4.4 In fact, the Typel” constriction particle swarm can be pro-
43 grammed as a very simple modification to the standard version
presented in Section |. The constriction coefficignis calcu-
4.2 lated as shown in (4.15)
g
—2r ____ forg >4
4% P = P=241/ % —dp 4 )
3
else/k
3.8
The coefficient is then applied to the right side of the velocity
-1.5 -1 -0.5 0 0.5 1 1.5 adjustment.
v

Fig. 8. Example of the trajectory of a particle with the “original” formulacgjcylate
containing twog(p — z) terms, wherep is the upper limit of a uniformrandom .. . )
variable. As can be seen, velocityconverges to 0.0 and the particle’s positionInltlallze population
x converges on the previous best pgint Do

For : =1 to Population Size
if  f(Z;) < f(p;) then j; =2,
ﬁq = min(ﬁncighbors)
For d =1 to Dimension
via = X(Via + @1 (Pia — Tia) + @2 (Pga — Tia))

Tid = Tiq + Vi

if  f(x:) < f(p:) then p;, = x;
For d =1 to dimension

@l =rand () X (Pmax/2)

w2 = rand () X (S‘Qmax/z)

p=elael Next d

P = ((p1"pia) + (¥27Dga)) /¢ Next i

T Until termination criterion is met.

U= Ui

vig = a'v+ B (p — x)

T =pF+yv—(6—(1"9) (p — ) Note that the algorithm now requires no explicit lirfit,.....

Next d The constriction coefficient makes it unnecessary. In [8], Eber-
Next i hart and Shi recommended, based on their experiments, that a

Until termination criterion is met. liberalV,,,.«, for instance, one that is equal to the dynamic range

of the variable, be used in conjunction with the Tyidecon-
&giction coefficient. Though this extra parameter may enhance

In this generalized version of the algorithm, the user sele . o .
the version and chooses values foand¢ that are consistent _pgrform_ance, the algorithm will still run to convergence even if
5 omitted.

with it. Then the two eigenvalues are computed and the grealfeI

one is taken. This operation can be performed as follows.
VIl. EMPIRICAL RESULTS

Several types of particle swarms were used to optimize a set
of unconstrained real-valued benchmark functions, namely, sev-
eral of De Jong’s functions [9], Schaffer’s f6, and the Griewank,

discrim = ((ne)® — 487 + (o — 8)* + 2o — 8)) /4
a=(a+6—pp)/2
if (discrim > 0) then

neprim 1 = abs (a + /discrim ) Rlosenbrock,fangoRtgs}rlgm ffuncttl_ons. Atr??hpu:fnotn off20 parti-
neprim 2 — abs (a — v/diserim ) cles was run for 20 trials per function, with the best performance

evaluation recorded after 2000 iterations. Some results from An-
geline’s [1] runs using an evolutionary algorithm are shown for
comparison.

Though these functions are commonly used as benchmark
functions for comparing algorithms, different versions have ap-
peared in the literature. The formulas used here for De Jong’s f1,

These steps are taken only once in each program and, thusiajé4 (without noise), f5, and Rastrigin functions are taken from
not slow it down. For the versions tested in this paper, the cdi:0]. Schaffer’s f6 function is taken from [11]. Note that earlier
striction coefficient is calculated simply as= x/max(eig.). editions give a somewhat different formula. The Griewank func-
For instance, the Type 1 version is defined by the rules 3 =  tion given here is the one used in the First International Contest
y=06=1n=x. on Evolutionary Optimization held at ICEC 96 and the 30-di-

The generalized description allows the user to control the daensional generalized Rosenbrock function is taken from [1].
gree of convergence by settirdo various values. For instance,Functions are given in Table IlI.

else
neprim 1 = /a2 + abs (discrim )
neprim 2 = neprim 1

max(eig. ) = max(neprim 1, neprim 2)
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TABLE Il
FUNCTIONS USED TOTEST THEEFFECTS OF THECONSTRICTION COEFFICIENTS

Sphere function (De Jong’s f1) [ =38x?
Rosenbrock variant (De Jong’s £2) frx)=1 00(x,z—x7)2 +(1- x|)2

i
De Jong’s 4 — no noise fi0= Sioxt
j=l

2 1
Foxholes (De Jong's [5) Js(x)= + 3 ——————
2 5 0.002 f"j'l‘ Z,z=1(xf~af,-)6

(siny/x*+ %) - 0.5

Shaffer’s f6 fe(x)=0.5+ 3
(1.0+0.001(x*+ %))
Griewank function f{x)= L T (-100 - T, cos((x" ~100) )+1
' 4000 <~ = N
n
Rosenbrock function So(x) =T (100(y; +l—x'-’)z +(x;—1)2)
i=)
Rastrigin function fro(x) =X, [vc,‘2 —10cos(2M x,)+ 10]
TABLE IV B. Results

FUNCTION PARAMETERS FOR THETEST PROBLEMS . . .
Table V compares various constricted particle swarms’ per-

Function | Dimension | Initial Range formance to that of the traditionl,,. particle swarm and evo-
; 320 :—ng lutionary optimization (EO) results reported by [1]. All particle
3 30 50 swarm populations comprised 20 individuals.
5 2 150 Functions were implemented in 30 dimensions except for f2,
Shaffer’s f6 2 +100 f5, and f6, which are given for two dimensions. In all cases ex-
Gri:‘c’;("‘lzk ;g *—23020 cept 15, the globally optimal function result is 0.0. For f5, the
Rasm.giz 30 =1 best known result is 0.998004. The limit of the control param-
Rosenbrock 30 +10 etery was set to 4.1 for the constricted versions and 4.0 for the
Vmax Versions of the particle swarm. The column labeled “E&S”
A. Algorithm Variations Used was programmed according to the recommendations of [8]. This

i . : condition included both Typé&’” constriction andV,,,., with
Three variations of the generalized particle swarm were us&cp s : ;
on the problem suite. max Setto the range of the initial domain for the function. Func-

) . . . - . %ion results were saved with six decimal places of precision.
Type 1:The first version applied the constriction coefficien i .
As can be seen, the Typé€ and Type 1 constricted versions
to all terms of the formula ) :
outperformed thé&,,.. versions in almost every case; the exper-
a=f=y=b=n=x% imental version was sometimes better, sometimes not. Further,
the Typel” and Type 1 constricted particle swarms performed

usingx = 0.8. . X
gr etter than the comparison evolutionary method on three of the

Type 1': The second version tested was a simple constriction, ) : : .
which was not designed to converge, but not to explode, eith r functions. With some caution, we can at least consider the
’ ' performances to be comparable.

as was assigned a value of 1.0. The model was defined as
g Eberhart and Shi's suggestion to hedge the search by re-

a=p=x taining V.. with Type 1” constriction does seem to result in
y=6=1n=1.0. good performance on all functions. Itis the best on all except the
) . . . Rosenbrock function, where performance was still respectable.
Experimental VersioriThe third version tested was more exin analysis of variance was performed comparing the “E&S”
per.|mental|n nature. The constriction coefﬂmqnlvasqua!ly version with Typel”, standardizing data within functions.
deflneo_l a%/lnax(el’CQ)' I X = 1, then it was multiplied It was found that the algorithm had a significant main effect
by Q.9 iteratively. ane a satlsfa.ctory value was found, the f (1,342) = 12.02, p < 0.0006, but that there was a significant
lowing model was implemented: interaction of algorithm with function'(8,342) = 3.68,
a=pF=1 p < 0.0004, suggesting that the gain may not be robust across
all problems. These results support those of [8].
5 — o2 Any comparison with Angeline’s evolutionary method
==X should be considered cautiously. The comparison is offered
As in the first version, a “generic” value af= 0.8 was used. only as grima faciestandard by which to assess performances
Table IV displays the problem-specific parameters implemented these functions after this number of iterations. There are
in the experimental trials. numerous versions of the functions reported in the literature

¥ =X
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TABLE V
EMPIRICAL RESULTS
Function V max =2 V mex =4 Type 1" Type 1 Exp. E&S Angeline
Version
1 15.577775 59.301901 0 0 0 0 9.8808
2 0.000500 0.0013263 0 0 0 0
4 271.107996 4349.137512 | 0 0 0 0
5 2.874299 3.564808 0.998004 0.998004 3.507922 0.998004
Shaffer’s £6 | 0.000464 0.000247 0.001459 0.002915 29.173010 | 0.000155
Griewank 0.562339 0.968623 0.003944 0.008614 0.038923 0.002095 | 0.4033
Ackley 4.287476 6.623447 0.204988 0.150886 7.135213 0.104323
Rastrigin 223.834812 299.771716 82.95618 81.689550 | 63.222601 [ 57.194136 | 46.4689
Rosenbrock | 2770.882599 | 37111.70703 | 50.193877 | 39.118488 | 47.753953 | 50.798139 | 1610.359

Mean best evaluations at the end of 2 000 iterations for various versions of particle swarm and Angeline’s evolu-
tionary algorithm [1].

and it is extremely likely that features of the implementatiois seen to spiral toward an attractor, which turns out to be quite
are responsible for some variance in the observed resuftsnple in form: a circle. The real-number section by which this
The comparison though does allow the reader to confirm thgtobserved when time is treated discretely is a sine wave.
constricted particle swarms are comparable in performance torhe 5-D perspective summarizes the behavior of a particle
at least one evolutionary algorithm on these test functions. completely and permits the development of methods for
As has long been noted, thé.... particle swarm succeeds atcontrolling the explosion that results from randomness in the
finding optimal regions of the search space, but has no featgigtem. Coefficients can be applied to various parts of the
that enables it to converge on optima (e.g., [1]). The constrictiégrmula in order to guarantee convergence, while encouraging
techniques reported in this paper solve this problem, they dgploration. Several kinds of coefficient adjustments are
force convergence. The data clearly indicate an increase in iggested in the present paper, but we have barely scratched
ability of the algorithm to find optimal points in the search spaage surface and plenty of experiments should be prompted
for these problems as a result. by these findings. Simple modifications based on the present
No algorithmic parameters were adjusted for any of thgnalysis resulted in an optimizer which appears, from these
particle swarm trials. Parameters suchVas.x, ¢, population preliminary results, to be able to find the minima of some
size, etc., were held constant across functions. Further, it shogi@remely complex benchmark functions. These modifications
be emphasized that the population size of 20 is considerabhh guarantee convergence, which the traditiéfal, particle
smaller than what is usually seen in evolutionary methodswarm does not. In fact, the present analysis suggests that no
resulting in fewer function evaluations and consequently fasigioblem-specific parameters may need to be specified.
clock time in order to achieve a similar result. For instance, An- We remind the reader that the real strength of the particle
geline’s results cited for comparison are based on populaticsiwarm derives from the interactions among particles as they
of 250. search the space collaboratively. The second term added to the
velocity is derived from the successes of others, it is considered
VIIl. CONCLUSION a “social influence” term; when this effect is removed from

This paper explores how the particle swarm algorithm work8€ algorithm, performance is abysmal [3]. Effectively, the
from the inside, i.e., from the individual particle’s point of viewVariablep, keeps moving, as neighbors find better and better
How a particle searches a complex problem space is analyRNts in the search space and its weighting relativé taries
and improvements to the original algorithm based on this anggndomly with each iteration. As a particle swarm population
ysis are proposed and tested. Specifically, the application of c&§arches over time, individuals are drawn toward one another's
striction coefficients allows control over the dynamical charaglccesses, with the usual result being clustering of individuals

teristics of the particle swarm, including its exploration versu8 Optimal regions of the space. The analysis of the social-in-
exploitation propensities. fluence aspect of the algorithm is a topic for a future paper.

Though the pseudocode in Section VI may look different
from previous particle swarm programs, it is essentially the REFERENCES
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In complex number space, e.g., in continuous time, the particle  883-887.
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