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The Particle Swarm—Explosion, Stability, and
Convergence in a Multidimensional Complex Space

Maurice Clerc and James Kennedy

Abstract—The particle swarm is an algorithm for finding op-
timal regions of complex search spaces through the interaction of
individuals in a population of particles. Even though the algorithm,
which is based on a metaphor of social interaction, has been shown
to perform well, researchers have not adequately explained how
it works. Further, traditional versions of the algorithm have had
some undesirable dynamical properties, notably the particles’ ve-
locities needed to be limited in order to control their trajectories.
The present paper analyzes a particle’s trajectory as it moves in
discrete time (the algebraic view), then progresses to the view of
it in continuous time (the analytical view). A five-dimensional de-
piction is developed, which describes the system completely. These
analyses lead to a generalized model of the algorithm, containing
a set of coefficients to control the system’s convergence tendencies.
Some results of the particle swarm optimizer, implementing modi-
fications derived from the analysis, suggest methods for altering the
original algorithm in ways that eliminate problems and increase
the ability of the particle swarm to find optima of some well-studied
test functions.

Index Terms—Convergence, evolutionary computation, opti-
mization, particle swarm, stability.

I. INTRODUCTION

PARTICLE swarm adaptation has been shown to suc-
cessfully optimize a wide range of continuous functions

[1]–[5]. The algorithm, which is based on a metaphor of social
interaction, searches a space by adjusting the trajectories of
individual vectors, called “particles” as they are conceptualized
as moving points in multidimensional space. The individual
particles are drawn stochastically toward the positions of
their own previous best performance and the best previous
performance of their neighbors.

While empirical evidence has accumulated that the algorithm
“works,” e.g., it is a useful tool for optimization, there has thus
far been little insight intohow it works. The present analysis
begins with a highly simplified deterministic version of the par-
ticle swarm in order to provide an understanding about how it
searches the problem space [4], then continues on to analyze
the full stochastic system. A generalized model is proposed, in-
cluding methods for controlling the convergence properties of
the particle system. Finally, some empirical results are given,
showing the performance of various implementations of the al-
gorithm on a suite of test functions.
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A. The Particle Swarm

A population of particles is initialized with random positions
and velocities and a function is evaluated, using the par-

ticle’s positional coordinates as input values. Positions and ve-
locities are adjusted and the function evaluated with the new
coordinates at each time step. When a particle discovers a pat-
tern that is better than any it has found previously, it stores the
coordinates in a vector . The difference between (the best
point found by so far) and the individual’s current position
is stochastically added to the current velocity, causing the tra-
jectory to oscillate around that point. Further, each particle is
defined within the context of a topological neighborhood com-
prising itself and some other particles in the population. The
stochastically weighted difference between the neighborhood’s
best position and the individual’s current position is also
added to its velocity, adjusting it for the next time step. These
adjustments to the particle’s movement through the space cause
it to search around the two best positions.

The algorithm in pseudocode follows.

Intialize population

Do

For i = 1 to Population Size

if f(~x ) < f(~p ) then ~p = ~x

~p = min(~p )

For d = 1 to Dimension

v = v + ' (p � x ) + ' (p � x )

v = sign (v ) �min(abs (v ); v )

x = x + v

Next d

Next i

Until termination criterion is met

The variables and are random positive numbers, drawn
from a uniform distribution and defined by an upper limit ,
which is a parameter of the system. In this version, the term vari-
able is limited to the range for reasons that will be
explained below. The values of the elements inare deter-
mined by comparing the best performances of all the members
of ’s topological neighborhood, defined by indexes of some
other population members and assigning the best performer’s
index to the variable . Thus, represents the best position
found by any member of the neighborhood.

The random weighting of the control parameters in the al-
gorithm results in a kind of explosion or a “drunkard’s walk”
as particles’ velocities and positional coordinates careen toward
infinity. The explosion has traditionally been contained through
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implementation of a parameter, which limits step size or
velocity. The current paper, however, demonstrates that the im-
plementation of properly defined constriction coefficients can
prevent explosion; further, these coefficients can induce parti-
cles to converge on local optima.

An important source of the swarm’s search capability is the
interactions among particles as they react to one another’s find-
ings. Analysis of interparticle effects is beyond the scope of this
paper, which focuses on the trajectories of single particles.

B. Simplification of the System

We begin the analysis by stripping the algorithm down to a
most simple form; we will add things back in later. The particle
swarm formula adjusts the velocityby adding two terms to it.
The two terms are of the same form, i.e., , where is
the best position found so far, by the individual particle in the
first term, or by any neighbor in the second term. The formula
can be shortened by redefining as follows:

Thus, we can simplify our initial investigation by looking at
the behavior of a particle whose velocity is adjusted by only one
term

where . This is algebraically identical to the stan-
dard two-term form.

When the particle swarm operates on an optimization
problem, the value of is constantly updated, as the system
evolves toward an optimum. In order to further simplify the
system and make it understandable, we setto a constant
value in the following analysis. The system will also be
more understandable if we makea constant as well; where
normally it is defined as a random number between zero and a
constant upper limit, we will remove the stochastic component
initially and reintroduce it in later sections. The effect ofon
the system is very important and much of the present paper is
involved in analyzing its effect on the trajectory of a particle.

The system can be simplified even further by considering a
one-dimensional (1-D) problem space and again further by re-
ducing the population to one particle. Thus, we will begin by
looking at a stripped-down particle by itself, e.g., a population
of one 1-D deterministic particle, with a constant.

Thus, we begin by considering the reduced system

(1.1)

where and are constants. No vector notation is necessary
and there is no randomness.

In [4], Kennedy found that the simplified particle’s trajectory
is dependent on the value of the control parameterand recog-
nized that randomness was responsible for the explosion of the
system, although the mechanism that caused the explosion was
not understood. Ozcan and Mohan [6], [7] further analyzed the
system and concluded that the particle as seen in discrete time
“surfs” on an underlying continuous foundation of sine waves.

The present paper analyzes the particle swarm as it moves in
discrete time (the algebraic view), then progresses to the view of
it in continuous time (the analytical view). A five-dimensional
(5-D) depiction is developed, which completely describes the
system. These analyses lead to a generalized model of the al-
gorithm, containing a set of coefficients to control the system’s
convergence tendencies. When randomness is reintroduced to
the full model with constriction coefficients, the deleterious ef-
fects of randomness are seen to be controlled. Some results of
the particle swarm optimizer, using modifications derived from
the analysis, are presented; these results suggest methods for al-
tering the original algorithm in ways that eliminate some prob-
lems and increase the optimization power of the particle swarm.

II. A LGEBRAIC POINT OF VIEW

The basic simplified dynamic system is defined by

(2.1)

where .
Let

be the current point in and

the matrix of the system. In this case, we have
and, more generally, . Thus, the system is defined
completely by .

The eigenvalues of are

(2.2)

We can immediately see that the value is special.
Below, we will see what this implies.

For , we can define a matrix so that

(2.3)

(note that does not exist when ).

For example, from the canonical form , we find

(2.4)

In order to simplify the formulas, we multiply by to pro-
duce a matrix

(2.5)
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TABLE I
SOME ' VALUES FORWHICH THE SYSTEM IS CYCLIC

So, if we define , we can now write

(2.6)

and, finally,
However, is a diagonal matrix, so we have simply

(2.7)

In particular, there is cyclic behavior in the system if and only
if (or, more generally, if ). This just means
that we have a system of two equations

(2.8)

A. Case

For , the eigenvalues are complex and there is
always at least one (real) solution for. More precisely, we can
write

(2.9)

with and . Then

(2.10)

and cycles are given by anysuch that .
So for each , the solutions for are given by

for (2.11)

Table I gives some nontrivial values offor which the system
is cyclic.

Fig. 1(a)–(d) show the trajectories of a particle in phase space,
for various values of . When takes on one of the values from
Table I, the trajectory is cyclical, for any other value, the system
is just quasi-cyclic, as in Fig. 1(d).

We can be a little bit more precise. Below, is the 2-norm
(the Euclidean one for a vector)

(2.12)

(a) (b)

(c) (d)

Fig. 1. (a) Cyclic trajectory of a nonrandom particle when' = 3. (b) Cyclic
trajectory of a nonrandom particle when' = (5+

p
5)=2. (c) Cyclic trajectory

of a nonrandom particle when' = (5 �
p
5)=2. (d) Particle’s more typical

quasi-cyclic behavior when' does not satisfy (2.11). Here,' = 2:1.

For example, for and , we have

(2.13)

B. Case

If , then and are real numbers (and ),
so we have either:

1) (for even) which implies , not
consistent with the hypothesis ;

2) (or ), which is impossible;
3) , that is to say , not consistent with

the hypothesis .
So, and this is the point: there is no cyclic behavior for

and, in fact, the distance from the point to the center (0,0) is
strictly monotonic increasing with, which means that

(2.14)

So

(2.15)

One can also write

(2.16)

So, finally, increases like .
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In Section IV, this result is used to prevent the explosion of
the system, which can occur when particle velocities increase
without control.

C. Case

In this situation

In this particular case, the eigenvalues are both equal to
and there is just one family of eigenvectors, generated by

So, we have .
Thus, if is an eigenvector, proportional to(that is to say,

if ), there are just two symmetrical points, for

(2.17)

In the case where is not an eigenvector, we can directly
compute how decreases and/or increases.

Let us define . By recurrence, the
following form is derived:

(2.18)

where , , are integers so that for .
The integers can be negative, zero, or positive.

Supposing for a particularwe have , one can easily
compute . This quantity is pos-
itive if and only if is not between (or equal to) the roots

.
Now, if is computed, then we have

and the roots are .
As , this result means that is also positive.
So, as soon as begins to increase, it does so infinitely, but
it can decrease, at the beginning. The question to be answered
next is, how long can it decrease before it begins increasing?

Now take the case of . This means that is between
and . For instance, in the case where 1

with (2.19)

By recurrence, the following is derived:

with

(2.20)

Finally

(2.21)

1Note that the present paper uses the Bourbaki convention of representing
open intervals with reversed brackets. Thus, ]a,b[ is equivalent to parenthetical
notation (a,b).

as long as , which means that de-
creases as long as

Integerpart (2.22)

After that, increases.
The same analysis can be performed for . In this case,

, as well, so the formula is the same. In fact, to be even
more precise, if

then we have

(2.23)

Thus, it can be concluded that decreases/increases al-
most linearly when is big enough. In particular, even if it
begins to decrease, after that it tends to increase almost like

.

III. A NALYTIC POINT OF VIEW

A. Basic Explicit Representation

From the basic iterative (implicit) representation, the fol-
lowing is derived:

(3.1)

Assuming a continuous process, this becomes a classical
second-order differential equation

(3.2)

where and are the roots of

(3.3)

As a result

(3.4)

The general solution is

(3.5)

A similar kind of expression for is now produced, where

(3.6)
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The coefficients and depend on and . If
, we have

(3.7)

In the case where , (3.5) and (3.6) give

(3.8)

so we must have

(3.9)

in order to prevent a discontinuity.
Regarding the expressions and , eigenvalues of the ma-

trix , as in Section II above, the same discussion about the
sign of ( ) can be made, particularly about the (non) ex-
istence of cycles.

The above results provide a guideline for preventing the ex-
plosion of the system, for we can immediately see that it depends
on whether we have

(3.10)

B. A Posteriori Proof

One can directly verify that and are, indeed, solu-
tions of the initial system.

On one hand, from their expressions

(3.11)

and on the other hand

(3.12)

and also

(3.13)

C. General Implicit and Explicit Representations

A more general implicit representation (IR) is produced by
adding five coefficients , which will allow us to
identify how the coefficients can be chosen in order to ensure
convergence. With these coefficients, the system becomes

(3.14)

The matrix of the system is now

Let and be its eigenvalues.
The (analytic) explicit representation (ER) becomes

(3.15)

with

(3.16)

Now the constriction coefficients (see Section IV for details)
and are defined by

(3.17)

with

(3.18)

which are the eigenvalues of the basic system. By computing
the eigenvalues directly and using (3.17),and are

(3.19)
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The final complete ER can then be written from (3.15) and
(3.16) by replacing and , respectively, by and
and then , , , by their expressions, as seen in (3.18)
and (3.19).

It is immediately worth noting an important difference be-
tween IR and ER. In the IR,is always an integer and and

are real numbers. In the ER, real numbers are obtained if
and only if is an integer; nothing, however, prevents the assign-
ment of any real positive value to, in which case and
become true complex numbers. This fact will provide an elegant
way of explaining the system’s behavior, by conceptualizing it
in a 5-D space, as discussed in Section IV.

Note 3.1: If and are to be real numbers for a given
value, there must be some relations among the five real coef-

ficients . If the imaginary parts of and are
set equal to zero, (3.20) is obtained, as shown at the bottom of
the page, with

sign

sign

sign

sign

(3.21)

The two equalities of (3.20) can be combined and simplified
as follows:

sign
sign

(3.22)

The solutions are usually not completely independent of. In
order to satisfy these equations, a set of possible conditions is

(3.23)

However, these conditions are not necessary. For example,
an interesting particular situation (studied below) exists where

. In this case, for
any value and (3.20) is always satisfied.

D. From ER to IR

The ER will be useful to find convergence conditions. Nev-
ertheless, in practice, the iterative form obtained from (3.19) is
very useful, as shown in (3.24) at the bottom of the page.

Although there are an infinity of solutions in terms of the five
parameters , it is interesting to identify some par-
ticular classes of solutions. This will be done in the next section.

E. Particular Classes of Solutions

1) Class 1 Model:The first model implementing the five-
parameter generalization is defined by the following relations:

(3.25)

In this particular case, and are

(3.26)

An easy way to ensure real coefficients is to have
. Under this additional condition, a class of solution is

simply given by

(3.27)

2) Class Model: A related class of model is defined by
the following relation:

(3.28)

The expressions in (3.29), shown at the bottom of the next
page, for and are derived from (3.24).

If the condition is added, then

or (3.30)

Without this condition, one can choose a value for, for ex-
ample, and a corresponding value ( ), which give
a convergent system.

sign sign

sign sign
(3.20)

(3.24)
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3) Class Model: A second model related to the Class 1
formula is defined by

(3.31)

(3.32)

For historical reasons and for its simplicity, the case has
been well studied. See Section IV-C for further discussion.

4) Class 2 Model:A second class of models is defined by
the relations

(3.33)

Under these constraints, it is clear that

(3.34)

which gives us and , respectively.
Again, an easy way to obtain real coefficients for every

value is to have . In this case

(3.35)

In the case where , the following is obtained:

(3.36)

From the standpoint of convergence, it is interesting to note
that we have the following.

1) For the Class 1 models, with the condition

(3.37)

2) For the Class models, with the conditions
and

(3.38)

3) For the the Class 2 models, see (3.39) at the bottom of the
page, with .

This means that we will just have to choose ,
, and , class , respectively, to have a

convergent system. This will be discussed further in Section IV.

F. Removing the Discontinuity

Depending on the parameters the system
may have a discontinuity in due to the presence of the term

in the eigen-
values.

Thus, in order to have a completely continuous system, the
values for must be chosen such that

(3.40)

By computing the discriminant, the last condition is found to
be equivalent to

(3.41)

In order to be “physically plausible,” the parameters
must be positive. So, the condition becomes

(3.42)

The set of conditions taken together specify a volume in
for the admissible values of the parameters.

G. Removing the Imaginary Part

When the condition specified in (3.42) is met, the trajectory
is usually still partly in a complex space whenever one of the
eigenvalues is negative, due to the fact that is a complex

(3.29)

(3.39)



CLERC AND KENNEDY: THE PARTICLE SWARM—EXPLOSION, STABILITY, AND CONVERGENCE 65

number when is not an integer. In order to prevent this, we
must find some stronger conditions in order to maintain positive
eigenvalues.

Since

(3.43)

the following conditions can be used to ensure positive eigen-
values:

(3.44)

Note 3.2: From an algebraic point of view, the conditions
described in (3.43) can be written as

trace
(3.45)

Now, these conditions depend on. Nevertheless, if the max-
imum value is known, they can be rewritten as

(3.46)

Under these conditions, all system variables are real numbers
in conjunction with the conditions in (3.42) and (3.44), the pa-
rameters can be selected so that the system is completely con-
tinuousand real.

H. Example

As an example, suppose that and . Now the
conditions become

(3.47)

For example, when

(3.48)

the system converges quite quickly after about 25 time steps
and at each time step the values ofand are almost the same
over a large range of values. Fig. 2(a) shows an example of
convergence ( and ) for a continuous real-valued
system with .

I. Reality and Convergence

The quick convergence seen in the above example suggests
an interesting question. Does reality—using real-valued vari-
ables—imply convergence? In other words, does the following
hold for real-valued system parameters:

(3.49)

(a)

(b)

Fig. 2. (a) Convergent trajectory in phase space of a particle when� = � = 1

and� = �, where' = 4. Both velocityv andy, the difference between the
previous bestp, and the current positionx converge to 0.0. (b)y increases over
time, even when the parameters are real and not complex.

The answer is no. It can be demonstrated that convergence is
not always guaranteed for real-valued variables. For example,
given the following parameterization:

(3.50)

the relations are

(3.51)

which will produce system divergence when (for in-
stance), since . This is seen in Fig. 2(b)

IV. CONVERGENCE ANDSPACE OFSTATES

From the general ER, we find the criterion of convergence

(4.1)

where and are usually true complex numbers.
Thus, the whole system can be represented in a 5-D space
Re Im Re Im .
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In this section, we study some examples of the most simple
class of constricted cases: the ones with just oneconstriction
coefficient. These will allow us to devise methods for control-
ling the behavior of the swarm in ways that are desirable for
optimization.

A. Constriction for Model Type 1

Model Type 1 is described as follows:

(4.2)

We have seen that the convergence criterion is satisfied when
. Since , the constriction

coefficient below is produced

(4.3)

B. Constriction for Model Type

Just as a constriction coefficient was found for the Type 1
model, the following IR (with instead of ) is used for Type :

(4.4)

The coefficient becomes

for (4.5)

However, as seen above, this formula isa priori valid only
when , so it is interesting to find another constriction
coefficient that has desirable convergence properties. We have
here

(4.6)

The expression under the square root is negative for
. In this case, the eigenvalue is a

true complex number and . Thus, if ,
that is to say, if , a needs to be selected such that

in order to satisfy the convergence cri-
terion. So, for example, define as

for (4.7)

Now, can another formula for greatervalues be found? The
answer is no. For in this case,is a real number and its absolute
value is:

1) strictly decreasing on and the
minimal value is (greater than 1);

2) strictly decreasing on , with a
limit of 1.

For simplicity, the formula can be the same as for Type 1,
not only for , but also for . This is, indeed, also
possible, but then cannot be too small, depending on. More
precisely, the constraint must be sat-
isfied. However, as for , we have , which means
that the curves in Fig. 3(a) and (b) can then be interpreted as the

(a)

(b)

Fig. 3. (a) Type 1 constriction coefficient� as a function of' and�. It drops
below� only when' > 4:0. (b) Type1 coefficient is less than 1.0 when' <

4:0. These coefficients identify the conditions for convergence of the particle
system.

mean and minimally acceptablevalues for sure convergence.
For example, for , the constraint must hold,
but there is no such restriction on if .

Note 4.1: The above analysis is for constant. If is
random, it is nevertheless possible to have convergence, even
with a small constriction coefficient, when at least onevalue
is strictly inside the interval of variation.

C. Constriction Type

Referring to the Class model, in the particular case where
, we use the following IR (with instead of )

(4.8)

In fact, this system is hardly different from the classical par-
ticle swarm as described in the Section I

(4.9)

so it may be interesting to detail how, in practice, the constriction
coefficient is found and its convergence properties proven.

Step 1) Matrix of the System
We have immediately

(4.10)

Step 2) Eigenvalues
They are the two solutions for the equation

trace determinant (4.11)
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or

(4.12)

Thus

(4.13)

with

trace determinant

(4.14)

Step 3) Complex and Real Areas on
The discriminant is negative for the values in

. In
this area, the eigenvalues are true complex numbers
and their absolute value (i.e., module) is simply.

Step 4) Extension of the Complex Region and Constriction
Coefficient

In the complex region, according to the conver-
gence criterion, in order to get convergence.
So the idea is to find a constriction coefficient de-
pending on so that the eigenvalues are true com-
plex numbers for a large field of values. In this
case, the common absolute value of the eigenvalues
is

for

else
(4.15)

which is smaller than one for all values as soon as
is itself smaller than one.

This is generally the most difficult step and sometimes needs
some intuition. Three pieces of information help us here:

1) the determinant of the matrix is equal to;
2) this is the same as in Constriction Type 1;
3) we know from the algebraic point of view the system is

(eventually) convergent like .
So it appears very probable that the same constriction coeffi-

cient used for Type 1 will work. First, we try

(4.16)

that is to say

for

else
(4.17)

It is easy to see that is negative only between and ,
depending on . The general algebraic form of is quite
complicated (polynomial in with some coefficients being
roots of an equation in ) so it is much easier to compute
it indirectly for some values. If is smaller than four,
then and by solving we find that

Fig. 4. Discriminant remains negative within some bounds of', depending
on the value of�, ensuring that the particle system will eventually converge.

TABLE II
VALUES OF' BETWEEN WHICH THE DISCRIMINANT IS NEGATIVE,

FOR TWO SELECTED VALUES OF�

. This relation is valid as soon as .
Fig. 4 shows how the discriminant depends on, for two
values. It is negative between thevalues given in Table II.

D. Moderate Constriction

While it is desirable for the particle’s trajectory to converge,
by relaxing the constriction the particle is allowed to oscillate
through the problem space initially, searching for improvement.
Therefore, it is desirable to constrict the system moderately,
preventing explosion while still allowing for exploration.
To demonstrate how to produce moderate constriction, the
following ER is used:

(4.18)

that is to say

From the relations between ER and IR, (4.19) is obtained, as
shown at the bottom of the next page.

There is still an infinity of possibilities for selecting the pa-
rameters . In other words, there are many different IRs
that produce the same explicit one. For example

(4.20)
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Fig. 5. Real parts ofy andv, varying' over 50 units of time, for a range of' values.

or

(4.21)

From a mathematical point of view, this case is richer than
the previous ones. There is no more explosion, but there is not
always convergence either. This system is “stabilized” in the
sense that the representative point in the state space tends to
move along an attractor which is not always reduced to a single
point as in classical convergence.

E. Attractors and Convergence

Fig. 5 shows a three-dimensional representation of the
real restriction Re Re of a particle moving in
the 5-D space. Fig. 6(a)–(c) show the “real” restrictions
(Re Re ) of the particles that are typically studied. We
can clearly see the three cases:

1) “spiral” easy convergence toward a nontrivial attractor for
[see Fig. 6(a)];

2) difficult convergence for [see Fig. 6(b)];
3) quick almost linear convergence for [see Fig. 6(c)].

Nevertheless, it is interesting to have a look at the true system,
including the complex dimensions. Fig. 6(d)–(f) shows some
other sections of the whole surface in.

Note 4.2: There is a discontinuity, for the radius is equal
to zero for (see Fig. 7).

Thus, what seems to be an “oscillation” in the real space is in
fact a continuous spiralic movement in a complex space. More
importantly, the attractor is very easy to define: it is the “circle”

[center (0,0) and radius]. When , and
when , then ( with ), for
the constriction coefficient has been precisely chosen so that

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Trajectories of a particle in phase space with three different values of
'. (a) (c) and (e) Real parts of the velocityv and position relative to the previous
besty. (b) (d) and (f) Real and imaginary parts ofv. (a) and (d) show the attractor
for a particle with' = 2:5. Particle tends to orbit, rather than converging to
0.0. (b) and (e) show the same views with' = 3:99. (c) and (f) depict the
“easy” convergence toward 0.0 of a constricted particle with' = 6:0. Particle
oscillates with quickly decaying amplitude toward a point in the phase space
(and the search space).

the part of tends to zero. This provides an intu-
itive way to transform this stabilization into a true convergence.

(4.19)
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(a)

(b)

Fig. 7. “Trumpet” global attractor when' < 4. Axis (Re(v); Im(v); '); � =
8. (a) Effect on' of the real and imaginary parts ofv. (b) Effects of the real and
imaginary parts ofy.

We just have to use a second coefficient in order to reduce the
attractor, in the case , so that

(4.22)

The models studied here have only one constriction coeffi-
cient. If one sets , the Type 1 constriction is produced,
but now, we understand betterwhy it works.

V. GENERALIZATION OF THE PARTICLE-SWARM SYSTEM

Thus far, the focus has been on a special version of the particle
swarm system, a system reduced to scalars, collapsed terms and
nonprobabilistic behavior. The analytic findings can easily be
generalized to the more usual case whereis random and two
vector terms are added to the velocity. In this section the results
are generalized back to the original system as defined by

(5.1)

Now , , and are defined to be

(5.2)

to obtain exactly the original nonrandom system described in
Section I.

For instance, if there is a cycle for , then there is an
infinity of cycles for the values so that .

Upon computing the constriction coefficient, the following
form is obtained:

if

else

(5.3)

Coming back to the ( ) system, and are

(5.4)
The use of the constriction coefficient can be viewed as a rec-

ommendation to the particle to “take smaller steps.” The conver-
gence is toward the point (

). Remember is in fact the velocity of the particle, so it will
indeed be equal to zero in a convergence point.2 Example

and are uniform random variables between 0 and
and respectively. This example is shown in Fig. 8.

VI. RUNNING THE PARTICLE SWARM WITH CONSTRICTION

COEFFICIENTS

As a result of the above analysis, the particle swarm algorithm
can be conceived of in such a way that the system’s explosion
can be controlled, without resorting to the definition of any ar-
bitrary or problem-specific parameters. Not only can explosion
be prevented, but the model can be parameterized in such a way
that the particle system consistently converges on local optima.
(Except for a special class of functions, convergence on global
optima cannot be proven.)

The particle swarm algorithm can now be extended to include
many types of constriction coefficients. The most general mod-
ification of the algorithm for minimization is presented in the
following pseudocode.

Assign �; '

Calculate �;�; �; 
; �; �

Initialize population: random x ; v

Do

For i = 1 to population size

2Convergence implies velocity= 0, but the convergent point is not neces-
sarily the one we want, particularly if the system istooconstricted. We hope to
show in a later paper how to cope with this problem, by defining the optimal
parameters.
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Fig. 8. Example of the trajectory of a particle with the “original” formula
containing two'(p�x) terms, where' is the upper limit of a uniform random
variable. As can be seen, velocityv converges to 0.0 and the particle’s position
x converges on the previous best pointp.

if f(x ) < f(p ) then p = x

For d = 1 to dimension

'1 = rand () � (' =2)

'2 = rand () � (' =2)

' = '1 + '2

p = (('1 p ) + ('2 p ))='

x = x

v = v

v = � v + � ' (p� x)

x = p+ 
 v � (� � (� ')) (p� x)

Next d

Next i

Until termination criterion is met.

In this generalized version of the algorithm, the user selects
the version and chooses values forand that are consistent
with it. Then the two eigenvalues are computed and the greater
one is taken. This operation can be performed as follows.

discrim = ((�') � 4�
 + (�� �) + 2�'(�� �))=4

a = (�+ � � �')=2

if (discrim > 0) then

neprim 1 = abs (a +
p

discrim )

neprim 2 = abs (a �
p

discrim )

else

neprim 1 = a + abs (discrim )

neprim 2 = neprim 1

max(eig. ) = max(neprim 1; neprim 2)

These steps are taken only once in each program and, thus, do
not slow it down. For the versions tested in this paper, the con-
striction coefficient is calculated simply as eig. .
For instance, the Type 1 version is defined by the rules

.
The generalized description allows the user to control the de-

gree of convergence by settingto various values. For instance,

in the Type version, results in slow convergence,
meaning that the space is thoroughly searched before the popu-
lation collapses into a point.

In fact, the Type constriction particle swarm can be pro-
grammed as a very simple modification to the standard version
presented in Section I. The constriction coefficientis calcu-
lated as shown in (4.15)

, for

else

The coefficient is then applied to the right side of the velocity
adjustment.

Calculate �

Initialize population

Do

For i = 1 to Population Size

if f(~x ) < f(~p ) then ~p = ~x

~p = min(~p )

For d = 1 to Dimension

v = �(v + ' (p � x ) + ' (p � x ))

x = x + v

Next d

Next i

Until termination criterion is met.

Note that the algorithm now requires no explicit limit .
The constriction coefficient makes it unnecessary. In [8], Eber-
hart and Shi recommended, based on their experiments, that a
liberal , for instance, one that is equal to the dynamic range
of the variable, be used in conjunction with the Typecon-
striction coefficient. Though this extra parameter may enhance
performance, the algorithm will still run to convergence even if
it is omitted.

VII. EMPIRICAL RESULTS

Several types of particle swarms were used to optimize a set
of unconstrained real-valued benchmark functions, namely, sev-
eral of De Jong’s functions [9], Schaffer’s f6, and the Griewank,
Rosenbrock, and Rastrigin functions. A population of 20 parti-
cles was run for 20 trials per function, with the best performance
evaluation recorded after 2000 iterations. Some results from An-
geline’s [1] runs using an evolutionary algorithm are shown for
comparison.

Though these functions are commonly used as benchmark
functions for comparing algorithms, different versions have ap-
peared in the literature. The formulas used here for De Jong’s f1,
f2, f4 (without noise), f5, and Rastrigin functions are taken from
[10]. Schaffer’s f6 function is taken from [11]. Note that earlier
editions give a somewhat different formula. The Griewank func-
tion given here is the one used in the First International Contest
on Evolutionary Optimization held at ICEC 96 and the 30-di-
mensional generalized Rosenbrock function is taken from [1].
Functions are given in Table III.
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TABLE III
FUNCTIONS USED TOTEST THEEFFECTS OF THECONSTRICTIONCOEFFICIENTS

TABLE IV
FUNCTION PARAMETERS FOR THETEST PROBLEMS

A. Algorithm Variations Used

Three variations of the generalized particle swarm were used
on the problem suite.

Type 1:The first version applied the constriction coefficient
to all terms of the formula

using .
Type 1 : The second version tested was a simple constriction,

which was not designed to converge, but not to explode, either,
as was assigned a value of 1.0. The model was defined as

Experimental Version:The third version tested was more ex-
perimental in nature. The constriction coefficientwas initially
defined as . If , then it was multiplied
by 0.9 iteratively. Once a satisfactory value was found, the fol-
lowing model was implemented:

As in the first version, a “generic” value of was used.
Table IV displays the problem-specific parameters implemented
in the experimental trials.

B. Results

Table V compares various constricted particle swarms’ per-
formance to that of the traditional particle swarm and evo-
lutionary optimization (EO) results reported by [1]. All particle
swarm populations comprised 20 individuals.

Functions were implemented in 30 dimensions except for f2,
f5, and f6, which are given for two dimensions. In all cases ex-
cept f5, the globally optimal function result is 0.0. For f5, the
best known result is 0.998004. The limit of the control param-
eter was set to 4.1 for the constricted versions and 4.0 for the

versions of the particle swarm. The column labeled “E&S”
was programmed according to the recommendations of [8]. This
condition included both Type constriction and , with

set to the range of the initial domain for the function. Func-
tion results were saved with six decimal places of precision.

As can be seen, the Type and Type 1 constricted versions
outperformed the versions in almost every case; the exper-
imental version was sometimes better, sometimes not. Further,
the Type and Type 1 constricted particle swarms performed
better than the comparison evolutionary method on three of the
four functions. With some caution, we can at least consider the
performances to be comparable.

Eberhart and Shi’s suggestion to hedge the search by re-
taining with Type constriction does seem to result in
good performance on all functions. It is the best on all except the
Rosenbrock function, where performance was still respectable.
An analysis of variance was performed comparing the “E&S”
version with Type , standardizing data within functions.
It was found that the algorithm had a significant main effect

, , but that there was a significant
interaction of algorithm with function ,

, suggesting that the gain may not be robust across
all problems. These results support those of [8].

Any comparison with Angeline’s evolutionary method
should be considered cautiously. The comparison is offered
only as aprima faciestandard by which to assess performances
on these functions after this number of iterations. There are
numerous versions of the functions reported in the literature
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TABLE V
EMPIRICAL RESULTS

Mean best evaluations at the end of 2 000 iterations for various versions of particle swarm and Angeline’s evolu-
tionary algorithm [1].

and it is extremely likely that features of the implementation
are responsible for some variance in the observed results.
The comparison though does allow the reader to confirm that
constricted particle swarms are comparable in performance to
at least one evolutionary algorithm on these test functions.

As has long been noted, the particle swarm succeeds at
finding optimal regions of the search space, but has no feature
that enables it to converge on optima (e.g., [1]). The constriction
techniques reported in this paper solve this problem, they do
force convergence. The data clearly indicate an increase in the
ability of the algorithm to find optimal points in the search space
for these problems as a result.

No algorithmic parameters were adjusted for any of the
particle swarm trials. Parameters such as , , population
size, etc., were held constant across functions. Further, it should
be emphasized that the population size of 20 is considerably
smaller than what is usually seen in evolutionary methods,
resulting in fewer function evaluations and consequently faster
clock time in order to achieve a similar result. For instance, An-
geline’s results cited for comparison are based on populations
of 250.

VIII. C ONCLUSION

This paper explores how the particle swarm algorithm works
from the inside, i.e., from the individual particle’s point of view.
How a particle searches a complex problem space is analyzed
and improvements to the original algorithm based on this anal-
ysis are proposed and tested. Specifically, the application of con-
striction coefficients allows control over the dynamical charac-
teristics of the particle swarm, including its exploration versus
exploitation propensities.

Though the pseudocode in Section VI may look different
from previous particle swarm programs, it is essentially the
same algorithm rearranged to enable the judicious application
of analytically chosen coefficients. The actual implementation
may be as simple as computing one constant coefficient and
using it to weight one term in the formula. The Typemethod,
in fact, requires only the addition of a single coefficient, calcu-
lated once at the start of the program, with almost no increase
in time or memory resources.

In the current analysis, the sine waves identified by Ozcan and
Mohan [6], [7] turn out to be the real parts of the 5-D attractor.
In complex number space, e.g., in continuous time, the particle

is seen to spiral toward an attractor, which turns out to be quite
simple in form: a circle. The real-number section by which this
is observed when time is treated discretely is a sine wave.

The 5-D perspective summarizes the behavior of a particle
completely and permits the development of methods for
controlling the explosion that results from randomness in the
system. Coefficients can be applied to various parts of the
formula in order to guarantee convergence, while encouraging
exploration. Several kinds of coefficient adjustments are
suggested in the present paper, but we have barely scratched
the surface and plenty of experiments should be prompted
by these findings. Simple modifications based on the present
analysis resulted in an optimizer which appears, from these
preliminary results, to be able to find the minima of some
extremely complex benchmark functions. These modifications
can guarantee convergence, which the traditional particle
swarm does not. In fact, the present analysis suggests that no
problem-specific parameters may need to be specified.

We remind the reader that the real strength of the particle
swarm derives from the interactions among particles as they
search the space collaboratively. The second term added to the
velocity is derived from the successes of others, it is considered
a “social influence” term; when this effect is removed from
the algorithm, performance is abysmal [3]. Effectively, the
variable keeps moving, as neighbors find better and better
points in the search space and its weighting relative tovaries
randomly with each iteration. As a particle swarm population
searches over time, individuals are drawn toward one another’s
successes, with the usual result being clustering of individuals
in optimal regions of the space. The analysis of the social-in-
fluence aspect of the algorithm is a topic for a future paper.
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