
A Survey of State-of-the-Art Short Text
Matching Algorithms

Weiwei Hu1(B), Anhong Dang1, and Ying Tan2

1 State Key Laboratory of Advanced Optical Communication Systems and Networks,
School of Electronics Engineering and Computer Science, Peking University,

Beijing 100871, China
{weiwei.hu,ahdang}@pku.edu.cn

2 Key Laboratory of Machine Perception (MOE), and Department of Machine
Intelligence, School of Electronics Engineering and Computer Science,

Peking University, Beijing 100871, China
ytan@pku.edu.cn

Abstract. The short text matching task uses an NLP model to pre-
dict the semantic relevance of two texts. It has been used in many fields
such as information retrieval, question answering and dialogue systems.
This paper will review several state-of-the-art neural network based text
matching algorithms in recent years. We aim to provide a quick start
guide to beginners on short text matching. The representation based
model DSSM is first introduced, which uses a neural network model
to represent texts as feature vectors, and the cosine similarity between
vectors is regarded as the matching score of texts. Word interaction
based models such as DRMM, MatchPyramid and BERT are then intro-
duced, which extract semantic matching features from the similarities of
word pairs in two texts to capture more detailed interaction information
between texts. We analyze the applicable scenes of each algorithm based
on the effectiveness and time complexity, which will help beginners to
choose appropriate models for their short text matching applications.

Keywords: Short text matching · Deep learning ·
Representation learning · Neural networks

1 Introduction

Short text matching is a widely used NLP technology which aims to model the
semantic relationship between two texts. Information retrieval, question answer-
ing and dialogue systems are the main application areas of short text matching.

In information retrieval, users want to find relevant documents for a given
query. How to match the query with appropriate documents is crucial to search
engines. Text matching can also be used to match question with appropriate
answers, which is very helpful in automatic custom service and will significantly
reduce the labor cost.

c© Springer Nature Singapore Pte Ltd. 2019
Y. Tan and Y. Shi (Eds.): DMBD 2019, CCIS 1071, pp. 211–219, 2019.
https://doi.org/10.1007/978-981-32-9563-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9563-6_22&domain=pdf
https://doi.org/10.1007/978-981-32-9563-6_22


212 W. Hu et al.

Recent researches show that neural network based text matching algorithms
outperform traditional text matching algorithms such as TFIDF, latent seman-
tic analysis (LSA) [3] and latent Dirichlet allocation (LDA) [2]. Using neural
networks to represent text and learn the interaction pattern between texts will
make the model able to mine the complex semantic relationship of texts.

Many neural network based text matching algorithms have been proposed in
recent years. This paper only focuses several state-of-the-art algorithms among
them. Considering the effectiveness and time efficiency, DSSM, DRMM, Match-
Pyramid and BERT are chosen to present in this paper. There are many other
famous text matching algorithms, such as ARC [9] and DURT [13]. Due to the
space limit, we will not introduce them in this paper. An experimental evaluation
of different text matching algorithms can be found in [5,15].

2 Deep Structured Semantic Models (DSSM)

DSSM is a well-known short text matching algorithm, which is the abbreviation
for deep structured semantic models [10]. It is first proposed to match query and
documents in web search applications. DSSM uses neural networks to represent
queries and documents as vectors. The vector distance between a query and
a document is regarded as the matching score of them. There are mainly three
kinds of neural networks to represent text for DSSM, and we will introduce them
in the following three sub-sections.

2.1 Feed-Forward Network Based DSSM

The basic DSSM algorithm uses feed-forward networks to represent queries and
documents. The architecture of basic DSSM is shown in Fig. 1.

bag of triple-
gram letters

query

feed-forward 
network

bag of triple-
gram letters

posi ve 
document

feed-forward 
network

bag of triple-
gram letters

1st nega ve 
document

feed-forward 
network

bag of triple-
gram letters

Nth nega ve 
document

feed-forward 
network

matching 
score

matching 
score

matching 
score

. . .

. . .

. . .

Fig. 1. The architecture of DSSM



A Survey of State-of-the-Art Short Text Matching Algorithms 213

The input query and documents are firstly represented as bag of triple-gram
letters by word hashing. Word hashing by triple-gram of letters has two advan-
tages. The first one is that it is able to significantly reduce the size of the vocab-
ulary. A small vocabulary will make calculation of the bottom layer of neural
network very fast. The second advantage is that triple-gram representation of
query letters is more robust to misspelling than word based representation. The
search engine usually faces a large number of users, and many users may mis-
spell the queries. For misspelled words, the correct parts will be preserved by
triple-gram letters.

The bag of triple-gram letters is then represented as a boolean vector. If a
triple-gram is present in a query or a document, the corresponding dimension
of the boolean vector is set to one. Otherwise, it is set to zero. This vector is
fed into a feed-forward network. The network will output a vector which is the
semantic representation of the query or the document.

The cosine similarity between a query and a document is regarded as the
matching score of their similarity. Let the cosine similarity between a query
and its positive document vector be s+, and the cosine similarity with its i-th
negative document be s−

i , assuming there are N negative documents in total.
The loss function for training DSSM is shown in Formula 1.

loss = −log
eγs+

eγs+ +
∑N

i=1 eγs−
i

. (1)

γ in Formula 1 is the hyper-parameter to control the smoothness of the soft-
max function. Minimizing this loss function will push the matching score of
positive document become larger and push the matching scores of negative doc-
uments become smaller. Such process will make DSSM able to discriminate rel-
evant documents from irrelevant ones for a given query.

2.2 Convolutional DSSM (CDSSM)

The basic DSSM only uses feed-forward networks to represent the query and
documents. However, feed-forward networks are not originally designed for pro-
cessing sequential data, while query and documents are sequence of words. To
better capture the sequential nature of query and document text, the DSSM
with convolutional-pooling structure (abbr. CDSSM) is proposed [19].

CDSSM uses a sliding window to split the input text (i.e. a query or a
document) into word n-grams. In each sliding window, the triple-gram letters
are extracted for each word, and each word is represented as a boolean vector of
triple-gram letters. The boolean vectors of all words in the sliding window are
concatenated as the feature vector of the sliding window.

The convolutional operation is applied on each sliding window. The feature
vector of each sliding window is fed into a feed-forward network, in order to
extract higher level semantic feature of the sliding window. The max-pooling
layer takes the element-wise maximum of the network’s output vectors of all
sliding windows. The variable-length input text will become a feature vector



214 W. Hu et al.

with fixed length. At last another feed-forward network is applied on top of the
max-pooling layer, and output the final semantic feature vector of the input text.

2.3 LSTM-DSSM

For many sequential applications, long short-term memory (LSTM) [8] works
better than convolutional networks. LSTM-DSSM [16] is a variant of DSSM
which uses LSTM to extract the feature vector of input text.

LSTM is a special kind of recurrent neural networks [6]. Recurrent neural net-
works process the input text sequentially, and use recurrent layers to remember
previous states. For long sequences, the recurrent neural networks may encounter
the problem of gradient vanishing during training. LSTM introduces input gate,
output gate and forget gate to the recurrent layers. The opening and closing of
the gates make LSTM able to reserve long-term information for long sequences.

3 Deep Relevance Matching Model (DRMM)

DRMM [7] matches two pieces of text in word level. Word interaction matrix
is first calculated, and then the high-level feature is extracted from the word
interaction matrix.

Supposing the embeddings of query words are represented as q1, q2, ..., qQ,
and the embeddings of the document words are represented as d1, d2, ..., dD,
where Q is the length of the query and D is the length of the document.

For the i-th query word qi, a term gate is first applied to get its weight among
all the query words. The term gate gi is calculated as Formula 2.

gi =
ewqi

∑Q
j=1 ewqj

. (2)

w in Formula 2 is a learnable parameter. It can be seen that gi is a normalized
weight of the i-th query word, and the term gates of all query words sum up to 1.

To match the document for the i-th query word, the cosine distance of qi

with all the words in the document is calculated. That is:

sij = cosine(qi, dj) (3)

For the i-th query word, the histogram of si1 to siD is calculated. The range
of cosine distance is between −1 and 1. This range is split into several intervals
and the number of cosine values fallen in each interval is calculated. The counts of
words in all intervals forms a feature vector, which is able to reflect the matching
status of the i-th query word with the document. A feed-forward network with
one output neuron is applied on this feature vector. Let the output of the network
be mi, which can be regarded as the matching score of the i-th query word with
the document.

The final matching score of the query and the document is calculated as
follows:

score =
Q∑

i=1

gimi. (4)



A Survey of State-of-the-Art Short Text Matching Algorithms 215

That is, the matching score is the weighted sum of all the query words’
matching scores with the document.

The original DRMM paper uses histogram of bins to represent the interaction
feature. Besides, the maximum k elements of si1 to siD can also be used as an
interaction feature, where k is a hyper parameter which controls the feature size.
Using the top k elements from the word matching scores will make the interaction
between query and document become more finer-grained. Such feature usually
performs better than the original DRMM with the histogram feature.

4 MatchPyramid

DRMM uses human-defined features on top of the matching matrix to calculate
the matching score. Instead of using human-defined feature, MatchPyramid [17]
uses convolutional neural networks to learn feature representations from the
matching matrix.

The architecture of MatchPyramid is shown in Fig. 2.

Convolu�onal Layer

Dynamic Max-Pooling 
Layer

Convolu�onal Layer

Max-Pooling Layer

Convolu�onal Layer

Max-Pooling Layer

Fully Connected Layer

Matching Matrix

Matching Score

. .
 .

Fig. 2. The architecture of MatchPyramid.

The matching matrix between the query word sequence and the document
word sequence is firstly calculated. The matching matrix is then regarded as
an 2D image and convolutional neural networks is used to predict the matching
score. A serial of alternating convolutional and max-pooling layers are applied on
the image of matching matrix. The first max pooling layer uses dynamic pooling



216 W. Hu et al.

size to convert text with variable length to fixed size. Full connected layer is
used to output the matching score of MatchPyramid.

Due to the representation learning nature of convolutional neural networks,
MatchPyramid is able to learn the hierarchical interaction between query words
and document words, and mine complex matching pattern between texts.

5 Bidirectional Encoder Representations from
Transformers (BERT) for Short Text Matching

BERT is a pre-trained text encoder model which is based on the transformer
architecture [4]. It has achieved state-of-the-art performance on many tasks, such
as GLUE benchmark [21] and SQUAD [18].

BERT uses transformer to encode a word sequence of text into an output
vector sequence. Transformer is firstly proposed for machine translation [20]. The
encoder of transformer consists of a serial of layers. Each layer can be further
divided into two sublayers, i.e. the multi-head self-attention layer and the feed-
forward layer. Due to the space limit, we will not describe the detailed structure
of transformer here.

BERT firstly pre-trains the transformer encoder on unsupervised text corpus.
Traditional NLP pre-training algorithms use language model to predict next
words. BERT introduces two new pre-training methods. The first method is
to randomly mask out some words in a sentence, and then use the output of
transformer encoder to predict these masked words. The second method is to
predict whether two sentences are adjacent in the corpus.

After pre-training the transformer encoder, many specific tasks can be fine-
tuned on the trained model. The architecture for fine-tuning text matching task
in shown in Fig. 3.

Transformer Encoder

input

output

<CLS>

matching score

<SEP>Text 1 Tokens Text 2 Tokens

Fig. 3. BERT for text matching.



A Survey of State-of-the-Art Short Text Matching Algorithms 217

In the input layer, the two texts are concatenated as one sequence. A special
<SEP> token is added between the two sequences. A beginning token <CLS>
is inserted at the beginning of BERT input. The output corresponding to the
<CLS> is used to predict the matching score.

Using BERT to match short text will take full advantage the interaction fea-
ture between two texts because of the self-attention mechanism of transformer
encoder. In many text matching task such question answering, BERT has out-
performed existing algorithms by a large margin.

6 Model Selection in Real-World Applications

DSSM uses cosine similarity between feature vectors to measure the matching
score between two texts. The calculation of cosine similarity is usually very
fast. This makes the DSSM very suitable for online services which have real-
time requirements on inferring the text similarity, on condition that the feature
vectors have been pre-calculated offline.

For example, in search engines, the feature vector of frequent queries and all
documents can be calculated in offline machines. The online servers only need
to calculate infrequent queries. The matching scores of a query and candidate
documents can be simply calculated by the cosine distances. This process is able
to return search results quickly and will significantly reduce the load of online
servers.

Another applicable scene of DSSM is when we need to find semantic similar
texts from a huge collection of texts. It is inefficient to calculate matching scores
between the query text and all texts in the huge collection, since the time com-
plexity is O(N) where N is the size of the huge collection. For cosine similarity,
the approximate nearest neighbor (ANN) search [1,14] can be used to accelerate
the process of searching for nearest neighbors. ANN uses some index structures
to avoid the comparison with all samples in the huge collection, and is able
to control the time of searching for similarity vectors from a huge collection in
an acceptable range. State-of-the-art ANN algorithms includes HNSW [12] and
Faiss [11], etc.

DSSM does not uses direct word level interaction feature to calculate the
matching score, which may limit its effectiveness on matching short texts.
DRMM, MatchPyramid and BERT are able to result in better matching per-
formance, because they take advantages of fine-grained matching information
based on word interaction feature. However, such word interaction based algo-
rithms cannot be pre-calculated offline and are unable to be accelerated in online
services like the way of DSSM.

If the online efficiency is crucial, DRMM is a good choice for online services.
The main components of DRMM are feed-forward networks, which are rather
faster than other kinds of neural networks. BERT usually performs better than
other algorithms, but its architecture is too complex and its time complexity
is much higher than other algorithms. It is suitable for the applications that
the time efficiency is not the major constraint and the state-of-the-art matching



218 W. Hu et al.

performance has much more positive influences. MatchPyramid can be a trade-
off between the matching performance and the time efficiency.

7 Conclusion

This paper reviews some state-of-the-art short text matching algorithms. DSSM
uses a feature vector to represent each text and the vector distances is regarded
as the matching score. Convolutional networks and LSTM are able to further
enhance the representation ability of DSSM. DRMM extracts features from word
interaction matrix between words of two text, which is able to better capture
the interaction information between text. MatchPyramid regards the match-
ing matrix as an image, and uses convolutional neural networks to predict the
matching score. BERT utilizes the unsupervised pre-trained model to enhance
the feature learning of text. It uses the self-attention mechanism of transformer
encoder to learn the interaction between two texts, which is able to reflect higher
level semantic interaction.

Acknowledgments. This work was supported by National Key Research and Devel-
opment Program of China under grant no. 2016QY02D0304.

References

1. Aumüller, M., Bernhardsson, E., Faithfull, A.: ANN-benchmarks: a benchmarking
tool for approximate nearest neighbor algorithms. Inf. Syst. (2019)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

3. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

5. Fan, Y., Pang, L., Hou, J., Guo, J., Lan, Y., Cheng, X.: MatchZoo: a toolkit for
deep text matching. arXiv preprint arXiv:1707.07270 (2017)

6. Graves, A.: Supervised sequence labelling. In: Graves, A. (ed.) Supervised Sequence
Labelling with Recurrent Neural Networks. SCI, vol. 385, pp. 5–13. Springer, Berlin
(2012). https://doi.org/10.1007/978-3-642-24797-2 2

7. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-
hoc retrieval. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, pp. 55–64. ACM (2016)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for
matching natural language sentences. In: Advances in Neural Information Process-
ing Systems, pp. 2042–2050 (2014)

10. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-
tured semantic models for web search using clickthrough data. In: Proceedings of
the 22nd ACM International Conference on Information & Knowledge Manage-
ment, pp. 2333–2338. ACM (2013)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1707.07270
https://doi.org/10.1007/978-3-642-24797-2_2


A Survey of State-of-the-Art Short Text Matching Algorithms 219

11. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734 (2017)

12. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal.
Mach. Intell. (2018)

13. Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and distributed
representations of text for web search. In: Proceedings of the 26th International
Conference on World Wide Web, pp. 1291–1299. International World Wide Web
Conferences Steering Committee (2017)

14. Naidan, B., Boytsov, L., Nyberg, E.: Permutation search methods are efficient, yet
faster search is possible. Proc. VLDB Endow. 8(12), 1618–1629 (2015)

15. NTMC-Community: Matchzoo (2017). https://github.com/NTMC-Community/
MatchZoo/tree/1.0

16. Palangi, H., et al.: Semantic modelling with long-short-term memory for informa-
tion retrieval. arXiv preprint arXiv:1412.6629 (2014)

17. Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text matching as image
recognition. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

18. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAd: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

19. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with
convolutional-pooling structure for information retrieval. In: Proceedings of the
23rd ACM International Conference on Conference on Information and Knowledge
Management, pp. 101–110. ACM (2014)

20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

21. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: a multi-
task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461 (2018)

http://arxiv.org/abs/1702.08734
https://github.com/NTMC-Community/MatchZoo/tree/1.0
https://github.com/NTMC-Community/MatchZoo/tree/1.0
http://arxiv.org/abs/1412.6629
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1804.07461

	A Survey of State-of-the-Art Short Text Matching Algorithms
	1 Introduction
	2 Deep Structured Semantic Models (DSSM)
	2.1 Feed-Forward Network Based DSSM
	2.2 Convolutional DSSM (CDSSM)
	2.3 LSTM-DSSM

	3 Deep Relevance Matching Model (DRMM)
	4 MatchPyramid
	5 Bidirectional Encoder Representations from Transformers (BERT) for Short Text Matching
	6 Model Selection in Real-World Applications
	7 Conclusion
	References




