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Abstract

Heuristic algorithms are able to optimize objective functions efficiently
because they use intelligently the information about the objective func-
tions. Thus, information utilization is critical to the performance of
heuristics. However, the concept of information utilization has remained
vague and abstract because there is no reliable metric to reflect the extent
to which the information about the objective function is utilized by heuris-
tic algorithms. In this paper, the metric of information utilization ratio
(IUR) is defined, which is the ratio of the utilized information quantity
over the acquired information quantity in the search process. The IUR
proves to be well-defined. Several examples of typical heuristic algorithms
are given to demonstrate the procedure of calculating the IUR. Empirical
evidences on the correlation between the IUR and the performance of a
heuristic are also provided. The IUR can be an index of how finely an
algorithm is designed and guide the invention of new heuristics and the
improvement of existing ones.

1 Introduction
In the field of computer science, many heuristic algorithms have been developed
to solve complex non-convex optimization problems. Although optimal solutions
are not guaranteed to be found, heuristics can often find acceptable solutions
at affordable cost. The key to designing a heuristic algorithm is to use heuristic
information about the objective function. Many algorithms [1, 2, 3] are claimed
to be reasonably designed because they use heuristic information intelligently.
Even more algorithmic improvement works [4, 5, 6] are claimed to be significant
because they use more heuristic information or use heuristic information more
thoroughly than the original algorithms.

Empirically, heuristic information is used more thoroughly in more advanced
algorithms. Suppose there are two search algorithms A and B for one dimen-
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sional optimization. Algorithm A compares the evaluation values of the solu-
tions x1 and x2 to decide which direction (left or right) is more promising, while
algorithm B uses their evaluation values to calculate both the direction and the
step size for the next search. If the underlying distribution of objective func-
tions is already known, then algorithm B is able to search faster than algorithm
A if they are both reasonably designed because more information is utilized by
algorithm B. It has been a common sense in the field of heuristic search that
the extent of information utilization in a heuristic algorithm is crucial to its
performance.

However, so far there is no reliable metric to reflect the extent of information
utilization because unlike direct performance analyses [7, 8], this issue seems
abstract. Especially, it is very difficult to measure how much information is
used by an optimization algorithm.

In this paper, based on some basic concepts in the information theory, a
formal definition of the information utilization ratio (IUR) is proposed, which
is defined as the ratio of the utilized information quantity over the acquired
information quantity in the search process. It is shown theoretically that IUR is
well-defined. Examples of typical heuristic algorithms are also given to demon-
strate the procedure of calculating IURs.

Theoretically, IUR itself is a useful index of how finely an algorithm is de-
signed, but we still expect it to be practically serviceable, that is, we need to
study the correlation between IUR and performance. However, the correlation
between IUR and performance of heuristics is not so straightforward as some
may expect. The performance of an optimization algorithm depends not only
on the extent of information utilization but also on the manner of information
utilization. Still, for algorithms that utilize information in similar manners, the
influence of the IUR is often crucial, as is illustrated in the experiments.

After all, the metric of IUR helps researchers construct a clear (but not
deterministic) relationship between the design and the performance of an opti-
mization algorithm, which makes it possible that researchers can to some extent
predict the performance of an algorithm even before running it. Thus, the IUR
can be a useful index for guiding the design and the improvement of heuristic
optimization algorithms.

2 Information Utilization Ratio
Definition 1 (Information Entropy). The information entropy of a discrete
random variable X with possible values xi and probability density p(xi) is defined
as follows.

H(X) = −
∑
i

p(xi) log p(xi). (1)

Definition 2 (Conditional Entropy). The conditional entropy of two discrete
random variables X and Y with possible values xi and yj respectively and joint
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probability density p(xi, yj) is defined as follows.

H(X|Y ) = −
∑
i,j

p(xi, yj) log
p(xi, yj)

p(yj)
. (2)

Some elementary properties of information entropy and conditional entropy
are frequently used in this paper, which however cannot be present here due to
the limitation of space. We refer readers who are unfamiliar with the information
theory to the original paper [9] or other tutorials.

The following lemma defines a useful function for calculating the IURs of
various algorithms.

Lemma 1. If η1, η2, . . . , ηg+1 ∈ R are independent identically distributed ran-
dom variables,

H(I(min(η1, η2, . . . , ηg) < ηg+1))

= − g

g + 1
log

g

g + 1
− 1

g + 1
log

1

g + 1
, π(g), (3)

where I(x < y) =

{
1 if x < y
0 otherwise is the indicator function.

π(g) ∈ (0, 1] is a monotonic decreasing function of g.

Definition 3 (Objective Function). The objective function is a mapping f :
X 7→ Y, where Y is a totally ordered set.

X is called the search space. The target of an optimization algorithm is to
find a solution x ∈ X with the best evaluation value f(x) ∈ Y.

Definition 4 (Optimization Algorithm). An optimization algorithm A is de-
fined as follows.

Algorithm 1 Optimization Algorithm A

1: i← 0.
2: D0 ← ∅.
3: repeat
4: i← i+ 1.
5: Sample Xi ∈ 2X with distribution Ai(Di−1).
6: Evaluate f(Xi) = {f(x)|x ∈ Xi}.
7: Di ← Di−1 ∪

⋃
x∈Xi

{x, f(x)}.
8: until i = g.

In each iteration, Ai is a mapping from 2X×Y to the set of all distributions
over 2X . A1(D0) is a pre-fixed distribution for sampling solutions in the first
iteration. g is the maximal iteration number.
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In each iteration, the input of the algorithm Di−1 is the historical informa-
tion, which is a subset of X ×Y, and the output Ai(Di−1) is a distribution over
2X , with which the solutions to be evaluated next are drawn. Note that the
output Ai(Di−1) is deterministic given Di−1.

By randomizing the evaluation step (consider y = f(x) as a random vari-
able), we are able to investigate how much acquired information is used in an
optimization algorithm. That is, to what extent the action of the algorithm
will change when the acquired information changes. Review the example in
the introduction. It is clear that the algorithm A only uses the information of
“which one is better", while the information of evaluation values are fully uti-
lized by the algorithm B. But how to express such an observation? Any change
in y1 or y2 would cause the algorithm B to search a different location, while
only when I(y1 > y2) changes would the action of the algorithm A change.
So, the quantity of utilized information can be expressed by the information
entropy of an algorithm’s action. The entropy of the action of the algorithm A
is one bit, while the entropy of the action of the algorithm B is equal to the
entropy of the evaluation values. Assume Z is the “action" of the algorithm,
X is the positions of the solutions, Y is the evaluation values, (they are all
random variables), then we can roughly think the information utilization ratio
is H(Z|X)/H(Y |X). However, optimization algorithms are iterative processes,
so the formal definition is more complicated.

Definition 5 (Information Utilization Ratio). If A is an optimization algo-
rithm, the information utilization ratio of A is defined as follows.

IURA (g) =

∑g
i=1H(Zi|Xi−1, Zi−1)∑g
i=1H(Yi|Xi, Y i−1)

, (4)

where g is the maximal iteration number, X = {X1, X2, . . . , Xg} is the set
of all sets of evaluated solutions, Y = {f(X1), f(X2), . . . , f(Xg)} is the set
of all sets of evaluation values, Z = {A1(D0),A2(D1), . . . ,Ag(Dg−1)} is the
output distributions in all iterations of algorithm A , Xi , {X1, . . . , Xi}, Y i ,
{Y1, . . . , Yi}, Zi , {Z1, . . . , Zi}, X0 = Y 0 = Z0 = ∅.

Fig. 1 shows the relationship among these random variables. Generally, Xi

is acquired by sampling with the distribution Zi, Yi is acquired by evaluatingXi,
and Zi is determined by the algorithm according to the historical information
Xi−1 and Y i−1.

For deterministic algorithms (i.e., H(Xi|Zi) = 0), the numerator degenerates
to H(Z). If function evaluations are independent, the denominator degenerates
to
∑g
i=1H(Yi|Xi).

The following theorem guarantees that IUR is well defined.

Theorem 1. If 0 <
∑g
i=1H(Yi|Xi, Y i−1) <∞, then 0 ≤ IURA (g) ≤ 1.
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Figure 1: Graphic Model

Proof.

H(X,Z)−
g∑
i=1

H(Xi|Zi) (5)

=

g∑
i=1

H(Xi, Zi|Xi−1, Zi−1)−
g∑
i=1

H(Xi|Xi−1, Zi) (6)

=

g∑
i=1

H(Zi|Xi−1, Zi−1) (7)

=

g∑
i=2

H(Zi|Xi−1)−
g∑
i=2

H(Zi−1|Xi−1) (8)

=

g∑
i=2

H(Zi|Xi−1)−
g∑
i=2

H(Zi|Xi−1, Y i−1)−
g∑
i=2

H(Zi−1|Xi−1)

+

g∑
i=2

H(Zi−1|Xi−1, Y i−2) (9)

=

g∑
i=2

−H(Y i−1|Zi, Xi−1) +

g∑
i=2

H(Y i−1|Xi−1) +

g∑
i=2

H(Y i−2|Zi−1, Xi−1)

−
g∑
i=2

H(Y i−2|Xi−1) (10)

=

g∑
i=2

−H(Y i−1|Zi, Xi−1) +

g∑
i=2

H(Y i−2|Zi−1, Xi−2) +

g∑
i=2

H(Yi−1|Xi−1, Y i−2)

(11)

= −H(Y g−1|Z,Xg−1) +

g∑
i=1

H(Yi|Xi, Y i−1)−H(Yg|Xg, Y g−1) (12)

≤
g∑
i=1

H(Yi|Xi, Y i−1). (13)
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Eq. (8) holds because
H(Z1) = 0. (14)

Eq. (9) holds because

H(Zi|Xi−1, Y i−1) = H(Zi−1|Xi−1, Y i−2) = 0. (15)

Eq. (11) holds because

g∑
i=2

H(Y i−2|Zi−1, Xi−1) =

g∑
i=2

H(Y i−2|Zi−1, Xi−2). (16)

Eq. (12) is by dislocation subtraction.

The denominator in the definition
∑g
i=1H(Yi|Xi, Y i−1) represents the infor-

mation quantity that is acquired in the search process. If function evaluations
are independent, then H(Yi|Xi, Y i−1) = H(Yi|Xi, Xi−1, Y i−1) = H(Yi|Xi).
While the numerator is more obscure. Actually it represents the quantity of
the information about the objective function which is utilized by the algorithm
(or in other words, the minimal information quantity that is needed to run
the algorithm). Firstly,

∑g
i=1H(Zi|Xi−1, Zi−1) =

∑g
i=1H(Zi|Xi−1, Zi−1) −∑g

i=1H(Zi|Xi−1, Zi−1, Y i−1) is similar to the concept of information gain in
classification problems [10], which indicates the contribution of the informa-
tion of Y to the algorithm. Secondly, the uncertainty of X and Z only lies
in two aspects: the random sampling step and the lack of the information
from Y . Thus H(X,Z) −

∑g
i=1H(Xi|Zi) can be regarded as the objective

function’s information that is utilized by the algorithm. And in fact, it is
equal to the numerator. Thirdly, the numerator equals the denominator minus
H(Yg|Xg, Y g−1) + H(Y g−1|Z,Xg−1) which can be seen as the wasted infor-
mation of Y , because 1) the evaluation values in the last iteration Yg cannot
be utilized and 2) the information of previous evaluation values Y g−1 is fully
utilized only if H(Y g−1|Z,Xg−1) = 0, i.e., Y g−1 can be reconstructed with Z
given Xg−1.

3 IURs of Heuristic Optimization Algorithms
In order to calculate the IURs of algorithms, we further assume f(x) ∈ Y is iden-
tically and independently distributed (i.i.d). In most cases, it is unwise to cal-
culate the IUR by definition. To calculate the denominator is quite straightfor-
ward under the above assumption, which equals the number of evaluations times
H(f(x)). For example, if there are 100 cities in a travelling salesman problem
[11] and f(x) obey uniform distribution, then |Y| = 100!, H(f(x)) = log 100!.
While on the other hand, to directly calculate the numerator is difficult and
unnecessary. In each iteration, the output A(Di−1) is a certain distribution,
which is usually determined by some parameters in the algorithm. In fact we
can certainly find (or construct) the set of intermediate parameters Mi such
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that 1) there is a bijection from Mi to Zi given Xi−1 and 2) Mi is determined
only by Y i−1 (otherwise H(Zi|Xi−1, Y i−1) > 0), then

g∑
i=2

H(Zi|Xi−1, Zi−1) =

g∑
i=2

H(Mi|M i−1) = H(M). (17)

We only have to know the information quantity that is required to determine
these intermediate parameters.

In the following, we investigate the IURs of several heuristics to show the
procedure of calculating the IUR. Although these algorithms are designed for
continuous (domain) optimization, the IURs of any kind of (discrete, combi-
natorial, dynamic, multi-objective) optimization algorithms can be calculated
in the same way as long as there are a domain and a codomain. Without loss
of generality, the following algorithms are all minimization algorithms, that is,
they all intend to find the solution with the minimal evaluation value in the
search space.

3.1 Random Search Algorithms
3.1.1 Monte Carlo

The Monte Carlo (MC) method is often considered as a baseline for optimization
algorithms. It is not a heuristic algorithm and usually fails to find acceptable
solutions. If the maximal evaluation number is m, MC just uniformly randomly
sample m solutions from X .

MC does not utilize any information about the objective function because
Z is fixed.

Proposition 1.
IURMC = 0. (18)

3.1.2 Luus-Jaakola

Luus-Jaakola (LJ) [12] is a heuristic algorithm based on MC. In each iteration,
the algorithm generates a new individual y with the uniform distribution within
a hypercube whose center is the position of the current individual x. If f(y) <
f(x), x is replaced by y; otherwise, the radius of the hypercube is multiplied by
a parameter γ < 1.

The output of LJ in each iteration is the uniform distribution within the
hypercube, which is determined by the position x and the radius. They are both
controlled by the comparison result, i.e., I(f(y) < f(x)). f(y) is i.i.d, but f(x)
is the best in the history. Thus, H(Mi|M i−1) = H(I(f(y) < f(x))|M i−1) =
π(i− 1).

Proposition 2.

IURLJ(g) =

∑g−1
i=1 π(i)

gH(f(x))
. (19)
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3.2 Evolution Strategies
3.2.1 (µ, λ)-Evolution Strategy

(µ, λ)-evolution strategy (ES) [13] is an important heuristic algorithm in the
family of evolution strategies. In each generation, λ new offspring are generated
from µ parents by crossover and mutation with normal distribution, and then
the parents of a new generation are selected from these λ offspring. As a self-
adaptive algorithm, the step size of the mutation is itself mutated along with
the position of an individual.

The distribution for generating new offspring is determined by the µ parents,
namely the indexes of the best µ of the λ individuals. Each set of µ candidates
has the same probability to be the best. H(Mi|M i−1) = H(Mi) = log

(
λ
µ

)
,

where
(
λ
µ

)
= λ!

µ!(λ−µ)! .

Proposition 3.

IUR(µ, λ)-ES(g) =
(g − 1) log

(
λ
µ

)
gλH(f(x))

. (20)

3.2.2 Covariance Matrix Adaptation Evolution Strategy

In order to more adaptively control the mutation parameters in (µ, λ)-ES, a
covariance matrix adaptation evolution strategy (CMA-ES) was proposed [14].
CMA-ES is a very complicated estimation of distribution algorithm [15], which
adopts several different mechanisms to adapt the mean, the covariance matrix
and the step size of the mutation operation. It is very efficient on benchmark
functions especially when restart mechanisms are adopted. CMA-ES cannot be
introduced here in detail. We refer interested readers to an elementary tutorial:
[14].

Given Xi−1, the mean, the covariance matrix and the step size of the distri-
bution is determined by the indexes and the rankings of the best µ individuals
in each iteration in history. H(Mi|M i−1) = log λ!

(λ−µ)! .

Proposition 4.

IURCMA-ES(g) =
(g − 1) log λ!

(λ−µ)!

gλH(f(x))
. (21)

Compared with (µ, λ)-ES, it is obvious that IURCMA-ES ≥ IUR(µ, λ)-ES,
because not only the indexes of the µ best individuals, but also their rankings
are used in CMA-ES (to calculate their weights, for example). By utilizing the
information of the solutions more thoroughly, CMA-ES is able to obtain more
accurate knowledge of the objective function and search more efficiently.

The IURs of Particle Swarm algorithms [16, 17] and Differential Evolution
algorithms [2, 5] are also investigated, shown in the appendix. If readers are
interested in the IURs of other algorithms, we encourage you to conduct an
investigation on your own which can be usually done with limited effort.
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4 IUR versus Performance
The IUR is an intrinsic property of a heuristic algorithm, but the performance
is not. Besides the algorithm itself, the performance of a heuristic also depends
on the termination criterion, the way to measure the performance, and most
importantly the distribution of the objective functions. A well-known fact about
performance is that no algorithm outperforms another when there is no prior
distribution [18], which is quite counter-experience. The objective functions in
the real world usually subject to a certain underlying distribution. Although
it is usually very difficult to precisely describe this distribution, we know that
it has a much smaller information entropy than the uniform distribution and
hence there is a free lunch [19, 20, 21]. In this case, the objective function
(and resultantly its optimal point) can be identified with limited information
quantity (the entropy of the distribution).

Reconsider the setting of the no free lunch (NFL) theorem from the per-
spective of information utilization. Assume |X | = m and |Y| = n. Under the
setting of NFL (no prior distribution), the total uncertainty of the objective
function is log nm = m log n. In each evaluation, the information acquired is
log n. Therefore, no algorithm is able to certainly find the optimal point of the
objective function within less than m times of evaluation even if all acquired in-
formation is thoroughly utilized. In this case, enumeration is the best algorithm
[22]. On the contrary, if we already know the objective function is a sphere
function, which is determined only by its center, then the required information
quantity is logm, and the least required number of evaluations is (more than)
logm/log n = lognm. Suppose the dimensionality of the search space is d, then
n is O(m

1
d ), lognm is O(d), which is usually acceptable. If information is fully

utilized (IUR ≈ 1), the exact number is d + 1 [20]. While for algorithms with
smaller IURs, more evaluations are needed. For example, if the IUR of another
algorithm is half of the best algorithm (with half of the acquired information
wasted), then at least about 2d+ 2 evaluations are needed.

How much information is utilized by the algorithm per each evaluation deter-
mines the lower bound of the required evaluation number to locate the optimal
point. In this sense, IUR determines the upper bound of an algo-
rithm’s performance. That is, algorithms with larger IURs have greater
potential. However, the actual performance also depends on the manner of in-
formation utilization and how it accords with the underlying distribution of the
objective function. For instance, one can easily design an algorithm with the
same IUR as CMA-ES but does not work.

In the following, we will give empirical evidences on the correlation between
IUR and performance. The preconditions of the experiments include: 1) the
algorithms we investigate here are reasonably designed to optimize the objective
functions from the underlying distribution; 2) the benchmark suite is large and
comprehensive enough to represent the underlying distribution. The following
conclusions may not hold for algorithms that are not reasonably designed or for
a narrow or special range of objective functions. In other words, if the manner
of information utilization does not accord with the underlying distribution of
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objective functions, utilizing more information is not necessarily advantageous.
The theoretical correctness of IUR does not rely on these experimental re-

sults, but these examples may help readers understand how and to what extent
IUR influences performance.

4.1 Different Parameters of the Same Algorithm
Sometimes for a certain optimization algorithm the IUR is influenced by only a
few parameters. For these algorithms, we may adapt these parameters to show
the correlation between the tendency of IUR and the tendency of performance.

4.1.1 (µ, λ)-ES

Intuitively, using µ = λ is not a sensible option for (µ, λ)-ES (commonly used
µ/λ values are in the range from 1/7 to 1/2 [23]) because it makes the selection
operation invalid. Now we have a clearer explanation: the IUR of (µ, λ)-ES is
zero if µ = λ (see Eq. (20)), i.e., (µ, λ)-ES does not use any heuristic information
if µ = λ.

Using a µ around 1
2λ may be a good choice for (µ, λ)-ES because it leads

to a large IUR. When µ = 1
2λ, the information used by (µ, λ)-ES is the most.

From the perspective of exploration and exploitation, we may come to a similar
conclusion. If µ is too small (elitism), the information of the population is
only used to select the best few solutions, and resultantly the diversity of the
population may suffer quickly. If µ is too large (populism), the information of
the population is only used to eliminate the worst few solutions, and resultantly
the convergence speed may be too slow.

Different values of µ/λ are evaluated on the CEC 2013 benchmark suite
containing 28 different test functions (see Table 1) which are considered as
black-box problems [24]. The meta parameter is set to ∆σ = 0.5. The algorithm
using each set of parameters is run 20 times independently for each function.
The dimensionality is d = 5, and the maximal number of function evaluations is
10000d for each run. For each fixed λ, the mean errors of 20 independent runs
of each µ/λ are ranked. The rankings are averaged over 28 functions, shown in
Fig. 2. − log

(
λ
µ

)
/λ curves are translated along the vertical axis, also shown in

Fig. 2.
According to the experimental results, µ/λ around 0.5 is a good choice,

which accord with our expectation. Moreover, the tendency of the performance
(average ranking) curve is generally identical to that of the IUR (IUR(µ,λ)−ES ∝
log
(
λ
µ

)
/λ when g is large). The experimental results indicate a positive corre-

lation between the performance and the IUR: the parameter value with larger
IUR is prone to perform better. Thus, the IUR can be used to guide the choice
of parameters. After all, tuning the parameters by experiments is much more
expensive than calculating the IURs.
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Table 1: Test functions of CEC 2013 single objective optimization benchmark
suite [24]

No. Name

Unimodal
Functions

1 Sphere Function
2 Rotated High Conditioned Elliptic Function
3 Rotated Bent Cigar Function
4 Rotated Discus Function
5 Different Powers Function

Basic
Multimodal
Functions

6 Rotated Rosenbrock’s Function
7 Rotated Schaffers F7 Function
8 Rotated Ackley’s Function
9 Rotated Weierstrass Function
10 Rotated Griewank’s Function
11 Rastrigin’s Function
12 Rotated Rastrigin’s Function
13 Non-Continuous Rotated Rastrigin’s Function
14 Schwefel’s Function
15 Rotated Schwefel’s Function
16 Rotated Katsuura Function
17 Lunacek Bi_Rastrigin Function
18 Rotated Lunacek Bi_Rastrigin Function
19 Expanded Griewank’s plus Rosenbrock’s Function
20 Expanded Scaffer’s F6 Function

Composition
Functions

21 Composition Function 1 (Rotated)
22 Composition Function 2 (Unrotated)
23 Composition Function 3 (Rotated)
24 Composition Function 4 (Rotated)
25 Composition Function 5 (Rotated)
26 Composition Function 6 (Rotated)
27 Composition Function 7 (Rotated)
28 Composition Function 8 (Rotated)

4.1.2 CMA-ES

Different from (µ, λ)-ES, CMA-ES adopts a rank-based weighted recombination
instead of a selection operation, in which the rank information of the best µ
individuals is utilized.

On the one hand, the rank-based weighted recombination achieves the largest
IUR when µ = λ (see Eq. (21)). The larger µ is, the more information is used
(because the rank information of the rest λ− µ individuals are wasted).

On the other hand, the rank-based weighted recombination also achieves the
best performance when µ = λ [25]. This is also an evidence on the correlation
between IUR and performance. However, the optimal weighted recombination
requires the use of negative weights, which is somehow not adopted in CMA-ES
[14]. The manner of information utilization and other conditions (termination
criterion, performance measure, etc.) should also be taken into consideration
when parameters are chosen. Therefore using µ = λ is probably not the best
choice for CMA-ES even though it leads to a large IUR.

4.2 Algorithms in the Same Family
Usually different algorithms in the same family utilize information in similar
manners, in which case we may compare their performances to show the corre-
lation between IUR and performance. However, we need to be more cautious

11



(a) λ = 10 (b) λ = 20

(c) λ = 30 (d) λ = 40

Figure 2: The average rankings and the − log
(
λ
µ

)
/λ curves of each value of λ.

here because IUR is not the only factor as long as different algorithms in the
same family do not utilize information in identical manners.

As shown in Section 3, IURLJ ≥ IURMC and IURCMA-ES ≥ IUR(µ, λ)-ES.
LJ and CMA-ES are more finely designed compared with the previous algo-
rithms since they are able to utilize more information of the objective function.
Naturally we would expect that LJ outperforms MC and CMA-ES outperforms
(µ, λ)-ES.

The four algorithms are evaluated on the CEC 2013 benchmark suite. The
parameter of LJ is set to γ = 0.99. The parameters of (µ, λ)-ES are set to
λ = 30, µ = 15,∆σ = 0.5. The parameters of CMA-ES are set to suggested
values [14] except that σ = 50 because the radius of the search space is 100.
The dimensionality is d = 5, and the maximal number of function evaluation
is 10000d for each run. Each algorithm is run 20 times independently for each
function. Their mean errors are shown in Table 2. The best mean errors are
highlighted. Their mean errors are ranked on each function, and the average
rankings (AR.) over 28 functions are also shown in Table 2.

Pair-wise Wilcoxon rank sum tests are also conducted between MC and
LJ and between (µ, λ)-ES and CMA-ES. The p values are shown in the last
two columns of Table 2. Significant results (with confidence level 95%) are
underlined. The results of LJ are significantly better than MC on 14 functions,
and significantly worse on only 10 functions. While the results of CMA-ES are
significantly better than (µ, λ)-ES on 14 functions, and significantly worse on
only 3 functions. Generally speaking, the performance of LJ is better than MC
and the performance of CMA-ES is better than (µ, λ)-ES. These experimental
results imply that the extent of information utilization may be an important

12



Table 2: Mean errors and average rankings of the four algorithms and p values
F. MC LJ (µ, λ)-ES CMA-ES MC vs. LJ (µ, λ)-ES

vs. CMA-ES
1 2.18E+02 0.00E+00 5.91E-12 0.00E+00 8.01E-09 4.01E-02
2 4.25E+05 0.00E+00 3.49E+05 0.00E+00 8.01E-09 8.01E-09
3 8.02E+07 0.00E+00 2.18E+07 0.00E+00 1.13E-08 1.13E-08
4 4.23E+03 0.00E+00 2.20E+04 0.00E+00 1.13E-08 1.13E-08
5 8.00E+01 6.79E+01 1.95E-05 0.00E+00 1.33E-02 1.90E-04
6 9.94E+00 2.51E+01 2.46E+00 7.86E-01 4.17E-05 8.15E-06
7 2.02E+01 7.10E+01 1.66E+01 5.66E+00 1.99E-01 2.56E-03
8 1.83E+01 2.01E+01 2.03E+01 2.10E+01 3.42E-07 1.61E-04
9 2.53E+00 1.67E+00 2.37E+00 1.08E+00 1.48E-03 1.63E-03
10 2.30E+01 1.78E+00 1.30E+01 4.16E-02 6.80E-08 1.23E-07
11 2.22E+01 1.40E+01 6.67E+00 6.57E+00 3.04E-04 8.17E-01
12 2.10E+01 1.33E+01 1.20E+01 7.36E+00 1.12E-03 2.04E-02
13 2.21E+01 1.90E+01 1.87E+01 1.28E+01 1.20E-01 5.98E-01
14 3.78E+02 7.53E+02 1.35E+02 4.61E+02 1.10E-05 7.41E-05
15 3.84E+02 6.85E+02 5.27E+02 4.52E+02 3.99E-06 1.81E-01
16 7.43E-01 5.34E-01 8.27E-01 1.49E+00 1.93E-02 1.11E-01
17 3.25E+01 2.23E+01 9.87E+00 1.07E+01 1.78E-03 3.65E-01
18 3.43E+01 1.82E+01 1.01E+01 1.01E+01 2.60E-05 9.89E-01
19 4.08E+00 7.21E-01 5.45E-01 4.82E-01 9.17E-08 9.46E-01
20 1.23E+00 1.85E+00 2.50E+00 1.92E+00 1.10E-05 6.97E-06
21 3.23E+02 3.05E+02 2.55E+02 2.80E+02 1.94E-02 9.89E-01
22 5.91E+02 7.91E+02 4.01E+02 7.20E+02 2.56E-03 5.63E-04
23 6.04E+02 8.33E+02 7.01E+02 6.08E+02 8.29E-05 3.37E-01
24 1.26E+02 2.04E+02 1.99E+02 1.76E+02 6.80E-08 4.60E-04
25 1.27E+02 1.96E+02 1.98E+02 1.81E+02 1.60E-05 7.71E-03
26 1.01E+02 2.38E+02 1.67E+02 1.98E+02 1.43E-07 7.76E-01
27 3.57E+02 3.52E+02 3.65E+02 3.27E+02 4.25E-01 2.47E-04
28 3.05E+02 3.00E+02 3.25E+02 3.15E+02 8.59E-01 2.03E-01
AR. 2.82 2.68 2.43 1.82 14 : 10 14 : 3

factor in the performance.
The algorithms in the same family utilize information in similar but differ-

ent manners. In this case, the influence of IUR on the performance is crucial,
but sometimes not deterministic. For example, in CMA-ES, there are several
different mechanisms proposed to improve the performance. The improvement
in IUR does not reflect all of them. The improvement related to IUR is the
rank-based weighted recombination. It has significant impact on performance
[25, 26]. While other mechanisms such as adapting the covariance matrix and
the step size are not related to IUR but also very important. These mechanisms
are introduced as different information utilization manners, which help the al-
gorithm to better fit the underlying distribution of objective functions. Similar
comparisons can be made between PSO and SPSO and between DE and JADE
(see appendix).

However, after all, an algorithm cannot perform very well if little informa-
tion is used. Hence, just like LJ, CMA-ES, SPSO and JADE, the tendency of
elevating the IUR is quite clear in various families of heuristics. Many mecha-
nisms have been proposed to better preserve historical information for further
utilization [27, 28, 5]. Many general methods (adaptive parameter control [29],
estimation of distribution [15], fitness approximation [30], Bayesian approaches
[31], Gaussian process models [32], hyper-heuristic [33]) have been proposed to
elevate the IURs of heuristics. Not to mention these numerous specified mech-
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anisms. In summary, the IUR provides an important and sensible perspective
on the developments in this field.

4.3 Algorithms in Different Families
The correlation between the IUR and the performance of the algorithms in
different families (such as LJ and (µ, λ)-ES) can be vaguer because the man-
ners of information utilization are different, though the above experimental
results accord with our expectation ((µ, λ)-ES performs better than LJ and
IURLJ ≤ IUR(µ, λ)-ES unless µ = λ). If algorithms utilize information in ex-
tremely different manners, the IUR may not be the deterministic factor. There
are infinite manners to utilize information. It is difficult to judge which manner
is better. Whether a manner is good or not depends on how it fits the under-
lying distribution of the objective functions, which is difficult to describe. A
well designed algorithm with low IUR may outperform a poorly designed al-
gorithm with high IUR because it utilizes information more efficiently and fits
the underlying distribution better. Nonetheless, certainly the extent of infor-
mation utilization is still of importance in this case because 1) the algorithms
with larger IURs have greater potential 2) the IUR of the “best" algorithm (if
any) must be very close to one and 3) an algorithm that uses little information
cannot be a good algorithm.

The exact correlation between the IUR and the performance requires much
more theoretical works on investigating the manners of information utilization
and how they fit the underlying distributions, which are very difficult but not
impossible.

5 Upper Bound for Comparison-based Algorithms
Above examples have covered several approaches of information utilization in
heuristic optimization algorithms. But the IURs of these algorithms are all
not high because they are comparison-based algorithms, in which only the rank
information is utilized.

Theorem 2 (Upper bound for comparison-based algorithms). If the maxi-
mal number of evaluations is m, y = f(x) are i.i.d, and algorithm A is a
comparison-based optimization algorithm,

IURA ≤
logm

H(f(x))
. (22)

Proof. Suppose in a certain run, the actual evaluation number is m′ ≤ m.
In this case, M is drawn from a set with cardinal number at most m′! (with
m′ individuals all sorted), then the maximal information quantity is H(M) ≤
logm′! for a comparison-based algorithm. Thus IURA ≤ logm′!

m′H(f(x)) . Note that
the right hand side is a monotonically increasing function of m′, and logm!

mH(f(x)) ≤
logm
H(f(x)) .
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Suppose |Y| = n and f(x) obey uniform distribution, than logm
H(f(x)) = lognm.

Typicallym << n, thus this upper bound is quite low. Most iterative algorithms
do not allow the information in past iterations (because it requires a lot of
memory space to do so), in which case the upper bound becomes log λ

H(f(x)) where
λ is the evaluation number in each generation. The IUR of CMA-ES is able to
approach this bound when µ = λ. That is, CMA-ES has almost the largest IUR
in comparison-based algorithms without historical information.

There exist algorithms which use exact evaluation values in the searching
process, such as genetic algorithm [34], ant colony optimization [35], estimation
of distribution algorithms [15], invasive weed optimization [36], artificial bee
colony [37], fireworks algorithm [38], etc. They can achieve higher IURs, even
close to 1, because the cardinal number of the set from which M is drawn can
be up to nm. These algorithms have greater potential than comparison-based
algorithms and can outperform them if well designed.

6 Conclusion
It is natural and often effective to utilize more heuristic information in optimiza-
tion algorithms, which has been widely realized. However, there was no metric
to reflect the extent of information utilization. In this paper, a metric called
the information utilization ratio (IUR) is defined as the ratio of the utilized
information quantity over the acquired information quantity. IUR can be an
index to reflect how finely and advanced an algorithm is designed. IUR proves
to be well defined. Several examples are given to demonstrate the procedure of
calculating IURs. Generally speaking, the IUR determines the upper bound of
the performance of an optimization algorithm. To further indicate the impor-
tance of this metric, several experiments are conducted to show the correlation
between the IUR and the performance. The experimental results imply that 1)
for a certain algorithm, the parameter value with larger IUR has advantage; 2)
for algorithms in the same family, the one with larger IUR is prone to be more
efficient; 3) for algorithms in different families, the IUR is also an important
factor. We also give the IUR’s upper bound for comparison-based algorithms.

The IUR can be used to guide the choice of parameters, guide the design of
new algorithms and guide the improvement of existing algorithms. For example,
if you are inventing a new algorithm, or adapting an existing one, it is promising
to include mechanisms that can enhance the information utilization in your
algorithm. If you want to know which one among several algorithms is more
likely efficient before you use them, it would be quite informative to compare
their IURs to show which one is better designed and has greater potential.

Most works in the field of heuristic search or optimization focus on invent-
ing new mechanisms or tricks, while few have considered the potential driver
behind these works. We consider this work as a fundamental theory, which is
surprisingly not easy. Hopefully the definition of IUR will lead to a more sys-
tematic manner of research about how mechanisms should be designed and how
information should be utilized.
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Extending this metric to other fields in artificial intelligence such as classi-
fication and time series prediction may be an interesting future work.

16



.1 Particle Swarm Algorithms

.1.1 Particle Swarm Optimization

Particle swarm optimization (PSO) [16] is one of the most famous swarm and
heuristic algorithms which is quite simple but surprisingly efficient in numerical
optimization. In PSO, a fixed number (s) of particles moves in the search space
to find the optimal solutions. The position of a particle is updated as follows.
In generation g, for each particle i and each dimension j,

vij(g + 1)←vij(g) + φ1r1,ij(pbestij(g)− xij(g))

+ φ2r2,ij(gbestj(g)− xij(g)), (23)

xij(g + 1)← xij(g) + vij(g + 1), (24)

where φ1 and φ2 are constant coefficients, r1 and r2 are random numbers, pbest
is the best position in history found by this particle and gbest is the best position
found by the entire swarm.

The output distribution in each generation is determined by I(f(xi(g)) <
f(pbesti(g − 1))) and arg mini f(pbesti(g)). Although it is difficult to calculate
H(M), we have the lower and upper bounds:

s

g−1∑
i=1

π(i) ≤ H(M) ≤
g∑
i=2

H(Mi) ≤ (g − 1) log s+ s

g−1∑
i=1

π(i). (25)

Proposition 5.

s
∑g−1
i=1 π(i)

sgH(f(x))
≤ IURPSO(g) ≤

(g − 1) log s+ s
∑g−1
i=1 π(i)

sgH(f(x))
. (26)

.1.2 Standard Particle Swarm Optimization

After years of development, many improvements and variants are proposed for
PSO. In order to construct a common ground for further researches, a standard
particle swarm optimization (SPSO) was defined [17]. Compared with original
PSO, there are two main modifications: the local ring topology and the con-
stricted update rule. The constricted update rule uses a new coefficient derived
from φ1 and φ2 to constrict the velocity to guarantee convergence. In the local
ring topology, the gbest in the velocity update equation is replaced with a lbest,
which is the best position among this individual and its two neighbourhoods on
the ring.

For each group (consisting of three particles), information with quantity at
most log 3 is needed to decide lbest.

Proposition 6.

s
∑g−1
i=1 π(i)

sgH(f(x))
≤ IURSPSO(g) ≤

s(g − 1) log 3 + s
∑g−1
i=1 π(i)

sgH(f(x))
. (27)
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Usually IURPSO ≤ IURSPSO though their exact values are difficult to derive.
It turns out that the information utilization ratio of the local model is larger
than the global model because in local topology the particles interact with each
other more frequently.

According to experimental results, SPSO significantly outperform PSO on a
large range of test functions. [17]

.2 Differential Evolution Algorithms

.2.1 Differential Evolution

Differential evolution (DE) [2] is a powerful heuristic algorithm for numerical
optimization. The number of individuals in DE is also fixed. The mutation
is conducted as below (take DE/rand/1 as an example). For each x in the
population, generate

z = xr1 + F (xr2 − xr3), (28)
where r1, r2 and r3 are random indexes and F is a constant coefficient. Then a
crossover is conducted between z and x to generate a new candidate y, where
there is a parameter CR to control the probability that a dimension of y is
identical to that of z. If f(y) < f(x), x is replaced with y, otherwise, x is kept.

In DE, the distribution of generating new offspring is determined by I(f(y) <
f(x)) of each individual. So the IUR of DE is equal to that of LJ with the same
g. However, they would be different with the same number of evaluation times.

Proposition 7.

IURDE(g) =
s
∑g−1
i=1 π(i)

sgH(f(x))
. (29)

IURs of some other DE variants are given in Table 3.

Table 3: IURs of other DE variants
IUR

DE/best/1 = IURPSO
DE/current-to-best/1 = IURPSO

DE/rand/2 = IURDE
DE/best/2 = IURPSO

.2.2 JADE

JADE [5] is an important development of DE. There are three main adaptations
proposed in JADE:

1. A DE/current-to-pbest/1 mutation strategy. In JADE,

zi = xi + Fi(x
p
best − xi) + Fi(xr1 − xr2), (30)

where xpbest is a randomly chosen individual from the 100p% best individ-
uals.
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2. An optional external archive.

3. Adaptive mutation parameters.

External archive is a useful tool to improve information utilization. However,
in JADE these individuals are just randomly chosen and randomly removed from
the archive, where no information of the objective function is used. Compared
to DE, JADE elevates IUR after all because the indexes of the best 100p%
individuals are used. Note that the output distribution is determined only
when all indexes of the best 100p% individuals are given.

Proposition 8.

s
∑g−1
i=1 π(i)

sgH(f(x))
≤ IURJADE(g) ≤

(g − 1) log
(
s
ps

)
+ s

∑g−1
i=1 π(i)

sgH(f(x))
. (31)

According to experimental results, JADE significantly outperform DE on a
large range of test functions. [5]
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