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Abstract

Inspired by the adversarial learning in generative adversarial network, a novel optimization framework named Generative Ad-
versarial Optimization (GAO) is proposed in this paper. This GAO framework sets up generative models to generate candidate
solutions via an adversarial process, in which two models are trained alternatively and simultaneously, i.e., a generative model for
generating candidate solutions and a discriminative model for estimating the probability that a generated solution is better than
a current solution. The training procedure of the generative model is to maximize the probability of the discriminative model.
Specifically, the generative model and the discriminative model are in this paper implemented by multi-layer perceptrons that can
be trained by the back-propagation approach. As of an implementation of the proposed GAO, for the purpose of increasing the
diversity of generated solutions, a guiding vector ever introduced in guided fireworks algorithm (GFWA) has been employed here to
help constructing generated solutions for the generative model. Experiments on CEC2013 benchmark suite show that the proposed
GAO framework achieves better than the state-of-art performance on multi-modal functions.

Key Words: Generative Adversarial Optimization (GAO), Adversarial Learning, Generative Adversarial Network (GAN),
Guiding Vector, Multi-modal Functions

1. Introduction In recent years, generative adversarial network (GAN)

Inspired by the adversarial learning in GAN, a feasible op-
timization framework, so-called Generative Adversarial Opti-
mization (GAO), is proposed in this paper. The framework sets
up generative models to generate candidate solutions via an ad-
versarial process, in which two models are trained alternatively
and simultaneously, i.e., a generative model G to generate can-
didate solutions, and a discriminative model D to estimates the
probability that a generated solution is better than a current so-
Iution. The training procedure for G is to maximize the prob-
ability of D. In our case, G and D are defined by multi-layer
perceptrons, which can be trained with back-propagation. To
improve the quality of generated solutions, the guiding vectors
introduced in GFWA are employed to help constructing gen-
erated solutions. Experiments on CEC2013 benchmark suite
show that the proposed framework achieves impressive perfor-
mance on multi-modal functions.

The main contributions of this paper are as follows:

Continuously-valued function optimization problem

In order to solve the problem, more and more meta-heuristic
algorithms have been proposed. Meta-heuristic algorithms are
usually inspired by biological or human behaviors. By design-
ing a sophisticated mechanism to guide algorithms to find solu-
tions, so as to avoid local optimal solutions and find global op-
timal solutions. The most critical component for meta-heuristic
algorithms is generating solutions and retaining solutions. For
the part of generating solutions, the algorithm should generate
better solutions as many as possible, but at the same time, it is
also hoped that the generated solutions have a rich diversity and
will not cluster in local optimal spaces. For the part of retaining
solutions, the algorithm should retain better solutions, but it is
also hoped that potential solutions which are not so good cur-
rently can be retained, because solutions which is better than
the current optimal solution may be found in the local searches
around them later.

In the early meta-heuristic algorithms, various methods to 1. Inspired by adversarial learning and GAN, a novel op-
generate solutions were proposed. Particle swarm optimization timization framework so-called Generative Adversarial
(PSO) Optimization, GAO for short, is proposed.

2. The guiding vectors introduced in GFWA
Email: ytan@pku.edu.cn (Ying Tan), pkushibo@pku.edu.cn (Bo The remainder of this paper is organized as follows. Sec-

Shi) tion 2 presents related works of meta-heuristic algorithms
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and GAN. Section 3 describes the detail of GAO, a novel
optimization framework proposed for continuously-valued
function optimization. Experimental settings and results
are presented and discussed in Section 4. Conclusions
are given in Section 5.

2. Related Works

2.1. Meta-heuristic Algorithms

Inspired by biological and human behaviors, meta-heuristic
algorithms are a kind of algorithms that can be used to
better solve continuous optimization problems by simu-
lating agents’ behaviors in order to balance “exploration”
and “exploitation”

Swarm intelligence algorithms are usually inspired by the
behavior of biological groups in natural world to seek the
optimum in search space by employing programs to sim-
ulate the interaction among biological individuals. Swarm
intelligence algorithms mainly focus on biological groups
such as ant colony

Evolutionary computation algorithms are primarily in-
spired by biological evolution, which solves the global
optimal solution by simulating the evolution of organ-
isms. Specific algorithms include genetic algorithm (GA)

2.2. Generative Adversarial Networks

Generative adversarial network (GAN), which was first
proposed by Ian Goodfellow in 2014

Since GAN was proposed, it has quickly become a hot
research issue. A large number of researches based on

GAN have sprung up, mainly focusing on optimizing GAN’s

structure

3. GAO: Generative Adversarial Optimization

GAO and its detailed implementation are presented in
this section. First, the model architectures are described
in Section 3.1, then the training procedure of GAO is dis-
cussed in details in Section 3.2.

3.1. Model Architectures

Different from the existing meta-heuristic algorithms which
mainly adopt random sampling to generate elite solutions
or guiding vectors

Given a objective function f, an optimization problem
seeks to find the global minimum x, € A which satisfies:

fx) < f(x),VxeA e

where A is the searching space.

As illustrated in Figure 1, G gets the input, which in-
cludes a current solution x,, a noise z and a step size /,
and outputs a guiding vector g. This procedure can be
expressed in Equation 2:

8§ =621 @)
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Figure 1: Architecture of GAO

Then the guiding vector g is added to the current solution
X to get the generated solution x,, as shown in Equation
3:

o= Xot+g 3)

D receives a current solution x. and a generated solution
Xg, then outputs a prediction p that whether the generated
solution x, is better than the current solution x, as shown
in Equation 4. If the generated solution x, is better than
the current solution x,, let p = 1, otherwise p = 0.

1, xg is better than x.
0, else

P =D(xe, Xg) = { “

In order to train D, labels y’ for tuples of current solu-
tion and generated solution {xi., x;} are required. The ob-
jective function f is employed to label the two-tuple set
{x,x\} as expressed in Equation 5. The training of D

g
will be detailedly discussed in Section 3.2.

y= { L if f(xh) < f(xl)

0, else

®

The architecture of G is illustrated in Figure 2. First, G
concatenate the current solution x,. and noise z included
in the input, then feed the concatenated vector to a fully-
connected layer (denoted as FC). Finally G dot the con-
catenated vector with step size / and get the guiding vec-
tor g as G’s output. This procedure can be expressed in
Equation 6.

g =G0z =FC(x,7"1") 1 ©)

The architecture of D is illustrated in Figure 3. First,
D feed two solutions x, x, to the same fully-connected
layer denoted as FCy, then subtract the output of x, with
the output of x,. Finally, O feed the subtracted vector to
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a fully-connected layer denoted as F'C, and get the pre-
diction p as D’s output. This procedure can be expressed
in Equation 7. The activation function for the final layer
of FC, should be sigmoid function to regularize the pre-
diction.

P =D(xe, xg) = FC(FCi(xe) = FCi(xg))  (7)

3.2. Training of GAO

The complete training procedure of GAO is shown in Al-
gorithm 1. At the beginning, u solutions are randomly
sampled in searching space to make up the solution set
C = {xé , i = 1,2,...,u}, calculate each solution’s fit-
ness value f (xﬁ.) and initialize the step size /. Then we
repeatedly do adversarial training of D and G, select so-
lutions to be retained and reduce step size / as the iter-
ation progresses. When the termination criterion is met,

the algorithm exit the loop. Since the time allowed to

evaluate the solution using fitness function is limited as
MaxFES = 10000 = D, in which D is the evaluation di-
mension of fitness function, the termination criterion al-
ways refers to whether the limited evaluation time is used
up. Details of training D and G, selecting solutions and
reducing step size are discussed below.

Algorithm 1 Training procedure of GAO
Require: u: number of current solutions
Require: §: number of solutions generated at each iter-
ation
Require: /;,;: initial value of step size /
1: randomly sample u solutions in searching space A as
set C = {x'}
calculate fitness value f(x’) for each solution x'. in C
initialize the step size [ = I;;;
while termination criterion is not met do
generate 8 solutions and train
train G with fitted D
select u solutions for next iteration from yu current
solutions and 83 generated solutions
reduce step size [
9: end while

RS A o

®

3.2.1. Training of D

P is trained to evaluate whether the generated solution
x, will be better than the current solution x.. Train O
requires employing G to generate solutions first. In this
paper, the number of solutions to be generated totally at
each iteration is denoted as 8. Since D receives two solu-
tions as input and output a prediction, training D requires
triplets composed of two solutions x’. and x;;, and a label
y%, in which y’ can be calculated with Equation 5. For a
triplet {x., x}, '}, the loss function of 9 can be calculated
with Equation 8:

max lossp = y' 1og(D(x., x})) +(1—y") log(1 = D(x., x,))

®)
When training with batches, the loss of a batch is the av-
erage loss for each triplet in batch.

3.2.2. Training of G

As mentioned above, G learns how to generate better
guiding vectors under the guidance of 9, which means
that G is trained by computing gradients from the feed-
back of D. G is trained to generate elite guiding vectors
for current solutions, so it’s hoped that the generated so-
lutions perform better than current solutions. For a cur-
rent solution xﬁ., the loss function of G can be calculated
with Equation 9:

mgax lossg = log(D(xi, xi. + Q(xf;,z, D)) )

In which, z is a random Gaussian noise, [ is the step size.
When training with batches, the loss of a batch is the av-
erage loss for each triplet in the batch.
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3.2.3. Selecting Solutions
In general, solutions with better fitness values should be
retained, so we calculate the probability to be selected for
each solution x’ in Equation 10 and select solutions using
the calculated probability:

Y f( xi)e

ST (10)
Zist Yy

pr(x[) =

where vy ) means the rank of fitness value for x' among
all solutions, n is the total number of candidate solutions,
a is a hyper-parameter to control the shape of the distri-
bution. The larger « is, the probability of solutions with
better fitness values is larger as well.

3.2.4. Reducing Step Size
In GAO, the guiding vector introduced in GFWA

4. Experiments

In this section, principles on how to set parameters and
construct D and G are given. In more detail, we first in-
troduce the model architecture specifically and give prin-
ciples for setting parameters. Secondly, the benchmark
the experiment taken on is introduced. Finally, we com-
pare GAO with other famous optimization algorithms.
In our experiment, the architecture of 9 and G are mainly
fully-connected layers. In this section, we denote the
number of hidden layers as L, the sizes of each hidden
layer as H, the sizes of output layer as O ,the activa-
tion functions of each hidden layer as AH and the acti-
vation functions of output layer as AO. each of them is
introduced respectively as follows. For FC in G, we set
L =1, H = [64], O = dimension of objective function,
AH = [relu], AO = tanh. For FC1 in D, we set L = 2,
H =1[64,64], O = 10, AH = [relu,relu], AO = relu. For
FC2inD,wesetL=1,H =[10],0 = 1, AH = [relu],
AO = sigmoid.

The number of solutions retained at each iteration is deneted

as u, which mainly keeps the balance between “explo-
ration” and “exploitation”

To train D, we need to label the tuple of {xi, x,} with ¥,
which requires using objective function to evaluate the
fitness value of xfé, since fitness value of x!. have been cal-
culated at the former iteration. To make D learn how to
generate solutions better, we not only generate xi, from G,
but also generate x;;, from local search and global search
at each iteration. When generating solution, x; calcu-
lated from Equation 3 have to be clipped to the boundary
once it exceeds the search space. In this paper, we denote
the number of solutions to be generates totally at each it-
eration as 8. On account of the limit of MaxFES, the
iteration number MaxlIter = % In this paper, we
set 8 = 30.

As discussed in Section 3.2.3, when selecting solutions,
we calculate a probability to be selected for each solution

x' as expressed in Equation 10 and select solutions in ac-
cordance with that probability. We denote the parameter
controlling the shape of the distribution as . The larger
a is, the probability of solutions with better fitness values
is larger as well. In this paper, we set @ = 2 as suggested
in

In our experiment, step size [ have to be set as [;,; at
the beginning of the algorithm. In general, we set [;,; =
% - radius of search space. Specifically for CEC2013
We compare different monotone functions on CEC2013
benchmark suite and the average ranks (ARs) are shown
in Figure 5 and Figure 6, in which AR-uni, AR-multi
and AR-all indicate average ranks for uni-modal, multi-
modal and all functions respectively. It shows that using
power function performs better than exponential function
and using 4.5 as power is comprehensively best. In this
paper, we use power function and set power to 4.5.

We choose CEC2013 single objective optimization bench-
mark suite

We compared GAO with the famous optimization algo-
rithms including the artificial bee colony algorithm (ABC),
the standard particle swarm optimization 2011 (SPS02011)
As illustrated in Table 1, on all functions, IPOP-CMA-ES
performs best, followed by GAO and LoT-FWA, while
SPS02011 is the worst one. IPOP-CMA-ES, ABC, GAO
and LoT-FWA achieve 11, 10, 6 and 5 of 28 minimal
mean errors on all functions, respectively. Specifically
on uni-modal functions, IPOP-CMA-ES performs best as
well, followed by DE, SPSO2011 and GAO performing
comparable, while ABC is the worst one. [POP-CMA-
ES achieves all minimal errors on uni-modal functions,
while ABC, SPSO2011, LoT-FWA and GAO achieve 1
of 5 the minimal mean errors.

On multi-modal functions, GAO performs best, followed
by LoT-FWA and IPOP-CMA-ES, while SPSO2011 is
the worst one. ABC achieves 8 of 23 minimal mean er-
rors on multi-modal functions, followed by IPOP-CMA-
ES, GAO and LoT-FWA, achieving 6, 5, 4 of 23 minimal
mean errors, respectively. SPSO2011 and DE performs
worst, achieving none minimal mean errors on multi-modal
functions. Although ABC achieves 8§ minimal mean er-
rors on multi-modal functions, it also achieves 10 max-
imal mean error, which shows that ABC is not stable
enough. At the same time, GAO achieves none maxi-
mal mean errors on all functions, which shows that GAO
is quite stable and can be adapted to various problems.

It turns out from the experimental results that the pro-
posed GAO framework performs quite very well on multi-
modal functions. This is mainly due to the adversarial
learning procedure, which enables G to learn how to gen-
erate elite and diverse solutions under the supervision of
D, rather than to follow an artificially-designed meta-
heuristic rule directly. In our implementation, the guiding
vector introduced in GFWA
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5. Conclusion

Inspired by the adversarial learning in generative adver-
sarial network, this paper proposed a novel optimization
framework, so-called GAO for short, which is the first
attempt to employ adversarial learning for continuously-
valued function optimization. In order to improve the
quality of generated solutions, a guiding vector appeared
in GFWA is employed in this paper to help constructing
generated solutions. Experiments on CEC2013 bench-
mark suite shew that the proposed GAO algorithm per-
forms quite well, especially on multi-modal functions, it
gave the best performance over some famous optimiza-
tion approaches. Meanwhile, the performance of the GAO
framework on uni-modal functions indicates that there
is still room for improvement. It is worth noting that
the proposed GAO framework should be further studied
since it can be easily embedded into any iterative algo-
rithms as an operator to generate solutions. We hope the
this paper can be regarded as a start point to attract more
research on solving various optimization problems using
adversarial learning strategy.
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