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Abstract. Multi-objective optimization is one of the most impor-
tant problem in the mathematical optimization. Some researchers have
already proposed several multi-objective fireworks algorithms, of which
S-metric based multi-objective fireworks algorithm (S-MOFWA) is the
most representative work. S-MOFWA takes the hypervolume as the eval-
uation criterion of external archive updating, which is easy to implement
but ignores the landscape information of the population. In this paper, a
novel multi-objective fireworks algorithm named non-dominated sorting
based fireworks algorithm (NSFWA) is proposed. The proposed algo-
rithm updates the external archive with the selection operator based on
the fast non-dominated sorting approach, which is specially designed for
the spark generation characteristic of FWA to improve the diversity. A
multi-objective guided mutation operator is also designed to enhance the
efficiency of population information utilization and improve the search
capability of the algorithm. Experimental results on the benchmarks
demonstrate that NSFWA outperforms other multi-objective swarm
intelligence algorithms of S-MOFWA, NSGA-II and SPEA2.

Keywords: Fireworks algorithm · Multi-objective optimization ·
Swarm intelligence · Non-dominated sorting based fireworks algorithm

1 Introduction

Fireworks algorithm (FWA) proposed by Tan et al. in 2010 is a novel swarm intel-
ligence algorithm [14]. FWA has a double-layer structure, in which the higher
layer is the global coordination between the firework populations and the lower
one is the local search of a certain population. This hierarchical structure ensures
that FWA can solve kinds of optimization problems with different landscape and
shows a significant performance on the single-objective optimization problem. In
recent years, guided fireworks algorithm (GFWA) [9], loser-out tournament fire-
works algorithm (LoTFWA) [7] and other new variants [2,8,10,11,17,18] further
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enhance the performance of FWA from the aspects of global coordination and
local exploitation.

Multi-objective optimization problem (MOP) is a kind of mathematical opti-
mization problem with multiple conflicting objective functions to be optimized
at the same time. Multi-objective optimization algorithm is aimed to find an
optimal solution set composed of Pareto optimal solutions, which covering the
whole Pareto front as completely as possible. Naturally, convergence and diver-
sity are two main measures for MOP. Convergence mainly indicates the distance
between the Pareto front and solutions obtained by the algorithm. And diversity
can be roughly regarded as a ratio of the section covered by the solution set to
the entire Pareto front.

According to the method of solution set updating, multi-objective opti-
mization algorithms could be classified as two mainstream categories. Pareto
dominance based methods such as non-dominated sorting genetic algorithm-
II (NSGA-II) [4] and the improved strength Pareto evolutionary algorithm
(SPEA2) [20] calculate the Pareto dominance between individuals in each iter-
ation and update the solution set accordingly. Hypervolume indicator based
methods like SMS-EMOA [1] use the volume covered by individuals instead of
the Pareto dominance as the criterion to update the solution set.

Some researchers also proposed multi-objective FWA, and one of the most
representative work is S-MOFWA proposed by Liu and Tan [12]. S-MOFWA
adopted the hypervolume based framework and designed a novel external archive
updating methods. The framework reduces the difficulty of multi-objective opti-
mization significantly and makes it possible to inherit mechanisms of single-
objective FWA. However, due to the limitation of the framework, S-MOFWA
also ignores the information of dominated solutions and has a relatively low
information utilization efficiency.

In this paper, a novel multi-objective FWA named non-dominated sorting
based fireworks algorithm is proposed. NSFWA adopts a non-dominated sort-
ing based external archive updating methods as the selection operator, and
extends the idea of GFWA to MOP. In order to accelerate the convergence of
MOFWA without affecting diversity, the multi-objective guided mutation opera-
tor is designed to generate guiding sparks with two different methods according
to certain characteristic of fireworks. The adaptive amplitude mechanism and
mapping rule are also revised.

The remaining parts is organized as follows. Some related works are intro-
duced in Sect. 2. Our proposed algorithm is described in detail and the improved
mutation operator is analyzed in Sect. 3. Then Sect. 4 presents the experimental
results to present the good performance of NSFWA. Section 5 gives the conclu-
sion.

2 Related Works

NSGA-II is one of the most influential multi-objective swarm intelligence algo-
rithm. Swarm intelligence algorithms usually have a large number of populations



Non-dominated Sorting Based Fireworks Algorithm 459

and individuals, and thus it is necessary to calculate the dominance between
individuals efficiently in MOP. Deb et al. proposed a fast non-dominated sort-
ing algorithm in NSGA-II. The algorithm divides the population into several
disjoint fronts {F1, F2, ..., Fm} with the acceptable time complexity, and these
fronts satisfies the dominance relation F1 � F2 � ... � Fm. Then the external
archive or solution set could be updated accordingly. In order to keep the diver-
sity of solutions, NSGA-II also introduced a density indicator named crowding
distance as the other updating criterion. The fast non-dominated sorting algo-
rithm provides efficient evaluation and updating framework for many algorithms.
However, directly applying them on FWA would obtain a solution set with lower
diversity.

Liu et al. adopted another mainstream framework in S-MOFWA. S-MOFWA
update the external archive according to the S-metric which is a kind of hyper-
volumes indicator. Intuitively, S-metric could be regarded as the space that
only dominated by a certain solution in the entire solution set, and the solution
with better S-metric usually locates in the area with lower density and closer
to the Pareto front. Thus, S-metric could unify convergence measure and diver-
sity measure into one indicator, and simplify the framework of multi-objective
swarm intelligence algorithm. Whereas, the calculation method of S-metric in S-
MOFWA is only applicable for the non-dominated solutions, and the S-metrics
of dominated solutions are assigned as 0. This characteristic leads to the lost of
population information and reduce the information utilization efficiency.

Based on the previous works, this paper redesigns the operators in FWA,
and proposes a Non-dominated Sorting Based Fireworks Algorithm with higher
information utilization ratio.

3 Non-dominated Sorting Based Fireworks Algorithm

3.1 Framework

NSFWA is mainly composed of explosion operator, non-dominated sorting based
selection operator, multi-objective guided mutation operator, mapping rule and
adaptive explosion amplitude mechanism, and its principle to improve the con-
vergence and diversity of the algorithm with the population information.

Initialization. The initialization of NSFWA is same as the single-objective
FWA. NSFWA generates N fireworks randomly in the decision space D:

xi = (xi1, xi2, ..., xin), i = 1, 2, ..., N, (1)

where n is the dimension of decision space.

Explosion Operator. The explosion operator of NSFWA also follows the
single-objective FWA and randomly generates a certain number of explosion
sparks in the hyperspace with firework xi as the center and explosion amplitude
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Ai as the radius. If the generated explosion spark is out of the bound, it would
be remapped into the feasible region according to a certain rule. The mapping
rule used in NSFWA is the midpoint mapping, and it would be introduced in
the following section.

Mapping Rule. Traditional mapping rule is random mapping, that is, if some
dimensions of the spark is out of the bound, the values of the corresponding
dimensions would be randomly generated again until the spark is completely
within the feasible region. The explosion amplitude is usually decreased during
the search process, thus, FWA is tend to have a poor performance on the problem
that the global optimum locates near the bound. And the random mapping
would exacerbate the problem sometimes. Shown as the Algorithm 1, midpoint
mapping rule would reset the dimension that out of the bound as the midpoint
of the bound and firework.

Algorithm 1. Midpoint Mapping Rule
Input: Firework xij , explosion spark sij , upper bound ub, lower bound lb
Output: Explosion spark sij

1: for k = 1 to n do
2: if s

(k)
ij > ub then

3: s
(k)
ij ← 1

2
(x

(k)
ij + ub)

4: end if
5: if s

(k)
ij < lb then

6: s
(k)
ij ← 1

2
(x

(k)
ij + lb)

7: end if
8: end for
9: return explosion spark sij

Compared with other mapping rules, midpoint mapping could help the pop-
ulation find the optimum near the bound of feasible region, and ensure that
population also has the ability to escape from the bound.

Selection Operator. Non-dominated sorting based selection operator is used
to update the external archive and select new fireworks. In NSFWA, fireworks,
explosion sparks and the individuals in the external archive compose the can-
didate pool, and the selection operator would select NR individuals from the
candidate pool in to the external archive of the next generation, where the top
N individuals would be identified as the new fireworks. Concretely, the operator
divides the candidate pool C into several disjoint fronts {F1, F2, ..., Fm} accord-
ing to the fast non-dominated sorting algorithm proposed by Deb, and these
fronts satisfied the definition and dominance listed as the following:

Fk = {x|nx = k,x ∈ C}, (2)
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F1 � F2 � ... � Fm, (3)

where nx is the number of individuals that dominate x. Then, the candidate
solutions would be put into the external archive from front F1 successively, until a
certain front Fk cannot be entirely put in. In order to determine which candidate
solutions in Fk are supposed to be put into archive, NSGA-II introduces the
crowding distance as the indicator. For solution xm in front Fk, its crowding
distance can be defined as the following:

D(xm) =
r∑

i=1

|fi(xm+1) − fi(xm−1)|, (4)

where xm−1 and xm+1 are the neighbors of xm, and r is the number of objective
function. Fig. 1 shows the calculation of the crowding distance.

Fig. 1. The calculation of crowding distance.

The solutions with larger crowding distance tend to locate in a low density
area, and would be selected into the archive. As mentioned above, explosion
sparks are generated in a specific hyperspace centered on fireworks, which means
that the diversity of the entire solution group is highly related to the density
of fireworks’ location. Therefore, NSFWA not only sorts the front Pk but also
the first front P1 to ensure diversity of fireworks. The entire process of selection
operator is shown as the Algorithm 2.

Adaptive Amplitude Mechanism. Explosion amplitude is one the decisive
factors of the global exploration and local exploitation. In NSFWA, amplitude
is adjusted adaptively according to the dominance relation between the current
fireworks and the previous fireworks in each generation. The parameter setting
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Algorithm 2. Selection Operator
Input: Fireworks Xt = {x1,x2, ...xN}, sparks St = {S1,t, S2,t, ..., SN,t}, external

archive Rt, size of archive NR

Output: external archive Rt+1, fireworks Xt+1, sorted candidate pool Csorted,t

1: Calculate the fitness values of Xt and St

2: Generate Ct = {Xt ∪ St ∪ Rt}
3: Sort the candidate pool P = FastNonDominatedSorting(Ct), P = {P1, P2, ..., Pm}
4: Declare the external archive Rt+1 = ∅ and the counter i = 1
5: while |Rt+1| + |Pi| ≤ NR do
6: if i=1 then
7: Calculate the crowding distance Di of individuals in front Pi

8: Sort the individuals in Pi by the descending order of crowding distance
9: end if

10: Rt+1 = Rt+1 ∪ Pi

11: i = i + 1
12: end while
13: Calculate the crowding distance Di of individuals in front Pi

14: Sort the individuals in Pi by the descending order of crowding distance
15: Rt+1 = Rt+1 ∪ Pi[1 : NR − |Rt+1|]
16: Xt+1 = Rt+1[1 : N ]
17: Csorted,t = P1 ∪ P2 ∪ ... ∪ Pm

18: return Rt+1, Xt+1, Csorted,t

of the mechanism refers to the one-fifth success rule proposed by Schumer and
Steiglitz [13], and adopt a simple implementation of it [6]:

Ai,t+1 = Ai,t ·
{

α if xi,t+1 � xi,t and Ai,t · α ≤ ub − lb

α− 1
4 if xi,t+1 � xi,t and Ai,t · α ≥ β · (ub − lb),

(5)

where α is a hyper parameter controlling the change rate of amplitude, and
β is a hyper parameter used to set the minimum of amplitude. In the early
phase of search, there is a relatively high probability for population to find
a better solution, and the amplitude tends to increase. On the contrary, it is
more difficult for the population to make progress, and the amplitude tends to
decrease. Therefore, the amplitude usually changes from large to small, which
means that the population is encouraged to explore globally in the early phase
and exploit a certain local area in the later.

Mutation Operator. In order to further enhance the local search capability
of the algorithm by using the population information, NSFWA designs a novel
operator named multi-objective guided mutation operator. Different from the
single-objective FWA, the guided mutation operator in MOP must be executed
after the selection operator obtaining the fitness information of populations.
The main idea of the mutation operator is to calculate the difference between
solutions and the solutions dominated by them, and add the difference on the
location of fireworks to generate the mutation sparks. These mutation sparks
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usually has a better fitness compared with the fireworks. The entire process is
shown as the Algorithm 3.

Algorithm 3. Multi-objective Guided Mutation Operator
Input: Firework xi,t+1, sorted candidate pool Csorted,t = {c1, c2, ..., c|C|}, group ratio

σ, group size μ
Output: Guided mutation spark gi,t+1

1: if Firework xi,t+1 is not from the external archive then
2: Extract the population of xi from Csorted,t and keep the relative order
3: Calculate the guiding vector Δi = 1

σλi
(
∑σλi

j=1 sij − ∑λi
j=λi−σλi+1 sij)

4: end if
5: if Firework xi is from the external archive then
6: Δi = 1

μ
(
∑μ

j=1 crand(0,σ|C|) − ∑μ
j=1 crand(σ|C|−μ+1,σ|C|))

7: end if
8: Generate the explosion spark gi = xi + Δi

9: return gi

To accelerate the convergence, the mutation operator directly use new fire-
work selected by the selection operator to calculate the guiding spark (GS).
However, the firework might come from the external archive and have already
lost its population, thus the mutation calculate the guiding vector (GV) with
two different methods:

1. If the firework xi,t+1 is not from the external archive: the firework have its
own population in the candidate pool, and the population is already sorted
after the selection operator. The guiding vector would be calculated as the
difference between the centroid of the top σλi sparks and the bottom σλi

sparks in the population.
2. If the firework xi,t+1 is from external archive: the operator calculate the

difference between two groups that formed by μ solutions in the top σ|C|
solutions and μ solutions in the bottom σ|C| solutions respectively to generate
the guiding vector. Here, the μ solutions in two groups are selected randomly,
so as to avoid that fireworks share a same guiding vector and affect the
diversity of the final solution set.

Guiding sparks would be put into the external archive and participate the
selection in the next generation, but not replace fireworks directly.

The framework of the Non-dominated Sorting Based Fireworks Algorithm is
shown as the Algorithm 4.

3.2 Principle and Analysis

Analysis of Multi-objective Guided Mutation Operator. The main pur-
pose of multi-objective guided muation opeartor is to improve the search capa-
bility of NSFWA without affecting the diversity of the solution set.
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Algorithm 4. Non-dominated Sorting Based Fireworks Algorithm
Input: upper bound ub, lower bound lb, number of fireworkN , number of spark λ,

external archive size NR, group ratio σ, group size μ, explosion amplitude A, change
rate α, minimum parameter β

Output: Optimal solution set
1: Initialize N fireworks in the decision space D bounded by lb and ub
2: Declare the external archive R = {X1} and generation counter t = 1
3: while termination condition not met do
4: Generate explosion sparks St = ExplosionOperator(Xt, At, λt)
5: Update external archive, candidate pool and fireworks Rt+1, Csorted,t, Xt+1 =

SelectionOperator(Xt, St, Rt)
6: Adjust explosion amplitude At+1 = AdaptiveAmplitude(Xt, Xt+1, At, α, β)
7: Generate mutation sparks Gt = MultiObjectiveMutationOperator(Xt, Csorted,t,

σ, μ)
8: Update external archive Rt+1 = Rt+1 ∪ Gt

9: t = t + 1
10: end while
11: return {Rt\Gt−1}

Different with the single-objective optimization, the multi-objective opti-
mization algorithm searches for a entire Pareto front composed of several Pareto
optimums rather than a certain global optimum. Therefore, all directions that
make the new individual generated on the direction better than the original fire-
works are acceptable related directions. The following visualization will explain
why the guiding spark could guide the population to search along the relevant
direction.

Suppose the optimization problem is ZDT1 test function, which includes two
convex objective functions. Set the dimension of decision vector as 30, and the
Pareto optimal solutions of ZDT1 is 0 on all dimensions except x1. The objective
functions could be visualized on the first two dimensions as the Fig. 2a, where
the pink segment is the projection of Pareto front on the objective function. And
the guiding vector could be approximately decomposed as the weighted sum of
negative gradients of two objective functions (See Fig. 2b–Fig. 2d):

Δ = w1∇1 + w2∇2, w1 ≤ 0 and w2 ≤ 0, (6)

where ∇1 and ∇2 are gradients.
Thus, guiding spark is likely to obtain a better fitness value on at least

one objective function compared with the firework, which means these non-
dominated elite individuals might be selected as the firework in the next gen-
eration. Guided by the elite individuals, populations could approach the Pareto
front stably and the search ability of NSFWA are also enhanced.

Selection of Parameters. Now, suppose there are two fireworks that selected
from the external archive and locate in a same region. If they share a same
guiding vector, then their population is tend to move towards a same region
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(a) Visualization of ZDT1 (b) Contour of func1

(c) Contour of func2 (d) Decomposition of GV

Fig. 2. Principle of multi-objective guided mutation function.

of the Pareto front, and this would be harmful for the diversity. The random
mechanism is introduced to alleviate the problem. Generally speaking, the larger
group ratio σ and smaller group size μ means stronger randomness, and the
diversity of the solution set could be better. On the contrary, the convergence
could be accelerated but the diversity might be weakened. The analysis above
could be a basis for selection of parameters.

4 Experiments

To illustrate the performance of NSFWA, experiments on several test functions
were conducted, and S-MOFWA, NSGA-II, SPEA2 and RVEA [3] are selected
as baselines. Besides, the ablation experiments were also conducted to verify the
effectiveness of operators and mechanisms in NSFWA.
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4.1 Experimental Setup

The test functions in this paper include Schaffer’s problem (SCH) [16], Kursawe’s
problem(KUR) [16] and ZDT test functions [19].

For NSFWA, the number of firework N = 10, the total number of explosion
spark λ = 100, the size of external archive NR = 100, amplitude change rate
α = 1.2, minimum parameter β = 0.2. The group ratio σ and group size μ are
set as 0.3 and 10 respectively for all benchmarks except ZDT2. σ and μ are
set as 0.5 and 5 for ZDT2. For S-MOFWA, parameters are set as [12]. And
other baseline algorithms refer to platform Geatpy [5]. The platform is Ubuntu
18.04 with Intel(R) Xeon(R) CPU E5-2675 v3. Each test function runs 20 times
repeatedly with the maximal evaluation number of 200000.

4.2 Experimental Criterion

Generational distance (GD) [15] and hypervolume (HV) are adopted as the cri-
teria to evaluate the diversity and convergence respectively in this paper.

Generational Distance. Generational distance can be regarded as the average
of the minimal distance between solutions obtained and the theoretical Pareto
front in objective space:

GD =

√∑n
i=1 d2i
n

, (7)

where di is the minimal distance between individual i and the theoretical front,
and n is the size of solution set. 500 solutions are generated uniformly on the
theoretical front of each test function as the reference for calculating GD except
KUR problem. (100 solutions selected for KUR.)

Hypervolume. Hypervolume is one of the most applied criterion of MOP. HV is
the volume of the objective space that covered by optimal solution set obtained:

S(M) = Λ(∪n
i=1{x|xi � x � xref}), (8)

where Λ represents Lebesgue measure, and xref is a reference point that domi-
nated by all solutions. Actually, HV can not only evaluate the diversity but also
the convergence. The reference point selected for SCH, KUR and ZDT1-6 are
(4, 4), (−14, 1), and (1, 1) respectively.

4.3 Experimental Results

Ablation Experiments. To verify the effectiveness of the selection operator,
mutation operator and mapping rule proposed in this paper, ablation experi-
ments take the following algorithm as comparison: (i) NSFWA - CD: NSFWA
without crowding distance sorting of firework in selection operator, (ii) NSFWA -
GS: NSFWA without multi-objective guided mutation operator and (iii) NSFWA
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Table 1. Generational distance of ablation experiments.

NSFWA NSFWA - CD NSFWA - GS NSFWA + RM

Func. Mean Std Mean Std Mean Std Mean Std

SCH 3.27E−03 3.45E−04 3.17E−03 1.74E−04 3.16E−03 2.88E−04 3.29E−03 1.10E−04

KUR 5.10E−02 2.91E−03 5.04E−02 1.39E−03 5.46E−02 2.45E−03 5.02E−02 1.84E−03

ZDT1 1.10E−03 3.69E−05 1.21E−03 1.15E−04 8.22E−02 3.49E−03 8.10E−01 2.88E−02

ZDT2 8.03E−04 3.42E−05 7.84E−04 5.88E−05 1.41E−01 4.27E−03 1.44E−01 2.24E−03

ZDT3 1.07E−03 8.82E−05 1.19E−03 5.21E−05 4.72E−02 6.99E−04 8.25E−01 3.15E−02

ZDT6 5.92E−04 2.32E−05 7.43E−03 7.41E−04 1.24E+00 3.54E−01 1.48E+00 1.61E−01

Table 2. Hypervolume of ablation experiments.

NSFWA NSFWA - CD NSFWA - GS NSFWA + RM

Func Mean Std Mean Std Mean Std Mean Std

SCH 1.33E+01 3.79E−05 1.45E+01 3.30E−03 1.32E+01 2.98E−03 1.32E+01 1.44E−03

KUR 3.68E+01 4.03E−02 3.66E+01 5.47E−02 3.65E+01 4.31E−02 3.68E+01 7.69E−02

ZDT1 6.61E−01 3.24E−05 6.59E−01 1.83E−04 5.48E−01 4.51E−03 1.23E−01 2.78E−02

ZDT2 3.28E−01 1.18E−04 3.26E−01 9.61E−05 1.68E−01 2.81E−03 1.67E−01 2.67E−03

ZDT3 1.04E+00 9.71E−06 1.04E+00 6.22E−05 8.91E−01 8.67E−03 3.51E−01 3.80E−02

ZDT6 3.21E−01 7.93E−04 3.18E−01 3.30E−03 2.20E−01 9.79E−02 1.81E−01 9.97E−02

+ RM: NSFWA using random mapping rule. The experimental results are shown
as Table 1 and Table 2.

Complete NSFWA wins a better HV than NSFWA without crowding distance
sorting, and it could be seen that sorting fireworks in selection operator could
improve the diversity. The better GD indicates that guided mutation operator
improves the search capability of NSFWA significantly. And the HV curve (See
Fig. 3) also proves that the mutation operator could accelerate the convergence
of NSFWA. NSFWA using midpoint mapping outperforms NSFWA using ran-
dom mapping obviously on ZDT test functions. It is worthy noting that most
of optimal solutions of ZDT locate near the lower bound, which means that
midpoint mapping improve the performance of FWA on the kind of problem.

Comparison with Other Algorithms. Table 3 and Table 4 gives the results
of NSFWA and other algorithms. The average rank of GD of NSFWA is 1.83
and the average rank of HV is 1.50, which is the best compared with other
algorithms. The difference between the average rank of GD and HV indicates
that NSFWA performs better on the diversity and could obtain a solution set
covering larger target space.

Among the benchmarks, SCH and ZDT1 have convex Pareto fronts. The
means and standard deviations on these two problems show that NSFWA has a
stable and good performance on problem with a convex front. KUR and ZDT2
has non-convex Pareto fronts. The performance of NSFWA is slightly worse than
S-MOFWA and NSGA-II on KUR, but better on ZDT2. As mentioned above,
the setting of group ratio σ and group size μ for ZDT2 is different with other
problems. It is inferred that populations is easily to be trapped in a certain part
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(a) SCH (b) KUR (c) ZDT1

(d) ZDT2 (e) ZDT3 (f) ZDT6

Fig. 3. Hypervolume curve of ablation experiments.

of global optimum in the test of ZDT2, and thus there is a need of stronger
randomness to help populations get rid of the area. The Pareto front of ZDT3
is composed of several non-contiguous convex parts, which also requires better
diversity of population, and NSFWA outperforms other algorithms on both GD
and HV. The decision space and Pareto front of ZDT6 is non-uniform. The
density of individuals is gradually lower when they locate closer to the Pareto
front. NSFWA ranked second on both GD and HV with a small gap from the
best. Generally speaking, the results indicate that NSFWA performs well on
kinds of functions with different characteristics of Pareto front. The solution set
obtained by NSFWA is visualized as Fig. 4.

Table 3. Generational distance of NSFWA and other algorithms.

NSFWA S-MOFWA NSGA-II SPEA2 RVEA

Func. Mean Std Mean Std Mean Std Mean Std Mean Std

SCH 3.27E−03 3.45E−04 3.32E−03 9.62E−05 3.33E−03 7.82E−05 4.16E−03 4.27E−04 3.03E−03 1.83E−04

KUR 5.10E−02 2.91E−03 3.57E−02 1.83E−03 3.77E−02 3.06E−03 6.84E−01 1.12E−03 4.05E−02 8.25E−03

ZDT1 1.10E−03 3.69E−05 1.47E−03 4.37E−05 1.41E−03 8.55E−05 1.69E−03 1.90E−04 1.76E−03 3.48E−04

ZDT2 8.03E−04 3.42E−05 1.17E−03 6.22E−05 1.06E−03 1.54E−04 1.04E−03 1.14E−05 1.21E−03 2.06E−04

ZDT3 1.07E−03 8.82E−05 4.01E−03 1.88E−03 1.09E−03 6.96E−05 1.96E−01 1.95E−01 1.64E−03 1.15E−04

ZDT6 5.92E−04 2.32E−05 5.66E−04 1.83E−05 6.30E−04 9.65E−05 1.09E−01 6.87E−02 6.44E−04 1.86E−05

AR 1.83 2.50 2.67 2.33 2.67 2.83 4.33 3.50 3.50 3.83
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Table 4. Hypervolume of NSFWA and other algorithms.

NSFWA S-MOFWA NSGA-II SPEA2 RVEA

Func. Mean Std Mean Std Mean Std Mean Std Mean Std

SCH 1.33E+01 3.79E−05 1.32E + 01 7.62E−03 1.33E + 01 1.21E−03 1.30E + 01 7.52E−02 1.32E + 01 3.09E−03

KUR 3.68E + 01 4.03E−02 3.71E+01 9.02E−02 3.70E + 01 1.20E−02 2.84E + 01 2.92E−02 3.66E + 01 1.31E−01

ZDT1 6.61E−01 3.24E−05 6.54E−01 1.03E−04 6.60E−01 2.77E−04 6.52E−01 2.23E−03 6.60E−01 4.84E−04

ZDT2 3.28E−01 1.18E−04 3.27E−01 4.00E−04 3.27E−01 2.24E−04 3.20E−01 2.62E−03 3.27E−01 4.09E−04

ZDT3 1.04E+00 9.71E−06 1.04E + 00 3.20E−04 1.04E + 00 1.44E−04 6.74E−01 3.58E−01 1.04E + 00 3.76E−04

ZDT6 3.21E−01 7.93E−04 3.20E−01 5.32E−04 3.21E−01 3.26E−04 3.13E−01 3.43E−03 3.22E−01 5.26E−05

AR 1.50 1.83 2.50 3.16 2.67 2.00 5.00 4.50 3.33 3.50

(a) SCH (b) KUR (c) ZDT1

(d) ZDT2 (e) ZDT3 (f) ZDT6

Fig. 4. Solution set obtained by NSFWA.

5 Conclusion

In this paper, a novel multi-objective FWA named non-dominated sorting based
fireworks algorithm is proposed. Non-dominated sorting based selection operator
updates the external archive and selects fireworks according to the dominance
relation and density to improve the diversity of solution set. Then, a multi-
objective guided mutation operator is used to generate elite individuals for each
populations to accelerate the convergence and enhance the stability. In order to
further boost the performance of NSFWA on the problem that optimums locate
near the bound, a novel mapping rule named midpoint mapping was proposed.
Experiments on several test functions with different properties indicate that
NSFWA has good performance on kinds of multi-optimization problems.
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