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Abstract. Fireworks algorithm is a swarm intelligence optimization
algorithm with superior performance, which can be used to solve var-
ious practical optimization problems. To enhance the performance of
fireworks algorithm, we introduce a powerful local search mechanism
and add multiple cooperative strategies. These strategies improve the
local exploitation capability and global exploration capability of fire-
works algorithm. The experimental results on the ICSI’2022 test set
demonstrate that the performance of the algorithm is satisfactory.
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1 Introduction

Optimization problem has always been one of the hottest topics of research in
various fields because it is widely used in many real-world applications, especially
with the advent of machine learning and deep learning. Due to the complexity of
modern optimization problems, the optimization of some functions is relatively
difficult. The emergence of stochastic search algorithms such as swarm intelli-
gence optimization algorithms and evolutionary algorithms makes it possible to
find the global optimal solutions of some complex functions.

Fireworks algorithm (FWA [7]) is a kind of swarm intelligent optimization
algorithm inspired by the phenomenon of firework explosion. During the process
of fireworks algorithm, fireworks create sparks around themselves by exploding,
which could search the surrounding area. Besides, fireworks could cooperate
with each other to improve the efficiency of search. After multiple iterations, the
algorithm is likely to find the global optimum of the objective function.

The single-objective bounded optimization problem is one of the basic set-
tings of all optimization problems. Many complex optimization problems can
be decomposed into single-objective optimization problems. Therefore, for many
current swarm intelligence optimization algorithms and evolutionary algorithms,
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how to improve the performance of the algorithm on single-objective optimiza-
tion problems is a key issue to deal with.

In this paper, we introduce a novel fireworks algorithm. It introduce the local
search mechanism in CMA-ES to improve the local search performance of the
fireworks algorithm. In addition, a new search space partition strategy has been
added to the algorithm to improve the collaborative ability of fireworks, which
greatly enhances the global search ability of the fireworks algorithm. The newly
proposed algorithm is called Fireworks Algorithm with Search Space Partition
(FWASSP). The ICSI’2022 test set is a newly proposed single-objective opti-
mization test set for various intelligent optimization algorithms. We carry out
experiment on ICSI’2022 with FWASSP. The experimental results show that the
new algorithm performs well in both global search and local search.

The paper is organized as follows. Section 2 shows the background of our
research, including the problem definition and related works. Section 3 describes
the newly proposed algorithm in detail. The experimental results on the
ICSI’2022 test set and the discussion are shown in Sect. 4.

2 Background

2.1 Problem Definition

Without loss of generality, we consider the general bound-constrained optimiza-
tion problem which targets to find the optimal solution x∗:

x∗ = arg min
x∈S

f(x), (1)

where f : Rd → R is an unknown objective function (also called fitness function).
S =

{
x ∈ R

d : lbi < xi < ubi

}
is the feasible space of f . lbi is the lower bound

of xi and ubi is the upper bound of xi.

2.2 Related Works

Evolution Strategies (ESs) are a sub-class of nature-inspired optimization meth-
ods belonging to the class of Evolutionary Algorithms (EAs). Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [1] is a well-designed evolutionary
strategy. It uses the quadratic model to fit local shapes to improve search effi-
ciency. Besides, quite a few mechanisms are employed to control the search direc-
tion and the step size. Therefore, CMA-ES has an excellent ability in local search.

Tan and Zhu proposed a firework algorithm by simulating the explosion of
fireworks [7]. After fireworks algorithm was proposed, it received extensive atten-
tion due to its great performance and excellent optimization efficiency. On the
basis of the fireworks algorithm, researchers have proposed many variants of the
fireworks algorithm such as EFWA [9], AFWA [3], dynFWA [8], CoFFWA [10]
and GFWA [4]. In 2017, Li and Tan proposed the Loser-out Tournament-based
Fireworks Algorithm (LoTFWA) [2], which added the loser elimination mecha-
nism to reinitialize the noncompetitive fireworks. This mechanism could restart
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the fireworks which are trapped in the local optimum to accelerate the process
of optimization.

In LoTFWA, each firework optimizes its local area by a uniform explosion
within a dynamic amplitude. A guided mutation spark is generated for each
firework to accelerate its local exploitation. Then, some unpromising fireworks
are detected and restarted to avoid waste of resources. Algorithm 1 outlines
the framework of LoTFWA. A detailed explanation and parameter setting of
LoTFWA can be found in [2].

Algorithm 1. Loser-out Tournament-based Fireworks Algorithm
1: Randomly initialize μ fireworks in the search space.
2: Evaluate the fireworks’ fitness
3: repeat
4: for i = 1 to μ do
5: Calculate dynamic explodes parameters λi and Ai.
6: Generate explosion sparks.
7: Generate guiding sparks.
8: Evaluate all the fitness of the sparks.
9: Select the best individual (including firework, its explosion sparks and guid-

ing sparks) as the next generation of fireworks.

10: Perform the loser-out tournament.
11: until Termination criterion is met.
12: return The position and the fitness of the best solution.

3 Proposed Strategies

LoTFWA is an outstanding global optimization algorithm with extremely simple
mechanisms. However, there are still two major weaknesses in LoTFWA which
need to be improved.

1. The local search efficiency of the explosion operator and mutation operator is
limited by a basic uniform trust region scheme. This results in the searched
solution being less refined.

2. The collaboration method is too weak because the restart mechanism is rarely
triggered and it can only save limited resources rather than guide fireworks
to cooperate.

In response to the above problems, we propose a series of strategies to
improve it.

3.1 Gaussian Explosion with Adaptation

For the first weakness, the local search capability of the fireworks algorithm is
enhanced by introducing the local search strategy in the CMA-ES [1]. CMA-ES
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uses Gaussian explosion instead of uniform explosion. The advantage of Gaussian
explosion is that it has more parameters to control the shape of the explosion,
which means that the search efficiency will be higher. By introducing Gaussian
explosion, FWASSP is able to estimate the local fitness landscape and generate
more effective sparks.

In the g-th generation, the k-th explosion spark x(g+1)
k is generated from a

Gaussian distribution:

x(g+1)
k ∼ m(g) + σ(g) × N

(
0, C(g)

)
, (2)

where m and C is the mean and covariance matrix. σ(g) is the overall step size.
In the g-th generation generation, each firework generates the same number of
λ sparks.

After evaluation of all sparks x(g+1), the explosion distribution is adapted
according to the strategies in CMA-ES. The detailed explanation and parameter
setting of CMA-ES can be found in [1]. The complete adaptation process is
provided in [5].

3.2 Restart Mechanism

Since Gaussian explosion and adaptation mechanism accelerate local optimiza-
tion process significantly, the algorithm requires more detection mechanisms to
ensure timely restart of fireworks that are not promising to improve the global
optimal. Four extra restart conditions are proposed in our algorithm. These
condition are determined by the search status of the firework individual and the
relationship between fireworks:

1. Low Value Variance: var
[
f

(
x
(g+1)
1:λ

)]
≤ εv

2. Low Position Variance: σ(g+1) × ∥
∥C(g+1)

∥
∥ ≤ εp

3. Not improving: Not improved for Imax not improve iterations.
4. Covered by Better: More than 85% of the firework’s sparks are covered by a

better firework’s explosion range.

3.3 Collaboration

Since we use Gaussian explosion, the explosion boundary of a firework X with
parameters (m, C, σ) is defined as:

{
x‖‖C− 1

2

(
x − m

σ

)
‖ = E‖N (0, I)‖

}
. (3)

There are two principles in collaboration strategies. First, the explosion scope
tends to form a segmentation within the global optimization area, which can
help fireworks avoid overlapping or omission of search scope. Second, the better
fireworks tend to search independently, and the worse fireworks tend to search
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collaboratively. It guarantees the local optimization of leading fireworks will not
be severely affected by collaboration.

Based on these ideas, the proposed algorithm conducts collaboration by the
following steps:

Compare Fireworks. We need to compare the search progress of the fireworks
for collaboration strategies. A fuzzy comparison between each pair of fireworks
is introduced to estimate their relative optimization progress, which is described
in Algorithm 2.

Algorithm 2. Fuzzy Comparison of Fireworks

Require: Fireworks Xi and Xj with sparks x
(g+1)
i,1:λ and x

(g+1)
j,1:λ (if not restarted)

1: if Both Xi and Xj are just restarted then
2: return Xi and Xj are similar

3: if Xi is restarted then
4: return Xj is ahead of Xi

5: else
6: return Xi is ahead of Xj

7: if minx
(g+1)
i,1:λ > maxx

(g+1)
j,1:λ then

8: return Xj is ahead of Xi

9: else
10: return Xi is ahead of Xj

11: return Xi and Xj are similar

The fuzzy comparison method saves the time of the algorithm. At the same
time, it can provide enough accurate information.

Compute Dividing Points. Different fireworks cooperate to search different
areas, so it is necessary to calculate the dividing points to specify where the
search range of both fireworks are divided. Figure 1 shows 4 possible situations
of the collaboration method. We use the following steps to calculate the dividing
point, which is described in Algorithm 3.

Fit Dividing Points. The boundary of firework X(m, C, σ) is adapted to fit
its dividing points. For each dividing point Pk, a new covariance matrix Ck

is calculated. On the direction of XPk, Pk lies right on the boundary. On the
conjugate directions, the radii of boundary do not changed. The mean of all
adapted covariance matrix 1

K

∑K
k=1 Ck is taken as the overall collaborated result

of X.
The mathematical calculation for fitting a single split point can be found in

[5].
Algorithm 4 outlines the framework of the proposed collaboration strategy:
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Fig. 1. Four cases of collaboration between two fireworks. Ai and Aj are the closer
intersections of line XiXj with their boundaries. The actual dividing point could be
any point on AiAj . The second row shows the collaboration results when taking the
midpoint B of AiAj as dividing point.

Algorithm 3. Compute Dividing Points
Require: Fireworks Xi , Xj and their intersections Ai, Aj

1: Calculate the radius rij = ‖XiAi‖ and rji = ‖XjAj‖ on line XiXj

2: Determine the situation (See Fig. 1) according to rij , rji and dij

3: Calculate the position of Ai and Aj

4: if Xi is ahead of Xj then
5: Ai is the dividing point
6: else if Xj is ahead of Xi then
7: Aj is the dividing point
8: else
9: the midpoint B of AiAj is the dividing point.

10: return Xi and Xj are similar

Algorithm 4. Framework of Fireworks Collaboration
Require: n fireworks Xi and parameters (mi,Ci, σi) in N dimensional feasible space
Ensure: Collaborated parameters of fireworks
1: for each pair of fireworks Xi and Xj do
2: Compare the progress of Xi and Xj

3: Calculate dij = |XiXj |, expected sample distance rij and rji on XiXj

4: Calculate the dividing point Pij (= Pji)

5: for each firework Xi do
6: Gather K = min(N, n − 1) closest dividing points Pi,j1:K

7: Clip the length of XiPijk within [0.5rijk , 2rijk ]
8: for k ← 1 : K do
9: Fit Pijk on the boundary of Xi and obtain Cijk

Ci ← 1
K

∑K
k=1 Cijk

4 Experimental Results

The performance of proposed algorithm is tested on objective functions from
the ICSI 2022 benchmark test set. This test set contains 10 black-box test func-
tions, including 3 unimodal functions, 5 multimodal functions and 3 composition
functions.
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According to the settings of the single-objective optimization competition,
each function is tested for 50 repetitions with 10, 20, 50 dimensions. The termi-
nation condition is a maximum of 10,000, 30,000 or 70,000 evaluations for 10,
20 or 50 dimensions respectively.

To demonstrate the efficiency of our proposed algorithm, the proposed algo-
rithm is compared with three baselines. LoTFWA [2] is the most efficient one
of the main variants of the firework algorithm. CMA-ES [1] is an excellent
evolutionary algorithm with outstanding local optimization ability. APGSK-
IMODE [6] is a variant of differential evolution algorithm. It has achieved excel-
lent results in the CEC 2021 competition. All these algorithms are tested under
the same conditions as the proposed algorithm.

The parameters of all the tested algorithms are set as follows. Its basic set-
tings and parameters are as same as LoTFWA, which includes 5 fireworks and
each firework generates 300 sparks in each iteration. In the restart conditions,
εv and εp are both 1E − 12, and the maximum number of unimproved itera-
tion Imax unimprove is 150. The parameters of local adaption is also set to be
the same as CMA-ES. As we can see, our algorithm does not choose different
parameters according to the specific problem. In order to ensure a fair compari-
son, the parameters of other algorithms are set according to the settings in their
original papers.

The statistical results of the four algorithms are shown in the Table 1, Table 2
and Table 3 for 10 D, 20 D and 50 D respectively. Each table contains the mean
errors and the mean standard deviations of four algorithms on ICSI’2022 test set.
In addition, these algorithms are ranked according to their mean errors on each
function, and the average rankings (ARs) over the 10 functions are presented at
the bottom of the table. Their statistical information is shown in Fig. 2.

It can be seen from the experimental results that the performance of the algo-
rithm are excellent, whether it is on unimodal or multimodal functions. The per-
formance of the algorithm on the composition function is slightly worse, because
the composition function is more complicated. On high-dimensional problems, it
has also achieved very good optimization results compared with other baseline
algorithms. This is because the global collaboration strategy of the algorithm
can make the algorithm avoid trapping in many local optimal values.

On unimodal functions, both CMA-ES and proposed algorithm performs well
because they have strong local exploitation mechanisms. On multimodal func-
tions, our proposed algorithm performs the best. The reason for the excellent per-
formance of our newly proposed algorithm is the algorithm is composed of mul-
tiple populations. The collaboration mechanism of them saves search resources
thus it can find better global optimum in complex multimodal functions. As for
composition functions, due to the complexity of the function, the performance
of the newly proposed algorithm is comparable to CMA-ES.
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Table 1. Results for 10 D problems

F. LoTFWA APGSK-IMODE CMA-ES Proposed

Mean Std Mean Std Mean Std Mean Std

1 7.02e+04 7.18e+04 1.24e−01 5.87e−01 1.89e+00 9.99e+00 4.34e−03 7.77e−03

2 9.02e+02 1.50e+03 8.14e−03 2.53e−02 8.87e−14 2.30e−13 3.23e−08 5.94e−08

3 1.45e+00 2.23e+00 6.30e+00 0.00e+00 6.30e+00 1.08e−06 6.30e+00 3.46e−07

4 9.24e+00 2.93e+00 4.38e+00 1.31e+00 8.76e−01 7.87e−01 4.78e−01 5.35e−01

5 3.15e+02 1.20e+02 2.50e+02 1.11e+02 1.96e+01 5.78e+01 1.50e+01 3.57e+01

6 2.23e−01 3.47e−01 2.24e−01 4.49e−01 9.64e−04 2.07e−03 4.58e−09 8.40e−09

7 1.18e−01 4.29e−02 8.40e−02 3.57e−02 1.22e−01 3.91e−02 1.97e−02 5.06e−03

8 2.28e+05 2.04e+05 6.51e+04 1.45e+05 2.99e+05 1.69e+05 2.65e+05 1.90e+05

9 1.59e+03 2.84e+03 2.19e+04 1.67e+04 7.03e−02 1.31e−01 1.01e−03 7.03e−03

10 1.62e+01 9.20e+00 8.38e+00 6.58e+00 2.05e+01 1.23e+01 4.04e−01 2.20e−01

AR. 3.10 2.60 2.80 1.50

Table 2. Results for 20 D problems

F. LoTFWA APGSK-IMODE CMA-ES Proposed

Mean Std Mean Std Mean Std Mean Std

1 3.64e+05 1.82e+05 9.82e+04 7.05e+04 6.95e−11 1.80e−10 5.56e−08 1.06e−07

2 1.14e+02 2.34e+02 1.45e+03 6.87e+02 0.00e+00 0.00e+00 9.50e−13 4.11e−13

3 3.62e+00 4.51e+00 9.77e+00 3.69e−06 9.77e+00 1.00e−07 9.77e+00 1.37e−07

4 2.80e+01 6.14e+00 2.31e+01 3.85e+00 2.19e+00 1.50e+00 8.56e−01 7.71e−01

5 1.26e+03 2.17e+02 1.30e+03 2.47e+02 1.78e+02 1.26e+02 9.21e+01 6.62e+01

6 1.80e+00 1.64e+00 2.68e+01 5.70e+00 1.14e−13 0.00e+00 7.22e−11 2.93e−11

7 2.74e−01 5.98e−02 1.83e−01 2.58e−02 1.33e−01 3.72e−02 2.05e−02 5.52e−03

8 4.29e+05 5.93e+03 4.48e+05 5.91e+03 4.03e+05 4.58e+02 4.03e+05 3.67e+02

9 2.21e+04 4.45e+04 1.30e+07 3.91e+06 1.05e+01 6.17e+01 2.43e+06 9.77e+06

10 4.99e+01 2.76e+01 1.11e+01 4.56e+00 1.92e+01 9.84e+00 6.55e−01 3.05e−01

AR. 2.90 3.00 1.80 1.40

Table 3. Results for 50 D problems

F. LoTFWA APGSK-IMODE CMA-ES Proposed

Mean Std Mean Std Mean Std Mean Std

1 5.60e+06 1.34e+06 1.62e+07 2.86e+06 0.00e+00 0.00e+00 4.23e−12 9.60e−13

2 8.30e+01 1.31e+02 6.69e+01 5.97e+01 0.00e+00 0.00e+00 1.83e−12 1.59e−13

3 2.71e+01 3.16e+01 2.01e+00 1.02e+01 0.00e+00 0.00e+00 1.93e−12 1.30e−13

4 1.21e+02 1.80e+01 1.84e+02 1.78e+01 6.09e+00 2.74e+00 1.75e+00 9.02e−01

5 4.98e+03 4.55e+02 6.32e+03 2.85e+02 1.15e+03 3.89e+02 3.65e+02 9.69e+01

6 9.61e+00 3.92e+00 3.71e+02 3.94e+01 4.41e−13 2.91e−14 2.11e−10 3.55e−11

7 4.81e−01 7.57e−02 3.39e−01 2.57e−02 1.74e−01 3.48e−02 3.75e−02 7.28e−03

8 4.57e+05 8.85e+03 5.73e+05 9.10e+03 4.07e+05 6.99e+02 4.06e+05 2.62e+02

9 9.62e+05 1.19e+06 2.07e+09 3.77e+08 3.04e−03 5.67e−03 1.73e−09 3.74e−10

10 7.61e+02 2.07e+02 3.62e+02 3.57e+01 3.24e+02 4.97e+01 1.62e+02 8.21e+00

AR. 3.00 3.20 1.60 1.00
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D10-F1 D10-F2 D10-F3 D10-F4 D10-F5

D10-F6 D10-F7 D10-F8 D10-F9 D10-F10

D20-F1 D20-F2 D20-F3 D20-F4 D20-F5

D20-F6 D20-F7 D20-F8 D20-F9 D20-F10

D50-F1 D50-F2 D50-F3 D50-F4 D50-F5

D50-F6 D50-F7 D50-F8 D50-F9 D50-F10

Fig. 2. Boxplots of the four algorithms



422 Y. Liu et al.

In conclusion, the newly proposed algorithm has a significant improvement
over LoTFWA. Compared with other classic heuristic algorithms, FWASSP also
has an extremely good performance. It is worth further investigation.
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