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Abstract. As an efficient organization form of distributed energy
resources with high permeability, microgrid (MG) is recognized as a
promising technology with the promotion of various clean renewable
sources. Due to uncertainties of renewable sources and load demands,
optimizing the dispatch of controllable units in microgrid to reduce eco-
nomic cost has become a critical issue. In this paper, an economic dis-
patch optimization model for microgrid including distributed generation
and storage is established with the considering of inherent links between
intervals, which aims to minimize the economic and environmental costs.
In order to solve the optimization problem, a novel swarm intelligence
algorithm called fireworks algorithm with momentum (FWAM) is also
proposed. In the algorithm, the momentum mechanism is introduced into
the mutation strategy, and the generation of the guiding spark is modi-
fied with the historical information to improve the searching capability.
Finally, in order to verify the rationality and effectiveness of the proposed
model and algorithm, a microgrid system is simulated with open data.
The simulation results demonstrate FWAM lowers the economic cost of
the microgrid system more effectively compared with other swarm intel-
ligence algorithms such as GFWA and CMA-ES.

Keywords: Fireworks algorithm · Swarm intelligence · Microgrid ·
Smart grid · Economic dispatch

1 Introduction

Facing the increasing environment protection needs, clean energy with remark-
able renewable and environment-friendly characteristics, such as photovoltaic
(PV) power and wind power (WP), is gradually replacing the traditional ther-
mal power which has harmful environmental effects. In the relevant case study,
the global renewable energy consumption has already accounted for 15% of global
energy consumption in 2020 and will further increase to 27% in 2050 [15]. How-
ever, due to the randomness of natural conditions, renewable clean energy usually
shows significant intermittent and irregularity. Directly injecting the renewable
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power into the utility grid will lead to the power mismatching and seriously
affect the power quality [1]. The technique of energy decentralization like micro-
grid can effectively alleviate the problem by maintaining a stable power demand
and supply ratio.

Microgrid is a system concept including multiple coordinated loads and dis-
tributed energy resources (DER), operating as a controllable structure to the
utility grid with well defined electrical boundaries [14]. In addition, the micro-
grid is also equipped with necessary control device which can manage the power
output of the controllable unit to maintain the power balance and control inter-
action with the utility grid under the grid-tied mode, so as to downscale the
fluctuation and boost the overall economic benefits of grid and users [16]. On
the basis of meeting the above requirements, making a reasonable day ahead
dispatch schedule to minimize the economic cost is of great significance in the
microgrid and smart grid.

Due to the complex form of objective functions of the microgrid economic
dispatch optimization, various swarm intelligence algorithms are introduced to
solve the optimization problem, which have already achieved notable success on
some real-world problems like spam detection [12], multiple targets search [17]
and multi-objective optimization [3,8,18]. Fireworks algorithm (FWA) is a novel
swarm intelligence algorithm proposed by Tan et al. in 2010 [13]. FWA has a
double-layer structure, one layer is the global coordination between the popu-
lations represented by fireworks, and the other one is the independent search
of each firework. This hierarchical structure ensures that FWA can adapt to a
variety of optimization problems with different characteristics. In recent years,
some variants of fireworks algorithms such as guided FWA (GFWA [7]) and
loser-out tournament FWA (LoTFWA [5]) further enhance the search ability of
FWA. The superiority of the those variants on the optimization of multi-modal
test functions prove that FWA has great potential in real-world optimization
problems like multi-objective.

Based on the comprehensive consideration of the power characteristics and
constraints of renewable energy and energy storage, a dynamic economic dispatch
optimization model for the microgrid is built with the goal of minimizing the
overall costs and simulated with the open datasets in this paper. This work also
improves the mutation operator of FWA by introducing momentum mechanism
and the resulting algorithm is called FWA with momentum (FWAM). In GFWA,
the guidance vector (GV) is determined by the difference between the centroids of
two certain groups of sparks in the current population, and a guidance spark (GS)
are generated accordingly as the elite individual. Meanwhile, FWAM additionally
introduces its own historical information when calculating the guiding vector to
reduce the randomness of guidance spark generation. Simulation result shows
that FWAM exhibits more powerful exploration and exploitation ability than
previous FWA variants and other swarm intelligence algorithms like CMA-ES.

The remaining chapters of this paper is organized as follows. Section 2
introduces the essential background information and related works. Section 3
describes our proposed dispatch model in detail. Section 4 explains and analyzes
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FWAM and its improved mutation operator. Then Sect. 5 presents the simula-
tion results to show the performance of FWAM on the dispatch problem. And
Sect. 6 gives the conclusion.

2 Related Works

2.1 Economic Dispatch Optimization for Microgrid

Microgrid economic dispatch can be roughly divided into static dispatch and
dynamic dispatch. The static dispatch strategy obtains the optimal value of the
objective function for each time interval, and adds the results together to obtain
the global optimal. The static strategy ignores the inherent links between inter-
vals, and thus cannot meet the actual requirements. In addition, some studies
also simplify the architecture, constraint and objective function of the micro-
grid system. Peng et al. built an economic dispatch model for microgrid under
the island mode without the state of charge constraints of the energy storage [9].
Ding et al. proposed a similar dispatch model with the goal of minimizing operat-
ing cost of distributed generation system, but ignore the environmental cost [2].
Recently, some studies try to simulate a more realistic microgrid system model,
and put forward more meaningful and useful dispatch strategies on this basis,
which leads to a sharp increase in the complexity of the microgrid dispatch
optimization, and a variety of swarm intelligence algorithms are introduced to
solve the problems. Tan et al. proposed a hybrid non-dominated sorting genetic
algorithm (NSGA) and adopted it on the multi-objective dispatch optimization
for microgrid [11]. Lezama et al. optimized bidding in local energy market with
particle swarm algorithm (PSO) [4].

This paper describes the constraints of each DER and the objective function
of the entire system in detail, and establishes the links between intervals. In order
to solving the optimization problem, a novel FWA is proposed and introduced.

2.2 Guided Fireworks Algorithm

FWA conducts explosion and selection iteratively to search the global optimum.
In the explosion operation, each firework would generate several sparks in a
hypersphere centered on itself, where the radius of hypersphere is called explosion
amplitude. Then, firework of next iteration would be selected from the candidate
pool formed by firework and its sparks. Variants like adaptive FWA (AFWA [6])
and dynamic search FWA (dynFWA [16]) improve the explosion operator by
adjusting the explosion amplitude adaptively in each iteration. LoTFWA and
Fireworks Algorithm based on search space partition (FWASSP [8]) attempted
to design a more efficient collaboration mechanism.

GFWA introduced a landscape information utilization-based elite steat-
egy [6]. In GFWA, the firework and its sparks are sorted according to their
fitness after the explosion operation in each iteration. Then, the guiding vector
(GV) is calculated as the difference between the centroids of the top σλi sparks
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and the bottom σλi sparks, where σ is a super parameter to control the size
of the two subsets. By adding the GV to the firework, a elite individual named
guiding spark (GS) is generated. And GS will be selected together with other
individuals in the candidate pool to select new firework. The experimental result
shows this novel mutation operator can enhance the convergence speed and the
local search ability significantly.

3 Dynamic Economic Dispatch Optimization Model
for Microgrid

A dynamic economic dispatch optimization model for microgrid under the grid-
tied mode is established in this paper. The microgrid system is mainly con-
sist of the distribution energy resources and the load, where the distribution
energy resources include photovoltaic (PV) system, wind turbine (WT), micro
turbine(MT) and energy storage (ES) devices. And there is also a control device
to control the power output of the DER and the interaction with the utility grid.
The power generated by DER gives the priority to meeting the load demand,
and the excess energy will be transmitted to ES and the utility grid according
to the electricity price. Figure 1 illustrates the structure of the entire microgrid
system.

Fig. 1. The structure of the microgrid system.

The dynamic economic dispatch optimization model is usually regarded as a
dynamic system. Taking the state of charge (SoC) of the ES as the system state
variable, the model can be described as the following dynamic equation:

SoCt+1 = SoCt +
N∑

i=1

P
(i)
t + Pg,t, t = 0, 1, ..., T − 1, (1)

where N is the number of DER, and Pg is the power interaction with the utility
grid. The dispatch in this paper is a day-ahead hourly scheduling, thus T is set
as 24.
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3.1 Objective Function of the Dispatch Model

The main objective of the dispatch is maximizing the utilization of renewable
resources to reduce the pollution emissions, while minimizing the economic cost
of the entire system. The objective function is expressed as the following:

min f = feco + fenv, (2)

feco =

T−1∑

t=0

(

NW∑

i=1

CW (P
(i)
W,t)+

NP∑

i=1

CP (P
(i)
P,t)+

NM∑

i=1

CM (P
(i)
M,t)+

NS∑

i=1

CS(P
(i)
S,t)+CG(PG,t)), (3)

fenv =
T−1∑

t=0

(
NM∑

i=1

EM (P (i)
M,t) + EG(PG,t)), (4)

where feco and fenv are functions of the economic cost and environmental cost.
CW , CP , CM and CS are the operation cost of WT, PV, MT and ES. N and P
represent the number and power of the corresponding units. CG is the transaction
cost with utility grid. EM and EG represent the environmental compensation
expense of MT and grid. Detailed definitions of the cost function above are
introduced as follows.

Cost Function of Wind Turbine. Wind power is one of the main clear energy
resources with the well established technology at present, which could lower the
pollution emissions effectively. The maintenance cost of the wind turbines can
be abstracted as a linear relation with the active output:

CW = αW PW , (5)

where αW is the coefficient of the maintenance cost of WT.

Cost Function of Photovoltaic System. Photovoltaic power is also a impor-
tant clean alternative energy, and it has a more extensive application scenarios
compared with the wind power. The maintenance cost of photovoltaic system
can also be expressed as a linear relation:

CP = αP PP , (6)

where αP is the coefficient of the maintenance cost of PV.

Cost Function of Micro Turbine. Due to the stable and controllable power
output, the micro turbine can relieve the short-term power shortage and stabilize
the fluctuation of voltage and frequency caused by the randomness of clean
energy. The operation cost of micro turbine mainly includes the maintenance
cost and the fuel cost, which are defined as the followings:

CM = Cmt + Cf , (7)
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Cmt = αMPM , (8)

Cf = αfP 2
M + βfPM + γf , (9)

where αM , αf , βf and γf are parameters determined by the type of the micro
turbine.

Cost Function of Energy Storage. ES can be charged and discharged accord-
ing to the electricity price and power surplus, so as to effectively mitigate the
negative impact of fluctuation of the load and reduce the operation cost of micro-
grid system. The maintenance cost of ES are usually expressed as a linear relation
with the power of charging and discharging:

CS = αS |PS |, (10)

where αS is the coefficient of the maintenance cost of ES, and PS represents the
charging power of discharging power of ES. For convenience, the charging power
is set to negative, and the discharging power is set to positive.

Cost Function of Energy Transaction. Under the grid-tied mode, the micro-
grid system can establish the energy transaction between the utility grid. If the
power of DER cannot meet the load demand, the microgrid can purchase energy
from the utility grid. If there is a power surplus, the excess energy can be trans-
mitted to ES or sell to the utility grid according to the real-time electricity price.
Thus, the cost of energy transaction can be expressed as the following:

CG =
{

pbPG, PG ≥ 0
psPG, PG<0,

(11)

where pb and ps are the purchase price and the selling price respectively, and
PG is the interactive power. The interactive power PG is set to negative when
the microgrid purchase the electricity form the utility grid, otherwise it is set to
positive.

Environmental Cost. Thermal power generation like micro turbine usually
emits certain polluting gases, among which sulfide and nitride have a relatively
strong negative impact on the environment. This would require certain environ-
mental compensation for the pollution prevention and control. It’s worth noting
that thermal power also account for a significant portion in the utility grid today.
Thus, when purchasing the electricity from the utility grid, the microgrid system
still need paying the environmental compensation. The environmental compen-
sation expense of MT can be abstracted as the following:

EM = αnβM
n PM + αsβ

M
s PM , (12)
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where αn and αs are the compensation expense of nitride and sulfide. βM
n

and βM
s are emission parameters of nitride and sulfide. And the compensation

expense of the utility grid is similar as the MT:

EG =
{

αnβG
n PG + αSβG

s PG, PG>0
0, PG ≤ 0,

(13)

where βG
n and βG

s are emission parameters of nitride and sulfide of the utility
grid.

3.2 Constraints of the Dispatch Model

For the stability and safety of microgrid operation, it is necessary to enforce cer-
tain constraints on each unit in the microgrid. The constraints can be divided into
equality constraint and the inequality constraints in this paper, where the equal-
ity constraint describe the power balance. And the inequality constraints are
mainly the power constraints of the distributed generation and storage. Detailed
constraints are listed as follows.

The Power Balance of the Microgrid System. There must be a balance
between the power supply and demand in each time interval:

PL(t) = PW (t) + PP (t) + PM (t) + PE(t) + PG(t), (14)

where PL represents the power of all loads int the microgrid system.

The Constraints of Distributed Generations.

Pmin
W ≤ PW (t) ≤ Pmax

W , (15)

Pmin
P ≤ PP (t) ≤ Pmax

P , (16)

Pmin
M ≤ PM (t) ≤ Pmax

M , (17)

PM (t) − PM (t − 1) ≤ Rup, (18)

PM (t) − PM (t − 1) ≥ Rdown, (19)

where Pmin
W , Pmin

P , Pmin
M , Pmax

W , Pmax
P and Pmax

M are the minimum and the
maximum of active output power of WT, PV and MT respectively. Rup and
Rdown are limitations of the ramp rate of MT.

The Constraints of Energy Storage. Both the capacity and power of ES
need to be limited, where the capacity is usually described by the state of charge
SoC, that is the ratio of the residual capacity to the rated capacity:

SoC =
Q0 − ∫ t

0
I(t)dt

Qm
, (20)
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where Q0 is the initial capacity of ES, and Qm is the rated capacity of ES. Then,
the main constraints of ES can be given as follows:

⎧
⎨

⎩

SoC(t + 1) = SoC(t) + ηinPS(t)/Qm

P in
min ≤ PS(t) ≤ P in

max

SoCmin ≤ SoC(t) ≤ SoCmax

, PS(t)<0, (21)

⎧
⎨

⎩

SoC(t + 1) = SoC(t) + ηoutPS(t)/Qm

P out
min ≤ PS(t) ≤ P out

max

SoCmin ≤ SoC(t) ≤ SoCmax

, PS(t) ≥ 0. (22)

where ηin and ηout are the charging and discharging efficiency of ES. P in
min, P in

max,
P out

min and P out
max are limitations of charging and discharging power. SoCmin and

SoCmax are limitations of SoC.

4 Fireworks Algorithm with Momentum

4.1 Principle

GFWA improves the local search ability of fireworks algorithm by further utiliz-
ing the information of population and landscape. In GFWA, the guiding vector
(GV) can be seem as an estimator of the gradient of the objective function,
especially when the explosion amplitude is short. Thus, a GV with the accurate
direction and length could generate a guiding spark (GS) on a promising posi-
tion, which is more likely to be selected as the firework of the population in the
next iteration.

For reducing the randomness, GFWA calculate the GV by the centroids of the
top and bottom sparks instead of the best and worst spark. The technique could
extract the common qualities of the top sparks (the bottom sparks), and cancels
out the random noise on the irrelevant directions. However, there are still several
weaknesses in the technique: (1) When the firework locates in a local/global
optimum area, the explosion amplitude is usually shortened dramatically, which
means that the length of GV would also be too short to generate a GS on the
promising position. And the effect of the elite strategy would be weakened. (2)
The stability of the guiding spark mechanism is sensitive to the change of super
parameter σ. If the guiding mutation ratio σ is too large, some moderate sparks
would be selected to calculate the centroid, and this would lead to the vague of
common qualities of the top sparks/bottom sparks. While if σ is too small, the
random noise could not be cancelled out.

To solve the problems above, FWAM introduces a momentum mechanism
to generate GS with the historical information. Specifically, in each iteration,
the calculation of GV is not only determined by the difference in the current
iteration, but also the GV in the previous iteration:

Δi,t =
1

σλi
(

σλi∑

j=1

sij,t −
λi∑

j=λi−σλi+1

sij,t), (23)
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vi,t = γvi,t−1 + ηΔi,t, (24)

where vt is defined as the GV in FWAM, and vt−1 can be seem as a momen-
tum term. γ is a momentum parameter to control the ratio of current difference
Δt and the historical information, and a larger γ means that GV would sotre
more historical information in the current GV. Compared with GFWA, a obvi-
ous advantage is that even if the random noise in the difference between the
top and bottom sparks affects GV’s estimation of gradient, GV could still be
corrected and compensated by the historical information. Thus, when the fire-
work locates near the optimum, this improved GV could also has a promising
direction. Another important advantage is that the momentum mechanism can
lengthen the GV on the relevant direction, which would accelerate the conver-
gence of the firework. Algorithm 1 gives the description of FWAM. The next
subsection will give analysis of this mechanism in detail.

Algorithm 1. Framework of Fireworks Algorithm with Momentum
Input: Firework num μ, spark num λ, mutation ratio σ, momentum params γ, η
Output: Optimal solution

Initialize μ fireworks randomly within the feasible region Ω
while termination condition not satisfied do

for Fireworksi in Fireworks do
Explosion:
Generate λi spark randomly around Fireworksi within amplitude Ai

Mutation:
Sort sparks according to their fitness in ascending order
Calculate guiding vector vi,t = γvi,t−1 + η 1

σλi
(
∑σλi

j=1 sij,t −
∑λi

j=λi−σλi+1 sij,t)
Generate guiding spark Gi,t = vi,t + Fireworki,t

Selection:
Evaluate Fireworki and all sparks’ fitness
Select the best candidate as the Fireworki of the next iteration
Adjust Ai adaptively

end for
end while

4.2 Analysis

Considering the relation between the previous GV (momentum term) vt−1 and
current difference Δt, the effect of momentum mechanism can be analyzed in
the following two possible situations.

If current difference Δt has a direction consistent with vt−1 (see Fig. 2(a)),
the projection of vt−1 on Δt would be relatively large and current GV vt would
be lengthened on the relevant direction. Actually, the momentum mechanism
can be regarded as a weighted average method, and thus the lengthening effect
would be more significant if the direction of Δt always keeps consistent with the
historical GV in recent iterations. Due to the characteristic of adaptive strategy
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in FWA, there is always the same change trend of amplitudes on different dimen-
sions, and this would lead to premature convergence on some key dimensions.
As a result, FWA might underperform when the global optimum locates on the
boundaries of feasible region. While the momentum mechanism can help the GS
keep sufficient distance separation with the firework even when the population
locates near the optimum or boundaries, which ensure the guiding spark can still
make sense in this situation.

If the direction of current difference Δt has a obvious divergence with the
promising direction (see Fig. 2(b)), GV in GFWA tends to have a large oscilla-
tion on the irrelevant direction and the GS is likely not going to seek a better
position, which means that GS would not be selected as the firework. While vt−1

represents the accumulation of historical GV information in FWAM, and thus
there is a higher probability for GV to approach the relevant direction. As the
sum of vt−1 and Δt, components of GV on the irrelevant direction in FWAM
would be shortened and the GS would be closer to the optimum. From another
point of view, Δt also has a significant effect on vt, and such a “compromise”
strategy ensure that the GS in FWAM still can lead the population to get rid of
the local optimum.

In summary, by introducing the momentum mechanism, the variance of GV
in FWAM can be reduced effectively and the GV would be more aggressive when
it approach the promising direction, which could accelerate the convergence of
the algorithm and enhance the tolerance of the selection of parameter σ.

(a) (b)

Fig. 2. Illustration of two possible situations of FWAM in the search process.

5 Case Study

For verifying the rationality and effectiveness of the proposed dispatch model
and the improved algorithm, this paper simulates a dispatch optimization model
under the grid-tied mode as the definition in Sect. 3 , and conducts the FWAM on
the model to get a day-ahead dispatch schedule for each controllable components.
Detailed description are given as the followings.
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5.1 Simulation Settings

The distributed generations in the system consist of 4 micro turbines, 100 wind
turbines, 20 PV arrays (each PV array has 40 PV panels) and 2 energy storage
systems. The detailed parameters of each DER units above are listed in Table 1
and Table 2. Loads is mainly composed of 3 office buildings and 10 personal
residential houses. And the real-world power profiles of WT, PV and loads are
selected form the open datasets available in PES ISS website [10]. Time-of-use
(TOU) price of the electricity transaction with utility grid is shown as Table 3.

In order to fully verify the reliability of the proposed algorithm, the power
profiles from 1 June to 30 June are chosen to conduct the simulation 30 times
repeatedly with a maximum evaluation number of 100000. Some FWA variants,
such as GFWA and FWA based on search space partition (FWASSP), and other
swarm intelligence algorithm like CMA-ES and PSO are selected as the baseline.

Table 1. Parameters of distributed generations in the microgrid system.

DG Minimum

Output (kW)

Maximum

Output (kW)

Minimum

Ramp Rate

(kW/h)

Maximum

Ramp Rate

(kW/h)

Maintenance

Parameters

(CNY/(kW·h))
WT 0 50.0 – – 0.12

PV 0 80.0 – – 0.02

MT1 0 35.0 −15.0 15.0 0.03

MT2 0 35.0 −15.0 15.0 0.02

MT3 0 35.0 −15.0 15.0 0.04

MT4 0 35.0 −15.0 15.0 0.01

Table 2. Parameters of distributed storage systems in the microgrid system.

DS rated
Capacity
(kW·h)

Minimum
SoC (%)

Maximum
SoC (%)

Maximum
Discharing
Power (kW)

Maximum
Charging
Power (kW)

Maintenance
Parameters
(CNY/(kW·h))

ES1 30.0 0.1 0.9 10.0 −5.0 0

ES2 30.0 0.1 0.9 10.0 −5.0 0

Table 3. Time-of-use price of electricity transaction.

Period Time Purchase price (CNY) Sell price (CNY)

Peak 11:00–15:00, 19:00–21:00 0.83 0.65

Peace 8:00–10:00, 16:00–18:00, 22:00–23:00 0.49 0.38

Valley 0:00–7:00 0.17 0.13
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5.2 Encoding of Solutions

The object of the dispatch is reducing the overall cost of the microgrid system by
adjust the active output of the controllable DER and the transaction with the
utility grid. Thus, the solutions in this paper is 144-dimensional, which consists
of the scheduled hourly active output of 4 MT and 2 ES in the next day. And the
transaction with the utility grid can be determined according to the constraint
of power balance.

5.3 Cost Analysis

The simulation results are shown as Table 4. Momentum parameters γ and η
are set as 0.9 and 0.6 by grid search. The results indicate that the average
rank of mean cost of FWAM is 1.57, which is the best compared with other
baseline algorithms. And the standard deviation of FWAM also indicates that
the momentum mechanism improve the stability of the algorithm.

Table 4. Comparing FWAM with baseline algorithms on the simulation datasets.

Day FWAM GFWA FWASSP PSO CMA-ES

mean std mean std mean std mean std mean std

1 3.41e+02 3.46e+00 3.84e+02 1.56e+01 4.29e+02 9.67e+00 4.21e+02 1.48e+01 3.87e+02 1.26e+00

2 1.44e+02 9.01e+00 1.66e+02 1.05e+01 2.14e+02 1.90e+01 1.74e+02 3.76e+00 1.50e+02 7.07e+00

3 −2.16e+02 3.26e+00 −2.08e+02 7.35e+00 −1.75e+02 7.60e+00 −1.68e+02 1.64e+01 −2.12e+02 2.22e+01

4 5.32e+02 1.04e+01 5.46e+02 8.43e+00 5.64e+02 2.81e+01 5.64e+02 1.34e+01 5.28e+02 3.81e+00

5 2.27e+02 6.36e+00 2.53e+02 1.23e+01 3.05e+02 2.49e+01 3.18e+02 9.54e+00 2.52e+02 6.19e+00

6 5.05e+02 8.79e+00 5.14e+02 8.76e+00 5.62e+02 1.69e+01 5.85e+02 5.64e+00 5.07e+02 1.09e+01

7 2.60e+02 6.17e+00 2.61e+02 5.02e+00 3.40e+02 3.25e+01 3.30e+02 1.28e+01 2.56e+02 5.20e+00

8 4.80e+02 3.44e+00 5.01e+02 1.32e+01 5.16e+02 2.02e+01 5.28e+02 2.50e+01 4.88e+02 1.30e+01

9 6.17e+02 8.51e+00 6.23e+02 1.03e+01 6.43e+02 1.61e+01 6.64e+02 1.65e+01 6.16e+02 6.03e+00

10 3.95e+02 7.38e+00 3.93e+02 4.15e+00 4.63e+02 3.56e+01 4.37e+02 1.37e+01 4.03e+02 1.42e+01

11 8.21e+02 1.90e+00 8.24e+02 7.87e+00 8.29e+02 7.31e+00 8.34e+02 1.63e+01 8.08e+02 1.14e+01

12 −4.88e+01 5.32e+00 −4.75e+01 6.38e+00 3.15e+01 3.29e+01 1.01e+00 1.47e+01 −4.45e+01 6.59e+00

13 6.49e+02 6.63e+00 6.58e+02 5.34e+00 6.89e+02 1.46e+01 6.86e+02 7.86e+00 6.37e+02 1.60e+00

14 6.04e+02 9.69e+00 6.15e+02 7.59e+00 6.60e+02 2.64e+01 6.45e+02 1.16e+01 6.15e+02 1.85e+00

15 4.30e+02 7.84e+00 4.35e+02 1.43e+01 4.59e+02 2.39e+01 4.87e+02 1.61e+01 4.26e+02 8.33e+00

16 7.32e+02 4.94e+00 7.49e+02 5.81e+00 7.82e+02 5.53e+00 7.58e+02 1.21e+01 7.26e+02 1.00e+01

17 6.66e+02 8.11e+00 6.81e+02 1.15e+01 7.03e+02 1.36e+01 7.14e+02 1.68e+01 6.68e+02 5.36e+00

18 3.43e+02 3.90e+00 3.67e+02 9.25e+00 4.00e+02 3.20e+01 4.10e+02 2.06e+01 3.61e+02 1.06e+01

19 2.89e+02 3.90e+00 3.15e+02 9.42e+00 3.71e+02 1.59e+01 3.78e+02 2.10e+01 2.91e+02 5.56e+00

20 3.97e+02 5.04e+00 3.98e+02 7.06e+00 4.46e+02 8.13e+00 4.59e+02 4.91e+00 3.85e+02 4.31e+00

21 −6.97e+02 2.06e+00 −6.95e+02 9.17e+00 −6.39e+02 2.95e+01 −6.30e+02 1.35e+01 −7.02e+02 5.31e+00

22 −1.09e+02 9.29e+00 −1.03e+02 1.12e+01 −6.35e+01 1.70e+01 −4.20e+01 1.40e+00 −1.04e+02 7.32e+00

23 −3.72e+02 3.18e+00 −3.76e+02 1.61e+01 −2.60e+02 1.80e+01 −3.13e+02 1.95e+01 −3.69e+02 8.32e+00

24 −6.45e+01 1.59e+00 −6.70e+01 1.34e+01 −7.80e+00 1.47e+01 −9.13e+00 1.42e+01 −5.97e+01 1.48e+01

25 3.99e+02 4.44e+00 3.94e+02 1.08e+01 4.75e+02 9.55e+00 4.68e+02 9.14e+00 3.93e+02 1.43e+01

26 4.33e+02 5.54e+00 4.54e+02 1.59e+01 4.77e+02 2.03e+01 4.92e+02 1.09e+01 4.30e+02 9.49e+00

27 4.37e+02 6.53e+00 4.49e+02 5.98e+00 5.08e+02 1.07e+01 4.82e+02 2.02e+01 4.40e+02 3.83e+00

28 8.51e+02 2.24e+00 8.54e+02 6.15e+00 8.67e+02 3.05e+01 8.71e+02 9.58e+00 8.35e+02 3.06e+00

29 8.18e+02 5.48e+00 8.21e+02 9.71e+00 8.39e+02 1.68e+01 8.44e+02 1.32e+01 8.11e+02 5.27e+00

30 3.04e+02 9.95e+00 3.16e+02 1.14e+01 3.63e+02 1.71e+01 3.50e+02 1.80e+01 3.20e+02 6.14e+00

AR 1.57 1.83 2.67 2.83 4.47 4.33 4.53 3.73 1.77 2.27
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Here, we take the simulation of 1 June as the case to analyze the internal
logic of the dispatch schedule. The scheduled output of each component is shown
as the Fig. 3. During 1:00–8:00, the output of PV and WT is in a relatively low
range and cannot meet the load demand. Owing to that the cost of electricity
transaction is lower than the MT’s in this time, purchasing electricity from the
utility grid accounts for a large proportion in the power supply. As the growth of
load demand and electricity price, the output of MT increases gradually during
9:00–13:00. And If there is power supply surplus, the microgrid system would
sell the extra power to the utility grid. When the clean energy covers the most
power demands in the daytime, the power of MT would decrease accordingly to
reduce the pollution emission. The output schedule during 16:00–24:00 follows
the same logic as the daytime. ES generally tends to store the energy while the
load demand in a low range, and discharges during the peak time to reduce the
power fluctuation of the system. Compared with the dispatch schedule obtained
by GFWA during 13:00–19:00 and 23:00–24:00, FWAM can response to the
changes and adjust the output of the controllable units more timely. Besides,
although there is a differences of parameters between MTs, the cost of each MT
is still maintained at a relatively same level under the dispatch of FWAM, which
means that FWAM could find a better solution to balance the output of different
MTs.

(a) Power curve of FWAM (b) Power curve of GFWA

(c) Cost composition of FWAM (d) Cost composition of GFWA

Fig. 3. Power curve and overall cost of 1 June obtained by FWAM and GFWA.
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6 Conclusion

This paper establishes an economic dispatch optimization model for microgrid
system with the objective of minimizing the economic cost and environment cost,
and proposes an improved GFWA with the momentum mechanism to improve
the search ability and mitigate the instability caused by the randomness of guid-
ing spark generation. The simulation results indicate that FWAM is competitive
against other swarm intelligence algorithms on the grid application. There are
plenty of application scenarios for FWA, and we expect this work could be a
inspiration for more application researches of FWA on the real-world problems.
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