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Abstract. Human pose estimation is a hot research problem in com-
puter vision, it has a certain application prospect in the automatic
driving industry, security field, film and television industry, and spe-
cific action monitoring of special scenes. Because a 2D skeleton usu-
ally corresponds to multiple 3D skeletons, the mapping from 2D to 3D
in the monocular video has inherent depth ambiguity and is ill-posed,
which makes the research on the technology of 3D human pose esti-
mation in monocular video challenging. In this paper, a Pose Sequence
Model (PSM) for 3D human pose estimation in the monocular video is
proposed, which combines the full convolution neural network based on
extended convolution with the Long Short-Term Memory (LSTM) net-
work. We make full use of convolution to extract spatial features and
use LSTM to obtain temporal features. With this model, we can predict
3D human posture through 2D sequences. Compared with the previous
work on classical data sets, our method has good detection results.
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1 Introduction

The research on 2D pose estimation has 2 main methods: top-down and bottom-
up methods. The top-down method [19,25,28,30] takes the result from human
detection, generally a bounding box, and performs the single human pose esti-
mation on each human block diagram. The bottom-up method [18], oppositely,
starts by detecting the human body key points in the image and then groups
the key points into a human body. Toshev et al. [26] transformed the 2D
human pose estimation problem from the original image processing and tem-
plate matching problem into CNN image feature extraction and keypoint coor-
dinate regression problem, and used DNN-based regression criteria to estimate
the occludes/missing human joint nodes, which brings great influence. Until now,
the 2D pose estimation has reached relatively high accuracy and high resolution
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[23]. Combining the 2D and 3D human pose estimation, Chen et al. [4] con-
veyed that rather than directly measure 3D pose from images, the procedure of
3D pose estimation can be divided into 2D pose estimating using Mature deep
neural networks, and 3D mocap data matching, this has been the main idea of
posture estimating.

In recent years, there has been vast research on 3D posture estimating. Some
focus on estimating 3D pose from 2D pose of a single image, Martinez et al. [16]
conducted an efficient neural network to infer from 2D projections to 3D joints,
which focuses on the visual parsing of human bodies in 2d images. To solve the
problem of unknown motions and camera positions, Wandt et al. [27] proposed
an extra camera network to infer camera parameters, followed by a reprojection
layer to reproject the 3D pose back to 2D. Li et al. [14] designed a dataset evo-
lution framework to address the problem of the biased dataset, along with a cas-
caded network: TAGNet to predict the final 3D skeleton from the enhanced data.
Based on the part-guided novel image synthesis, Kundu et al. [10] proposed a self-
supervised learning framework to disentangle the inherent factors of variations:
shape and appearance. Some research may get 3D pose from explicit middle repre-
sentations, Pavlakos et al. [20] proposed volumetric representation for 3D human
pose(3D heatmap) and coarse-to-fine prediction technique to validate the value of
end-to-end learning for the representation of 3D pose, which addresses the chal-
lenge of estimating 3D human poses from a single color image. Li et al. [12] intro-
duced the mixture density networks (MDN) [1,32] into the 3D joint estimation to
verify the hypotheses that multiple feasible poses can be inferred from a monoc-
ular input. Li et al. [13] designed HybrIK reconstructing 3D body mesh by twist-
and-swing decomposition to bridge the gap between volume grid estimation and
3D keypoint estimation, which both preserve the accuracy of the 3D pose and the
real body structure of the parameterized human body model, to obtain a pixel-
aligned 3D body grid and a more accurate 3D pose.

CNN can fully learn images or videos’ high-level semantic information and
has excellent spatial information extraction capabilities. However, the 3D human
pose recognition task based on the human skeleton sequence is a significant time-
dependent problem for monocular video. So, balancing and making better use
of spatial and temporal information is an extremely difficult task. An additional
issue that needs to be addressed is raising the model’s generalizability for out-
door datasets. As a result, we propose a multi-stage framework for estimating
the 3D human pose that begins by estimating the 2D human pose from the
image, then from the result to estimate the 3D human pose. Some 2D outdoor
datasets can be used to provide the model with generalization capabilities by
making use of the model’s revolutionized 2D human pose detector. After that,
the mapping relationship sequence from the 2D human pose to the 3D human
pose is modeled, transforming the issue into a time-based sequence modeling
task. The encoder-decoder structure PSM makes use of the LSTM as an encoder
and the fully convolutional neural network as a decoder. The use of LSTM as
an encoder makes it possible to first encode the video frame’s correlation into
a vector of fixed size and then decode it using a fully convolutional neural net-
work. The CNN network’s spatial information processing capability and the RNN
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network’s temporal information acquisition capability can be combined and fully
utilized in this manner. Additionally, the jitter of 3D human motion between
video frames frequently presents a challenge when estimating the 3D human
pose from monocular video. Since the polynomial order can be modeled using
motion refinement and used as an optional branch to optimize the prediction
results, motion refinement is used to reduce bounce and increase accuracy. Con-
sequently, the performance of 3D human pose estimation can be improved by
the proposed framework. In Fig. 1, the first row contains the images, and the
second row corresponds to the estimation results of the 3D pose.

Fig. 1. The effect of the 3D human pose estimation.

The contribution is reflected in the following points:

1. The structure of encode-decode is formed by CNN and RNN, which can utilize
spatial and temporal information by encoder-decoder structure.

2. We propose a PSM that combines LSTM with a fully convolutional neural
network, which can be used for the estimation of 3D pose.

3. Our framework is implemented in the 3D datasets and good results can also
be obtained for wild web videos.

2 Related Work

In recent years, the field of 3D pose recognition has developed rapidly, mainly in
two directions: picture recognition and video recognition. A method for multi-
person 3D pose recognition using a single image is proposed in [7], which
allows the recognition of single or multi-person poses using constant time. They
designed a simple and effective compression method using high-resolution body



168 J. Zhang et al.

heat maps and decoded them using an auto-encoder. [6] addressed the prob-
lem of 3D pose estimation for multiple people in a few calibrated camera views.
A multi-way matching algorithm is used to cluster the detected 2D poses in all
views. Each cluster encodes the correspondence between the pose and key points
of the same person in different 2D views to efficiently infer the 3D pose of the
person. A feature-enhanced network is proposed in [15] to estimate 3D hand
pose and 3D body pose using a single RGB image. To address the effects arising
from texture, illumination changes, and occlusion in real applications, a long and
short-term dependent perception module is used for enhancement. A contextual
consistency gate is also introduced to modulate based on contextual consistency.
A graph-based approach is proposed in [3] for the problems of depth ambiguity
and severe self-obscuration, considering spatial dependence and temporal con-
sistency. A local-to-global network structure is also implemented to solve the 3D
human pose estimation problem from short sequence 2D joint detection.

Although it is possible to divide the video into multiple frames for pose
recognition, there are often different problems in the video. Graph convolutional
networks are often built on fixed human-joint affinities, which can reduce the
adaptive ability of GCNs to handle complex Spatio-temporal pose changes in
videos. A 3D pose estimation neural network that can adaptively learn video
Spatio-temporal relations is proposed in [22]. And [2] proposed a method for
multi-person 3D pose estimation and tracking from multi-point video, where
each point undergoes independent pose detection followed by correction and cor-
relation, thus generating and tracking 3D skeletons using the associated pose.
Multiplayer full-body 3D pose estimation and tracking in dynamic motion scenes
are achieved. In exception to joint position prediction, a prediction based on
skeletal orientation and skeletal length is proposed in [5], and since the human
skeletal length is constant, a full convolutional propagation architecture with
long jump connections that can effectively use the information in the video for
prediction is proposed. To address the accurate recognition of depth ambiguity,
self-obscuration, or other uncommon poses, [33] proposed a new skeletal GNN
solution using a hop-count-aware hierarchical channel squeezing fusion layer that
effectively extracts information from neighboring nodes while suppressing unde-
sired noise in the GNN, thus effectively improving the prediction accuracy.

3 Method

3D human pose detection methods which are end-to-end must simultaneously
complete feature extraction and 3D joint prediction. In addition, since 2D human
posture corresponds to multiple 3D human postures, there are inherent fuzziness
and discomfort in using end-to-end methods to estimate 3D human posture using
monocular images. In this paper, the framework we propose is multi-stage. First,
we convert the image into 2D human pose through a 2D detector, and then
establish the mapping relationship between 2D and 3D human pose through
depth learning method. The prediction framework is shown in Fig. 2.
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Fig. 2. The prediction framework for the estimation of 3D human pose.

It can be seen from Fig. 2 that our framework is a multi-stage 3D human
posture, and different 2D human posture detectors can be used to improve the
generalization performance of the model. At the same time, a PSM composed of
LSTM and a complete convolution model is proposed to predict 3D human pose
through 2D human pose sequence.

3.1 Time-Series Modeling

The input sequence can supposed as x0 . . . , xt . . . , xT , where xt is the 2D human
poses. Then, we estimate the output y0, . . . , yt . . . , yT , where yt is the 3D human
poses. In the case of non-causality, for the given time t, the output yt can be got
by passing any subset of xT . For the causal cases, the data x0, . . . , xt is observed
before the t state can only be used. So the time series modeling can be as a
function f : Xτ → Y τ that can produce a mapping relationship:

y′
0, . . . , y

′
T = f (x0, . . . , xT ) (1)

For the causal situation, yt should be obtained only from x0, . . . , xt instead of
the subsequent input xt+1, . . . , xT .

3.2 The Proposed Pose Sequence Model

The encoder-decoder model is a common scheme in time series modeling. The
encoding can convert the input time series into vectors, and the decoding can
convert the vectors into output sequences. The combination of CNN and RNN
can form an encoder and decoder structure. The encoder part of the PSM model
we use is the LSTM structure, and the decoder part is a fully convolutional
network, forming the RNN-CNN structure. It can effectively use the ability of
LSTM to extract time information in time series modeling and the advantages
of CNN in processing spatial information. The PSM model is shown in Fig. 3.

Because LSTM can be used to deal with the long-term dependence in time
series modeling, its structure is relatively simple and its parameters are few,
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Fig. 3. The proposed PSM for 3D pose estimation.

so it is used as the encoder of the model in this paper. In addition, a dilated
convolution is used to decode the LSTM encoding. When causal PSM is used
for training, the encoder uses LSTM, while noncausal PSM uses bidirectional
LSTM. There are some differences between bidirectional LSTM and LSTM. The
current state tis not only related to the previous state t − 1, but also related to
the next state t+ 1.

The PSM decoder consists of the full convolution model of the dilated convo-
lution, and the dilated convolution refers to the standard convolution with holes.
The reception field of each convolution kernel can be changed by adjusting the
kernel spacing, and the dilated convolution obtains multi-scale information by
setting different dilation rates. We set different expansion rates for different
blocks. This strategy can play the advantages of parallel processing and reduce
the loss of information at the hole. For a 2D sequence x ∈ R2 and a function
f : {0, . . . , k−1} ⇒ R, operation of dilated convolution F acting on any element
e of the sequence x is expressed as follow.

F (e) = (x ∗D f)(e) =
k−1∑

i=0

f(i) · Xs−D·i (2)
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k is the size of the convolution kernel and D is the expansion factor. The fully
convolutional neural network includes the Batch Norm (BN), Relu, and dropout.
The BN layer is to normalize the batch of data, a BN layer is after the fully con-
nected layer to ensure each layer remains uniformly distributed. Moreover, the
Relu function is chosen as the activation function. For the dropout, each neu-
ron stops with a probability of p. Moreover, a residual connection is used to
superimpose the input and the output, which solves the problem of gradient
disappearance caused by deep networks. After obtaining the 2D joints J in each
image, LSTM is used to perform encoding, and a fully convolutional neural net-
work is used to complete the decoding of temporal convolution. For the LSTM,
the number of hidden layers is set to J ∗ 2. For the decoder, kernel with size K
is set to 3, the output is dilated convolution with a size C=1024 and an expan-
sion factor D = KN , where N are the n-th residual modules. The next part is
BatchNorm, Relu, and dropout layers.

3.3 Training Details

The training process is shown in Fig. 4.
Here, the 2D pose represents the 2D sequences. The branch of the 3D pose

prediction learns the mapping relationship from 2D to 3D pose using PSM. The
y
(j)
f3d,t

(i) is the joint j in the t-th frame predicted by the model, and y
(j)
fgt,t

(i) is
the ground truth for the t-th frame. The loss function of Mean Per Joint Position
Error (MPJPE) can be defined as:

L3d=
1
NT

1
NS

NT∑

j=1

NS∑

i=1

∥∥∥y(j)f3d,t
(i) − y

(j)
gt,t(i)

∥∥∥
2

(3)

Fig. 4. The training process.

NT is the number of video frames, and NS is the number of joints.
Simultaneously, weak supervision of 2D projection is used. We project the

estimated 3D pose to the 2D space and get the MPJPE loss Lproj , then the loss
of the overall task is :

L = L3d + Lproj (4)
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Where L3d is 3D loss, Lproj is 2D loss.
During training, each step represents as N . The framework consists of the

below steps. First, the 2D joints J2D are normalized, and then the 3D joint Ĵ3D

are predicted through the PSM. Ĵ3D can be calculated with the ground truth
to obtain L3d. The projected 2D joint can be obtained through projection, and
then we calculated with the ground truth to obtain Lproj , where the camera
parameter is C.

4 Experimental Verifications

First, the data sets used for training and testing and the overall evaluation
indicators are introduced, and the proposed framework is compared with the
baselines method in different data sets. After verification, our framework has
achieved good results.

4.1 Datasets and Evaluation

In the experiment, we mainly used two data sets, HumanEVA and Human3.6m.
Hman3.6M is a general data set in the field of 3D human pose estimation. It
includes 15 groups of actions completed by motion capture, and a total of 3.6
million videos are provided in 50HZ format. 17 joint point models are used, 5
object groups (S1, S5, S6, S7, S8) are used as training sets, and (S9, S11) are
used as test sets. HumanEVA is another data set used in the experiment, with a
total of 4 test objects. According to actions, it can be divided into single-action
SA protocol and multi-action MA protocol.

In the evaluation process, we used two protocols: P1 is used to calculate
the Euclidean distance between the predicted 3D coordinates and the ground
truth, which is averaged according to the number of joints and frames, namely
MPJPE. P2 uses Procrustes analysis to evaluate the error between the rigid
body transformation result and the ground truth, which is P-MPJPE.

4.2 Implementation Details

Our 2D detector can use different networks, including Mask R-CNN [9] and
HRNet [24]. For Mask R-CNN, the ResNet-101 backbone network can be used.
The learning rate starts from 1e–3, the attenuation rate is 0.995, and 80k iter-
ations of training have been conducted. For HRNet, starting from 1e–4, it was
reduced to 1e–6 in the 15th iteration, and a total of 20k iteration trainings were
conducted.

In addition, the Human3.6m dataset has been translated and rotated. The
receptive field of the PSM model is set to 243 and the attenuation factor is 0.95.
For the HumanEVA dataset, the attenuation factor is 0.99, and 800 cycles of
training were conducted.
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4.3 Experiment on 3D Datasets

Comparison Results on Human3.6m Dataset. Comparative experiments
are carried out on the Human3.6m dataset and the results are as follows.

Table 1. The value of P1 on Human3.6m dataset

Dir Disc Eat Greet Phone Photo Pose Purch Sit Smoke Wait Walk Avg

Fang et al. AAAI
(2018) [8]

50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 60.3 57.7 47.5 60.4

Yang et al. CVPR
(2018) [31]

51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 57.4 58.4 60.1 58.6

Pavllo et al. CVPR
(2019) [21]

45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 47.1 44.0 32.8 46.8

Wu et al. AAAI
(2020) [29]

36.9 43.9 39.5 60.4 45.3 51.6 38.1 41.9 54.1 44.4 57.6 32.2 47.3

Ours, causal 41.7 44.1 41.4 43.1 46.0 52.4 44.9 43.2 54.4 44.2 45.1 32.8 44.7
Ours, non-causal 41.3 43.8 39.1 42.5 45.1 51.8 44.7 41.5 52.8 43.9 44.8 32.0 43.9

Table 1 and Table 2 show the results on the Human3.6m dataset under the
evaluation indicators P1 and P2. The model uses HRNet as a two-dimensional
attitude detector, and the data in the table contains the results of multiple
actions. The smaller the value of the evaluation index P1 and P2, the better. The
last column of the table is the average value of multiple groups of actions. Cause
and effect represent cause and effect PSM, which takes the previous frame as
input, rather than cause and effect represents PSM, and the input data includes
future frames. The best result in the table is shown in bold, and the second-best
result is shown in the underline. It can be seen from the table that non-causal
PSM achieves better results than causal PSM. Our method ranks first in most
actions and second in some actions.

Table 2. The value of P2 on Human3.6m dataset

Dir Disc Eat Greet Phone Photo Pose Purch Sit Smoke Wait Walk Avg

Fang et al. AAAI
(2018) [8]

38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 47.2 44.3 36.7 45.7

Yang et al. CVPR
(2018) [31]

26.9 30.9 36.3 39.9 43.9 47.4 38.8 29.4 36.9 41.5 30.5 42.5 37.7

Pavllo et al. CVPR
(2019) [21]

45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 47.1 44.0 32.8 46.8

Wu et al. AAAI
(2020) [29]

32.1 36.2 33.9 41.2 37.4 40.6 30.7 33.4 45.0 37.4 38.8 25.7 37.3

Ours, causal 33.1 39.0 33.2 36.8 39.9 40.9 31.2 32.3 43.7 37.0 35.9 26.1 35.7
Ours, non-causal 32.7 38.6 32.9 35.3 39.8 39.5 30.9 31.9 42.2 36.8 35.2 25.7 35.2
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Comparison Results on HumanEVA Dataset. We conducted experiments
in the HumanEVA dataset to prove the effectiveness of our framework on small-
scale datasets. Three participants were selected as test subjects, S1, S2, and
S3. Then, using the two-dimensional attitude detector HRNet, multiple actions
(MA) and single action (SA) strategies are selected for experiments. As can be
seen from Table 3, our framework has generally achieved good results on P2.
Especially in the case of MA, the best results are obtained.

Table 3. Comparative experiments on the HumanEVA dataset

Subjects Walk(S1) Walk(S2) Jog(S1) Jog(S2) Box(S1) Box(S2)

Martinez et al. (SA) [17] 19.7 17.4 26.9 18.2 - -
Lee et al. [11] 18.6 19.9 25.7 16.8 42.8 48.1
Pavllo et al. (SA) 14.5 10.5 21.9 13.4 24.3 34.9
Pavllo et al. (MA) 13.9 10.2 20.9 13.1 23.8 33.7
ours(SA) 12.6 10.0 18.6 13.4 24.1 30.4
ours(MA) 12.4 9.8 18.2 11.4 21.8 29.4

5 Conclusion

The framework proposed in this paper is multi-stage, which is used to realize
3D human pose estimation in monocular video. First, obtain the 2d pose of the
human body from the video, and then use the 2d pose to predict the 3d pose.
Our model adopts PSM, which can realize the sequence modeling of 2d to 3d
pose. PSM is an encoded second structure, which makes full use of the multi-
level features extracted by a fully convolutional neural network and LSTM. In
addition, since our framework is multi-stage, we can use different 2D detectors
to improve performance. Compared with the corresponding baseline methods,
our method has achieved good results on HumanEVA and Human3.6m datasets.
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