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Abstract
A new multi-stage perturbed differential evolution (MPDE) is proposed in this paper. A new mutation strategy ‘‘multi-

stage perturbation’’ is implemented with directivity difference information strategy and multiple parameters adaption. The

DE/current-to-pbest is introduced to increase the population diversity while remaining its elitist learning behavior in this

architecture. The multi-stage perturbation-based mutation operation utilizes the Normal random distribution with

adjustable variance to perturb the chosen solutions. Multiple parameters are adaptively adjusted to appropriate values to

match the current search status of algorithm. It is thus helpful to enhance the performance and the robustness of algorithm.

Simulation results show that the newly proposed MPDE is better than, or at least comparable to CLPSO, SPSO2011,

NGHS, jDE, CoDE, SaDE and JADE algorithms in terms of optimization performance based on CEC2015 benchmark

function.

Keywords Multi-stage perturbation � Multiple parameters adaption � Directional difference � Differential evolution �
Evolutionary optimization

1 Introduction

Differential Evolution (DE) is a stochastic search method,

which has emerged as one of the most competitive evolu-

tionary computing algorithms and has been successfully

applied to solve many numerous real-world problems from

diverse domains of science and technology (Das and

Suganthan 2011; Zhao et al. 2013). As other evolutionary

algorithms such as PSO (Zhao et al. 2016a, b; Zhao et al.

2014; Khan et al. 2016), the performance of DE depends

mainly on mutation strategy and the parameters setting. An

effective mutation strategy is used for increasing the

individual generation and explore the search space. In

many cases main control parameters of DE algorithms

(population size, scaling factor F, and crossover rate CR)

also have important influence on the performance of DE

(Yu et al. 2014). As we know, appropriate settings of these

parameters perform well with a balanced exploratory and

exploitation capability to avoid being trapped in local

optimum (Das et al. 2016; Shukla et al. 2017; Suresh and

Lal 2017). Therefore, it is necessary to adopt an effective

mutation strategy and a well matched control parameters

for the desired results. There are already many existing

classical operations for three main control parameters and

their changing mechanisms for a better performance.

However, it is not sufficient for multi-modal problems

during different stages of search process. For example, the

diversity is more important than the convergence speed in

the first half search stage and vice versa. So it is necessary

to propose the multi-stage perturbed strategy and the multi-

parameter adaption mechanism.

It is of interest to remain the large proportion of popu-

lation diversity in the first half process to enhance the

exploring ability for the swarm optimization algorithms.

On the contrary, accelerating the convergence speed of the
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algorithm is necessary in the latter process to improve the

exploitation ability of swarm intelligence. In the middle

search stage of algorithm, exploration and exploitation

should be considered simultaneously. The improved DE

variants with changing population diversity have shown

more efficient and more reliable convergence performance

than the classic DE algorithms (Qin and Suganthan 2005;

Brest et al. 2006, 2007; Mohamed 2017; Zhou et al. 2016).

Several adaptive algorithms (Teo 2006; Cui et al. 2016;

Fan and Yan 2016; Wu et al. 2016a, b; Ali et al. 2017) are

developed based on the classic DE/rand/1 which is known

to be the most widely considered DE mutation strategy.

Others simultaneously implement DE/rand/1 and one or

more greedy DE mutations, such as DE/current-to-best/1,

to dynamically update their probabilities of being used to

generate offspring (Yi et al. 2016; Zhao et al. 2016a, b;

Wang and Tang 2016; Cui et al. 2018; Huang et al. 2006,

Brest et al. 2006). Until now, there are also some diffi-

culties to develop a greedy DE variant (e.g. DE/current-to-

best/1 and DE/best/1) that utilizes the elitist information of

the best solution(s) in the current population. The reason

seems to be straightforward: a greedy variant is usually less

reliable and may lead to premature convergence, especially

for multimodal problems (Mendes et al. 2006). However,

the elitist information of the best individuals is crucial to

algorithm. How to deal with this dilemma? In order to

develop the currently best solution-based mutation strat-

egy, an improved current-to-pbest strategy is proposed by

Yang et al. (2008) and Zhang and Sanderson (2009).

In view of the above considerations, a new mutation

strategy, ‘‘DE/current-to-p-pbest’’ with multi-stage pertur-

bation, directivity difference strategy and multiple parame-

ters adaption are presented to dynamically adjust the

population diversity on the basis of the elitism learning. As a

generalization of DE/current-to-best, DE/current- to-pbest

utilizes the information of both the current best solution and

the other excellent solutions (Zhang and Sanderson 2009).

Classic DE is incapable of adjusting the balance of

exploratory and exploitation freely with one scaling factor

F only in different search stages. Therefore, multiple

parameters adaption strategy with two decoupled scaling

factors is designed for precisely balancing of exploration and

exploitation, in which one parameter mainly adjusts the

population diversity and the other one mainly adjusts the

convergence speed to adapt the search stage.

To be specific, any of the top 100p% solutions, p [ (0,

1], can be chosen in DE/current-to-pbest strategy to be a

possible alternative choice besides the best solution in

traditional DE/current-to-best. In addition, the random

selected pbest solution is perturbed with a normal random

distribution with different variance in different search

stages of algorithm, which aims to diversify the elitist

neighborhood slightly and to decrease its greedy property

simultaneously. The proposed multi parameters adaption

strategy is also able to diversify the population during the

search process so that the problems such as premature

convergence can be alleviated.

The rest of the paper is organized as follows. In Sect. 2,

the basic DE operations are presented. The related works

on typical DE variants are described in Sect. 3. Section 4

proposes the new algorithm (MPDE) using multi-stage

perturbation, directivity difference mechanism and multi

parameters adaption. Section V firstly considers the effect

of the parameters cooperation on algorithm. Then com-

prehensive empirical evaluation of MPDE is conducted

with several state-of-the-art DE variants and other evolu-

tionary algorithms based on IEEE CEC2015 benchmarks.

Section 6 concludes the paper with a analytic discussion.

2 Differential evolution

This section briefly describes the fundamental operations

of DE algorithm (Wu et al. 2016a, b). Similar to other

evolutionary algorithms, the solution space of DE algo-

rithm contains three elements: dimensionality, individual

and population. The individual vector Xi = [X1, …, XD],

(i = 1, 2, …, N) represents a candidate solution vector,

where D is the dimensionality of the target problem, and

N is the population size. At the beginning of the search, the

individual vectors are usually initialized in the search space

randomly. After initialization, DE enters a loop of evolu-

tionary operations: mutation, crossover, and selection

which drive the candidate solutions towards more and more

competitive solutions.

2.1 Main operations of DE

At each generation G, DE generates a mutant vector for

each individual Xi
G (called a target vector) in the current

population.

VG
i ¼ VG

i;1;V
G
i;1. . .. . .;V

G
i;D

h i
i ¼ 1; 2; � � � ; N ð1Þ

Several widely used DE mutation strategies are shown

as follows.

• DE/rand/1

Vi ¼ Xr1 þ FðXr2�Xr3Þ ð2Þ

• DE/rand/2

Vi ¼ Xr1 þ FðXr2 � Xr3Þ þ FðXr4 � Xr5Þ ð3Þ

• DE/best/1

Vi ¼ Xbest þ FðXr2 � Xr3Þ ð4Þ
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• DE/current-to-best/1

Vi ¼ Xi þ FðXbest � XiÞ þ FðXr2 � Xr3Þ ð5Þ

• DE/rand-to-best/1

Vi ¼ Xr1 þ FðXbest � Xr3Þ þ FðXr4 � Xr5Þ ð6Þ

The indices r1, …, r5 are randomly selected from [1, N]

such that they differ from each other as well as i; Xbest is

the best individual in population. Parameter F = (0, 1]

controls the magnitude of the differential mutation

operation.

Binomial Crossover, the most commonly used crossover

operator in DE, is implemented as follows:

UG
i;j ¼

VG
i;j; rand�CR or j ¼ jrand

XG
i;j; otherwise

�
ð7Þ

where rand denotes a uniformly selected random number

in [0 1], and jrand represents a random integer in [1, N],

which ensures that the trial vector gets at least one com-

ponent from the mutant vector. CR is the crossover prob-

ability, which controls the portion of mutant vector that are

copied to the trial vector in process.

After all of the trial vectors Ui
G (0 B i B N) have been

generated, a selection process determines the survivors for

the next generation. The fitness of each trial vector is

compared with its corresponding target vector in the cur-

rent population. Finally, the vector with better fitness enters

the next generation. The above three basic steps are repe-

ated until some specific termination criteria are met and a

final candidate solution is obtained.

3 Related works

DE has undergone a significant progress since it is pre-

sented. A large number of DE variants have been proposed

to improve the performance of traditional DE. There have

been many research works which pay attention to self-

adapt the selection of the mutation strategy, as well as the

control parameter values (Zhang et al. 2017; Zhou et al.

2017). In this part, we briefly review several state-of-the-

art DE variants.

3.1 jDE

jDE is based on the classic DE/rand/1/bin proposed by

Brest et al. (2006). Similar to other schemes, jDE assigns a

different set of parameter values Fi and CRi to each Xi,

which is associated with trial vectors. Initially, the

parameters for all individuals i are set to Fi = 0.5, CRi =-

0.9. jDE modifies parameters for Fi and CRi according to

uniform distributions on pre-specified range, respectively.

It is believed that better parameters tend to generate more

competitive individuals to survive and thus these parame-

ters should be kept as the beneficial heuristic information

for the next generation.

3.2 SaDE

Qin and Suganthan (2005) proposed SaDE with two

mutation strategies ‘‘DE/rand/1’’ and ‘‘DE/current-to-best/

1.’’ SaDE uses a memory of past search behaviors in order

to self-adapt the crossover strategies and parameters. In

each generation, the value of F for each individual Xi is

randomly assigned by a normal distribution randn(0.5 0.3),

and does not adapt during the search. In contrast, the

crossover probabilities are randomly generated according

to an independent normal distribution randn(CRmk 0.1). On

the contrary of Fi, CRi values remain fixed to adapt to

proper values for five generations before updating.

3.3 JADE

JADE (Zhang and Sanderson 2009) is a very competitive

DE variant which employs well-adapted parameters. In

addition to parameter adaptation, JADE also uses a novel

mutation strategy called current-to-pbest/1 and an external

archive for storing previously generated individuals.

Instead of a static crossover rate CR and scaling factor F,

JADE has two corresponding, adaptive variables, lCR and

lF. The crossover rate and scaling factor associated with

each individual are generated according to a normal/Cau-

chy distribution with means lCR and lF. At the end of

each generation, the values of lCR and lF are updated

according to the CR and F pairs in those generations of the

successful trial vectors being obtained. During the search

progress, lCR and lF are possible to gradually adapt to the

most competitive parameters setup.

3.4 CoDE

CoDE (Wang et al. 2011), another competitive self-adap-

tive DE variant, does not adapt its parameters setting, but

randomly selects parameters from a predefined set. More

specifically, at each generation, CoDE randomly combines

3 hand-selected mutation strategies (rand/1/bin, rand/2/bin,

current-to-rand/1) with 3 hand-selected [F; CR] pairs ([1:0;

0:1], [1:0; 0:9], [0:8; 0:2]). Three trial vectors are generated

for each individual and the best one remained.

3.5 EPSDE

EPSDE (Mallipeddi et al. 2011) takes advantage of 3

separate pools to achieve self-adaptation, including the

mutation strategy, parameters F, and CR. The mutation

strategy pool contains rand/1/bin, best/2/bin and current-to-
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rand/1. The parameter F pool stores the values between

[0.4; 0.9] in 0.1 increment, and the CR pool includes the

values between [0.1; 0.9] in 0.1 increment. At the begin-

ning of search, each individual is randomly assigned values

from F and CR pools and selected a mutation strategy from

the strategies pool. During search, successful parameter

sets that result better individuals are inherited and used in

the next generations. On the contrary, those parameter sets

that fail to obtain better offspring are reinitialized.

3.6 SHADE

Success-History based Adaptive DE (SHADE), proposed

by Tanabe and Fukunaga (2013), is an enhancement to

JADE which uses a successful history-based parameter

adaptation scheme. Instead of generating new control

parameters based on some distribution around a single pair

of parameters lCR and lF, it uses a historical memory

MCR and MF which stores a set of CR and F values with

better performance in the past. Then new CR and F pairs

are generated by directly sampling from the parameter

space of those stored pairs.

4 Multi-stage perturbed DE

In this section, mutation strategy ‘‘DE/current-to-pbest’’ is

modified with multi-stage perturbation, directivity differ-

ence strategy and multiple parameters adaption.

4.1 DE/Current-to-pbest

The mutation strategy DE/current-to-pbest aims to keep the

fast convergence but less premature (Zhang and Sanderson

2009). Compared with mutation strategies DE/rand, greedy

strategies, such as DE/current-to-best and DE/best, benefit

from their fast convergence by incorporating best solution

information during the evolutionary search. However,

excessive best solution information may also cause such

problems as premature convergence due to the resultant

reduced population diversity.

In DE/current-to-pbest/1, a mutant vector is generated in

the following manner:

VG
i ¼ XG

i þ F XG
pbest

� XG
i

� �
þ F XG

r1
� XG

r2

� �
ð8Þ

where X pbest
G is randomly chosen from one of the top

100p% individuals in the current population with p [ (0, 1],

and F is the scale factor that is associated with FES. It is re-

generated according to the searching process requirement

introduced later in Section C. DE/current-to-pbest is a

generalization of DE/current-to-best. Any of the top

100p % solutions can be randomly chosen to play the role

of the single best solution in DE/current-to-best.

4.2 Multi-stage perturbed and directivity
difference strategy

The multi-stage perturbed and directivity difference strat-

egy operations are simply designed to avoid the significant

premature convergence due to the resultant reducing pop-

ulation diversity. The new mutation strategy is shown as

follows.

p�pbest ¼ Nðpbest; rÞ ð9Þ

VG
i ¼ XG

i þ F XG
p�pbest

� XG
i

� �
þ F XG

r1
� XG

r2

� �
ð10Þ

where r is a function of iteration/generation number G. It is

used to measure the perturbing uncertainty around the

pbest individual. The following formula describes the

update model of r:

Algorithm I: Directivity difference vector construction

211 ; 2 ;rrtemp X temp X= =

If ( 1) ( 2)f temp f temp>
1; 1 2; 2 ;temp temp temp temp temp temp= = =

End If
If 0.8 maxG G≥ ⋅

( ) ( 1 2)
p pbest

G G G G
i i iV X F X X F temp temp

−
= + ⋅ − + ⋅ −

End If

r ¼
r1; G\a1 � maxG
r2; a1 � maxG\G\a2 � maxG
r3; G[ a2 � maxG

8<
: ð11Þ

where r1[ r2[ r3 are the variance parameters of the

Gaussian disturbance amplitude. a1\ a2 are the parame-

ters of controlling radius. Parameter maxG represents the

maximal generation number. Normal random distribution

is more suitable for the exploitation stage owing to its

narrow sampling range, while the introduced parameter r
suffices to balance exploitation and exploration. At the

early process of offspring generation, large value of r will

promote the individuals to perturb around the pbest for

exploration with a larger range. This operation provides a

simple and efficient parallel search on multiple path. When

evolution process arrives at the middle stage, the perturbed

strategy will ensure algorithm search around a smaller

neighborhood of pbest with small value r, making the

current solution almost no longer jump out from a

promising area. At the end evolution stage r is set very
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small value (tends to zero) to make the current solution

learn from the pbest and exploration at a very local

neighborhood. It is probably to guarantee the algorithm a

good convergence.

Difference vector (Xr1
G – Xr2

G ) is the core idea strategy of

DE (Cui et al. 2016; Fan and Yan 2016), and is the most

widely used scheme in the literature (Zhang and Sanderson

2009). However, the directivity of difference vector

between Xr1
G and Xr2

G doesn’t explicitly indicate. In fact, the

directivity difference between Xr1
G and Xr2

G does have

important effects on algorithm in theory own to the

potential learning mechanism from the better examples in a

certain range. It is well-known that difference vector (Xr1
G –

Xr2
G ) is good at strengthening the population diversity.

However, the beneficial heuristic information from the

better solution needs to draw more attention, especially at

the last evolutionary search stage. Based on the analysis, it

is essential to introduce a directivity difference vector

based mutation strategy. Firstly, the fitness values of Xr1
G

and Xr2
G are compared and then the difference vector is

constructed whose direction is from the worse solution to

the better one. This operation only occurs at the latter

search stage according to Algorithm I.

4.3 Analysis of multi-parameter settings

As we know the performance of DE not only associates

with three basic operations but also the control parameters.

Choosing suitable control parameter values is usually a

crucial task. In this section, a new parameter tuning

approach is proposed. It can be observed that PID (pro-

portion, integral, derivative) and DE have something in

common (Moharam et al. 2016). The proportion part rep-

resents the current particle Xi
G. The integration in PID and

the mutation vector (Xp-pbest
G – Xi

G) are equivalent which

means the error reducing to minimum with time going. The

derivative item in PID is used for predicting the change

trend of error, which can restrain beyond the domain.

However, the difference vector (Xr1
G – Xr2

G ) of DE also

predicts the search direction of solutions. In theory, pop-

ulation diversity should be paid more attention at the first

half of search. But at the second half stage the directivity

vector is more crucial to predict the optimal direction and

weaken the effect of diversity. For this reason, Eq. (12) is

used for mutation strategy. Two parameters F1 and F2

imitating PID control method are used to adjust the

mutation operation, which is shown as follows.

VG
i ¼ XG

i þ F1 XG
p�pbest

� XG
i

� �
þ F2 XG

r1
� XG

r2

� �
ð12Þ

F1, F2 and CR are calculated according to the following

equations.

F1 ¼ k1 � uðG; g1Þ
F2 ¼ k2 � uðG; g2Þ
CR ¼ k3 � uðG; g3Þ

8><
>:

ð13Þ

where uðG; gÞ ¼ 1 � gð
G

maxG
Þ, g is used for adjusting the

changing range of parameters. ki (i = 1,2,3) are the initial

values of parameter F and CR. The difference vector (Xp-

pbest
G – Xi

G) is described as a learning direction from the

current solution to the perturbed pbest solution. The larger

value of parameter F1 contributes to the quicker conver-

gence. The difference vector (Xr1
G – Xr2

G ) is introduced for

adapting the search trajectories diversity. The large value

of F2 benefits to the global exploration in the search space

at the first stage of algorithm. On the contrary, with the

evolution of algorithm going on, the value of F2 is reduced

by probability which promise the searching around the

current relative better neighborhood. At the end stage of

algorithm, the small value of F2 can guarantee the current

promising solutions to continue search around the com-

petitive neighborhood. The algorithm can compromise the

fast convergence rate and population diversity at the same

time when tuning F1 and F2 cooperatively. Both of them

are executed at the individual level. The appropriate choice

of parameters and cooperation lead to more competitive

individuals and even better performance of algorithm as a

result. So, it is necessary to introduce an adaptive pertur-

bation operation for the balanced exploration and

exploitation from the multiple perturbation operation.

5 Experimental results and analysis

In this section, fifteen benchmark functions proposed in the

CEC 2015 special session on real-parameter optimization

were used to study the performance of the algorithms. A

detailed description of the test instances can be found in

Liang et al. (2014), which can be divided into four classes:

1. unimodal functions f1–f2;

2. simple multimodal functions f3–f5;

3. hybrid functions f6–f8;

4. composition functions f9–f15.

5.1 Parameter analysis of multi-parameter DE

Multi-stage perturbed strategy with multi-parameter adap-

tion introduces two parameters k and g to F1, F2 and CR

which elaborate determine the greediness of between the

mutation strategy and the population diversity. k is the

initial value and g controls the changing range of param-

eters which dynamically are adjusted with the algorithm

going on. It is believed that both groups of parameters are
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ingenious controlling the compromise of diversity and

greediness according to their roles in multi-stage pertur-

bation with multi-parameter adaption. It is thus an advan-

tage over the only one parameter selection (F) in the classic

DE. However, it is still interesting to find a reasonable

range for these parameters which is appropriate for dif-

ferent problems (Fig. 1).

As shown in Fig. 1, the mean best values are plotted for

multi-stage perturbed and multi-parameter DE with dif-

ferent parameters combinations: k1, k2,k3[{0.1, 0.2, 0.4,

0.5, 0.7, 0.9, 1} with g1,2,3 = 0.9. As expected, a small

value of k1 (e.g., k1 5 0.1 * 0.3) or k2, k3 (e.g., k2,

k3 5 0.1 * 0.3) may lead to less satisfactory results in

some cases. The small value of k1 causes slow convergence

due to the insufficient best solution information to influ-

ence the mutant vector, while small values of k2 and k3 are

possible to result in the scarce of population diversity. On

the other hand, large initial value of k1 is good at

improving the convergence. In the same way large values

of k2 and k3 enhance population diversity. It hopes that

MPDE performs better than or competitive to other algo-

rithms in a compromise range for k1 and k2, k3. Specifi-

cally, it shows that multi-stage perturbed DE with multi-

parameter works best when k1 = 0.81 with g1 = 0.99, k2,

k3 = [0.75, 0.95] with g2,3 = [0.25, 0.95] and r1 = 0.0001,

r2 = 0.000095, r3 = 0.000002 after empirical analysis.

For example, the function f3 is a simple multimodal and

non-separable function with only one peak valley. It

doesn’t need maintain too much greedy diversity of the

population to find the best solution. As shown in Fig. 2 and

Table 1 small values of k2, k3 [ [0.01, 0.8 * 0.95] with

g2,3 = [0.99, 0.99] can achieve best solution superior to

other four methods. Compared with jDE, it uses one

parameter F only, so tuning parameter F in jDE may not be

cooperative to improve the performance. These considered

parameters scale the difference vectors and accordingly

adjust the diversity of the search trajectories to some

extent.

The effect of the initial values of F2 and CR is inves-

tigated during the parameter tuning process. According to

Fig. 1 Mean of the best-so-far function values of f3 with parameters

combination

Fig. 2 Comparison results of five algorithms on f3

Table 1 Comparison results on

function f3
MPDE JADE CoDE SaDE jDE

f3 Best 3.2000E 1 02 3.2008E ? 02 3.2040E ? 02 3.2040E ? 02 3.2021E ? 02

Mean 3.2000E 1 02 3.2013E ? 02 3.2052E ? 02 3.2050E ? 02 3.2026E ? 02

Std 2.6593E 2 05 2.3645E - 02 4.5601E - 02 3.9075E - 02 2.4778E - 02

Fig. 3 Contour map of f3 with parameters variation
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Table 2 Experimental results of MPDE, JADE, CoDE, SaDE, and jDE for CEC’15 benchmarks

Item MPDE JADE CoDE SaDE jDE

f1 Best 1.0000E 1 02 1.0000E ? 02 1.0185E ? 02 3.8865E ? 03 5.6309E ? 02

Mean 1.0000E 1 02 1.0000E ? 02 2.5714E ? 02 3.7006E ? 04 7.2428E ? 03

Std 3.1481E 2 01 3.9564E - 01 2.3501E ? 02 3.3851E ? 04 8.2850E ? 03

W-test & ? ? ?

f2 Best 2.0000E 1 02 2.0000E ? 02 2.0000E ? 02 2.0372E ? 02 2.0000E ? 02

Mean 2.0000E 1 02 2.0000E ? 02 2.0000E ? 02 1.4052E ? 03 2.0000E ? 02

Std 9.0000E - 06 3.0583E - 14 1.8280E - 05 1.2662E ? 03 6.5203E - 15

W-test & & ? &

f3 Best 3.2019E ? 02 3.2008E 1 02 3.2040E ? 02 3.2040E ? 02 3.2021E ? 02

Mean 3.2053E ? 02 3.2013E 1 02 3.2052E ? 02 3.2050E ? 02 3.2026E ? 02

Std 3.5908E - 02 2.3645E 2 02 4.5601E - 02 3.9075E - 02 2.4778E - 02

W-test – & & –

f4 Best 4.0895E 1 02 4.1525E ? 02 4.7171E ? 02 4.1790E ? 02 4.2130E ? 02

Mean 4.2049E 1 02 4.2162E ? 02 5.0498E ? 02 4.3054E ? 02 4.2944E ? 02

Std 3.0868E 1 00 4.1943E ? 00 1.2764E ? 01 5.8644E ? 00 4.7115E ? 00

W-test ? ? ? ?

f5 Best 1.3266E ? 03 1.2634E 1 03 3.7496E ? 03 3.0574E ? 03 2.1805E ? 03

Mean 2.5381E ? 03 1.8929E 1 03 4.7614E ? 03 3.7024E ? 03 2.5162E ? 03

Std 3.4846E ? 02 2.4744E 1 02 3.4892E ? 02 2.8152E ? 02 2.1718E ? 02

W-test – ? ? –

f6 Best 6.2309E 1 02 8.4604E ? 02 8.1341E ? 02 6.8086E ? 02 6.7700E ? 02

Mean 7.0704E 1 02 1.7058E ? 03 1.4448E ? 03 1.5588E ? 03 1.1160E ? 03

Std 7.7469E 1 01 4.4118E ? 02 2.7397E ? 02 5.8407E ? 02 2.9419E ? 02

W-test ? ? ? ?

f7 Best 7.0110E 1 02 7.0579E ? 02 7.0631E ? 02 7.0435E ? 02 7.0595E ? 02

Mean 7.0313E 1 02 7.0683E ? 02 7.0846E ? 02 7.0708E ? 02 7.0677E ? 02

Std 6.1828E 2 01 5.8256E - 01 1.2109E ? 00 1.2245E ? 00 4.8659E - 01

W-test ? ? ? ?

f8 Best 8.0170E 1 02 8.4659E ? 02 8.3089E ? 02 8.1363E ? 02 8.1547E ? 02

Mean 8.2735E 1 02 9.3794E ? 03 1.0240E ? 03 9.1250E ? 02 8.9346E ? 02

Std 2.9952E 1 01 2.7392E ? 04 1.2837E ? 02 7.4167E ? 01 6.5809E ? 01

W-test ? ? ? ?

f9 Best 1.0018E 1 03 1.0021E ? 03 1.0032E ? 03 1.0022E ? 03 1.0022E ? 03

Mean 1.0021E 1 03 1.0030E ? 03 1.0035E ? 03 1.0025E ? 03 1.0025E ? 03

Std 1.6344E 2 01 2.5411E - 01 1.7392E - 01 1.6386E - 01 1.6379E - 01

W-test ? ? & &

f10 Best 1.1601E 1 03 1.4972E ? 04 1.1892E ? 03 1.2627E ? 03 1.4381E ? 03

Mean 1.2984E 1 03 1.3602E ? 04 1.3605E ? 03 1.7324E ? 03 1.6954E ? 03

Std 1.0296E 1 02 3.8508E ? 04 9.7925E ? 01 5.3201E ? 02 8.8426E ? 01

W-test ? ? ? ?

f11 Best 1.4002E ? 03 1.4011E ? 03 1.4000E 1 03 1.4011E ? 03 1.4007E ? 03

Mean 1.5202E ? 03 1.5244E ? 03 1.4107E 1 03 1.5234E ? 03 1.4554E ? 03

Std 4.2235E ? 01 6.1728E ? 01 3.0786E 1 01 1.0274E ? 02 5.0561E ? 01

? – ? –

f12 best 1.2933E 1 03 1.3043E ? 03 1.3068E ? 03 1.3039E ? 03 1.3045E ? 03

mean 1.3033E 1 03 1.3059E ? 03 1.3076E ? 03 1.3048E ? 03 1.3055E ? 03

std 4.5728E 2 01 5.0511E - 01 6.0840E - 01 4.9849E - 01 6.0840E - 01

W-test ? ? ? ?
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experimental studies, the initial value of F2 has effect on

the performance of the algorithm, and a moderate to large

initial value is recommended for CR, especially for non-

separable functions. For example, the success rate of

JADE, CoDE, SaDE and jDE are less satisfactory when

optimizing f6, f7 and f8. It implies that they are incapable of

maintaining sufficiently high population diversity due to

the hybrid benchmark functions contain different proper-

ties for different variables subcomponents. Comparatively

speaking, MPDE achieves remarkably better performance

in terms of optimization and reliability. It indicates a

mutually beneficial cooperation between the greedy strat-

egy ‘‘multi-stage perturbed’’ and the multi-parameter tun-

ing. In fact, a greedy mutation strategy may affect the

population diversity in two opposite directions: it tends to

decrease the diversity by moving individuals closer to a

few best solutions. A greedy mutation strategy usually

leads to premature convergence in classic DE algorithms

without multi-parameter tuning, because the result of

diversity decreasing of the former strategy plays the

important role. However, the multi-parameter tuning

scheme is able to tune different parameters to appropriate

values and thus improve the optimizing progress along the

promising direction. Thus, the effect of the latter strategy is

capable of balancing the former strategy on diversity

decreasing and the performance of the algorithm is

improved (Fig. 3).

5.2 Comparison with the state-of-the-art DEs

In the experimental studies, MPDE is compared with four

classical adaptive DE variants JADE, CoDE, SaDE and

jDE. For fair comparison, for each algorithm and each test

function, 30 independent runs are conducted with 600,000

function evaluations (FES) as the termination criterion.

Dimension D is 30. The population size is 100, the

parameters p = 0.05 for top 100% best individuals chosen

in all simulations. For clarity, the best results of algorithms

are marked boldface.

The mean and the standard deviation of the results

obtained by each algorithm for f1–f15 are summarized in

Table 2. The ‘?’, ‘-’ and ‘&’ indicate whether MPDE

performs significantly better (?), significantly worse (2),

or comparably (&) when comparing with the competitors

according to the Wilcoxon rank-sum test (significance level

a = 0.05). For convenience of illustration, the evolutionary

convergence curves of the mean best values for f1–f15 are

plotted in Fig. 4, because these curves provide more online

information than best and media values. It is helpful to

illustrate the spread of results over 30 independent runs.

It can be observed from Fig. 4 and Table 2 that the best

solutions have high convergence rate and robust reliability.

First, these results suggest that the ability of finding the

best solutions of the presented MPDE ranks the first or the

second highest for most of the CEC2015 benchmarks. f3 is

a simple multimodal and non-separable function with only

one peak valley and all four methods almost obtain the

same final results. The parameters F1, F2 and CR are more

compromise for obtaining well performance for all differ-

ent functions. It is clear that parameter F1 being 0.8 is not

sufficient for learning from the best particle. At the same

time parameters CR and F2 afford much more diversity

which affect the particle’s search behaviors. The similar

phenomenon occurs to f11 for the performance of

Table 2 (continued)

Item MPDE JADE CoDE SaDE jDE

f13 Best 1.3790E 1 03 1.3902E ? 03 1.4073E ? 03 1.4046E ? 03 1.3878E ? 03

Mean 1.3840E 1 03 1.3941E ? 03 1.4119E ? 03 1.4078E ? 03 1.3950E ? 03

Std 2.5494E ? 00 2.7899E ? 00 2.0853E ? 00 2.0000E ? 00 2.7890E ? 00

W-test ? ? ? ?

f14 Best 3.2479E 1 04 3.2580E ? 04 3.2479E 1 04 3.2976E ? 04 3.2563E ? 04

Mean 3.3141E ? 04 3.3378E ? 04 3.2586E 1 04 3.3583E ? 04 3.3548E ? 04

Std 3.0934E 1 03 8.7476E ? 03 4.6641E ? 03 5.5556E ? 03 9.4051 E ? 03

W-test ? – ? ?

f15 Best 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03

Mean 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03

Std 7.2803E - 09 0 3.4566E - 10 1.8069E - 13 0

W-test & & & &

? 10 10 12 9

– 2 2 0 3

& 3 3 3 3
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algorithms. Multi-stage perturbed multi-parameter MPDE

has almost the best or similar convergence rate for most of

the functions, which are either unimodal or multimodal,

hybrid or composition. Most of all benchmarks, especially

for f6–f10 and f12, f13, MPDE achieves significant domi-

nance to its competitors. The performance reliability and

robustness of five algorithms are almost the same in

functions f15.

It can be seen that MPDE is better than other four

algorithms on hybrid multi-modal and composition func-

tions with a huge of local optima. The high reliability and

optimization ability of MPDE stems from multiple

parameters adaption, guided direction information utiliza-

tion and the proposed diversity maintaining strategy, i.e.,

multi-stage perturbed mutation operation. MPDE works

well on unimodal functions f1, f2 and multi-modal functions

f4, f6 because its underlying mutation strategy is compro-

mise between diversity and convergence rate. The other

algorithms are worse than MPDE and JADE in terms of the

best solution for function f1. It is clear that MPDE works

best or second best in most cases and achieves overall

better performance than other state-of-the-art algorithms.
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Table 3 Experimental comparison among MPDE, CLPSO, SPSO2011, and NGHS for CEC’15 benchmarks

MPDE CLPSO SPSO2011 NGHS

f1 Best 1.0000E 1 02 1.6193E ? 06 1.0861E ? 05 1.6543E ? 03

Mean 1.0000E 1 02 3.6271E ? 06 2.4201E ? 05 1.5642E ? 04

Std 3.1481E 2 01 9.2366E ? 05 9.4765E ? 04 9.9849E ? 03

W-test ? ? ?

f2 Best 2.0000E 1 02 2.0760E ? 02 2.0113E ? 02 2.2087E ? 02

Mean 2.0000E 1 02 2.3984E ? 02 1.1305E ? 03 3.9766E ? 03

Std 9.0000E - 06 2.8068E ? 01 8.3061E ? 02 3.6144E ? 03

W-test ? ? ?

f3 Best 3.2083E ? 02 3.2032E ? 02 3.2023E ? 02 3.1999E 1 02

Mean 3.2060E ? 02 3.2042E ? 02 3.2031E ? 02 3.2000E 1 02

Std 3.8908E - 02 3.8800E - 02 5.9500E - 02 2.4507E 2 05

W-test – – –

f4 Best 4.0895E 1 02 4.3082E ? 02 4.1989E ? 02 4.7064E ? 02

Mean 4.2049E 1 02 4.5140E ? 02 4.3389E ? 02 5.0531E ? 02

Std 3.0868E 1 00 7.7342E ? 00 8.7272E ? 00 2.3417E ? 01

W-test ? ? ?

f5 Best 1.3266E 1 03 2.5358E ? 03 2.5298E ? 03 2.3393E ? 03

Mean 2.6381E 1 03 2.9992E ? 03 3.3383E ? 03 3.1718E ? 03

Std 5.4846E ? 02 2.5181E 1 02 4.2438E ? 02 4.4570E ? 02

W-test ? ? ?

f6 Best 6.2309E 1 02 1.9148E ? 05 7.8790E ? 03 3.3375E ? 03

Mean 7.0704E 1 02 6.8612E ? 05 1.8182E ? 04 1.3059E ? 04

Std 7.7469E 1 01 2.9810E ? 05 6.7713E ? 03 1.1246E ? 04

W-test ? ? ?

f7 Best 7.0016E 1 02 7.0600E ? 02 7.1312E ? 02 7.0404E ? 02

Mean 7.0213E 1 02 7.0770E ? 02 7.1600E ? 02 7.0890E ? 02

Std 6.1828E 2 01 1.0027E ? 00 1.8136E ? 00 4.6207E ? 00

W-test ? ? ?

f8 Best 8.0170E 1 02 4.9942E ? 04 7.3921E ? 03 1.6416E ? 03

Mean 8.2735E 1 02 1.0616E ? 05 1.6019E ? 04 9.5464E ? 03

Std 2.9952E 1 01 3.8128E ? 04 5.2903E ? 03 1.0136E ? 04

W-test ? ? ?

f9 Best 1.0008E 1 03 1.0030E ? 03 1.0022E ? 03 1.0033E ? 03

Mean 1.0021E 1 03 1.0041E ? 03 1.0035E ? 03 1.0130E ? 03

Std 1.0344E 2 00 1.2771E ? 00 1.7350 E ? 00 4.1749E ? 01

W-test ? ? ?

f10 Best 1.1601E 1 03 7.4259E ? 04 1.3866E ? 04 2.6403E ? 03

Mean 1.2984E 1 03 2.1067E ? 05 3.5787E ? 04 9.8549E ? 03

Std 1.0296E 1 02 7.3237E ? 04 1.3210E ? 04 5.0305E ? 03

W-test ? ? ?

f11 Best 1.4005E 1 03 1.4185E ? 03 1.4030E ? 03 1.4016E ? 03

Mean 1.5102E ? 03 1.4298E 1 03 1.7170E ? 03 1.8350E ? 03

Std 5.2235E 1 01 7.7713 E ? 01 8.9309E ? 01 2.3330E ? 02

W-test – ? ?

f12 Best 1.3033E ? 03 1.3054E ? 03 1.3030E 1 03 1.3077E ? 03

Mean 1.3043E ? 03 1.3065E ? 03 1.3036E 1 03 1.3112E ? 03

Std 4.5728E - 01 4.9172E - 01 3.7731 E-01 1.8713E - 00

W-test ? – ?
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Generally speaking, MPDE performs significantly bet-

ter, worse than or comparably with JADE and CoDE on 10,

2 and 3 functions. MPDE performs significantly better,

worse than or comparably with SaDE on 12, 0 and 3

functions. MPDE performs significantly better, worse than

or comparably with jDE on 9, 3 and 3 functions.

5.3 Comparison with other evolutionary
algorithms

Besides the above comparison with state-of-the-art DEs,

MPDE is also compared with other evolutionary algo-

rithms, namely, CLPSO (Liang et al. 2006), SPSO (Zam-

brano-Bigiarini et al. 2013), and NGSH (Zou et al. 2010).

In CLPSO, particles are possible to learn from all the

personal best historical information according to some

probability distribution to update the flying velocity. SPSO

is a very efficient and well-known PSO milestone. NGHS

is an efficient fast convergence algorithm which combines

the smallest harmonic component and the optimal har-

monic component dimension by dimension for generating

the new harmonic vector. In the experiments, parameters of

MPDE are the same as the above experiments. Parameters

but FES of other algorithms refer to the relevant references

for fair comparison. Table 3 and Fig. 5 summarize the

experimental results.

Overall, MPDE significantly outperforms CLPSO,

SPSO2011, and NGHS. MPDE performs better than

CLPSO, SPSO2011, and NGHS on f1, f2, f4, f5, f6, f7 f8, f9,

f10, f13, respectively. CLPSO beats MPDE on two test

functions f3 and f11. SPSO2011 performs better than MPDE

on f3 and f12, and NGHS outperforms MPDE on one

function f3 only.

6 Conclusion and future work

In this paper, a ‘‘multi-stage perturbed DE/current-top-

pbest’’ strategy is proposed and the neighborhood infor-

mation of the best solutions is more effectively utilized. It

aims to reduce the greediness with a random perturbation

operation while elitist learning is remained. The multi-pa-

rameters adaption is implemented by evolving the mutation

factors and crossover probabilities according to the optimal

process execution. A directivity difference strategy is also

utilized as a guided direction toward the better individual.

Simulation results show that the newly proposed MPDE

algorithm is better than, or at least comparable to CLPSO,

SPSO2011, NGHS, jDE, CoDE, SaDE and JADE algo-

rithms on most of CEC2015 benchmarks in terms of

optimization performance.

It is expected that MPDE has the potential to serve as an

appropriate underlying scheme in which large scale opti-

mization (Cao et al. 2017) and multi-objective problem are

considered (Shang et al. 2012, 2016). In addition, it is

interesting to extend the multi-stage perturbation, multi-

parameter adaption and directivity difference strategies to

adaptive schemes. As far as these strategies, there are still

many open questions in incorporating these schemes to

other optimization problems.

Table 3 (continued)

MPDE CLPSO SPSO2011 NGHS

f13 Best 1.3810E 1 03 1.4002E ? 03 1.3975E ? 03 1.3868E ? 03

Mean 1.3940E 1 03 1.4050E ? 03 1.4049E ? 03 1.4008E ? 03

Std 4.5494E ? 00 1.9945E 1 00 5.0973E ? 00 6.8410E ? 00

W-test ? ? ?

f14 Best 3.2479E 1 04 3.2803E ? 04 3.2854E ? 04 3.2906E ? 04

Mean 3.3141E ? 04 3.3093E 1 04 3.4527E ? 04 3.5095E ? 04

Std 3.0934E ? 03 2.8709E 1 02 9.4692E ? 02 1.5148E ? 03

W-test – ? ?

f15 Best 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03

Mean 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03 1.6000E ? 03

Std 7.2803E - 09 1.1251E - 10 0 5.7616E - 13

W-test & & &

? 11 12 13

– 3 2 1

& 1 1 1
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