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Abstract— In this paper, firstly, the amplitude used in the
Enhanced Fireworks Algorithm (EFWA) is analyzed and its
lack of adaptability is revealed, and then the adaptive amplitude
method is proposed where amplitude is calculated according
to the already evaluated fitness of the individuals adaptively.
Finally, the Adaptive Fireworks Algorithm (AFWA) is proposed,
replacing the amplitude operator in EFWA with the new
adaptive amplitude. Some theoretical analyses are made to
prove the adaptive explosion amplitude a promising method.
Experiments on CEC13’s 28 benchmark functions are also
conducted in order to illustrate the performance and it turns
out that the AFWA where adaptive amplitude is adopted
outperforms significantly the EFWA and meanwhile the time
consumed is not longer. Moreover, according to experimental
results, AFWA performs better than the Standard Particle
Swarm Optimization (SPSO).

I. INTRODUCTION

A. Fireworks Algorithm

THE Fireworks Algorithm (FWA) [1] is a newly de-
veloped evolutionary algorithm. Like other evolution

algorithms, it also aims to find the vector with the best
(usually minimum) fitness in the search space. Inspired by
real fireworks, the main idea of the FWA is to use the
explosion of the fireworks to search the feasible space of
the optimization function, which is a brand new search
manner. Its initialization step is simple: choose some fire-
works randomly in the search space and evaluate their
fitness. Similar to other evolution algorithms, its iteration
contains two steps: breeding new individuals and selection.
In breeding, for each of the firework, it generates a certain
number of explosion sparks within a certain amplitude in an
explosion way and a certain number of Gaussian sparks along
the direction towards the origin. The explosion sparks are
generated randomly within the hypersphere with the firework
as its center and the amplitude as its radius. The explosion
amplitude and the number of explosion sparks of a firework
is calculated according to the fitness of it and other fireworks.
Then, all the sparks generated and the fireworks are selected
by their fitness and diversity. By iteration, the FWA gets
individuals with better and better fitness.

The Enhanced Fireworks Algorithm (EFWA) [2] is an
improved version of the FWA. In the EFWA, many operators
in the conventional FWA are improved or corrected, such
as the way explosion amplitude is calculated, the way new
explosion or Gaussian sparks are generated and the way of
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selection, etc. Hence, our improvement in this paper will be
applied to the EFWA rather than the FWA.

B. Other Related Works

As a newly proposed evolutionary algorithm, FWA was
tested on 35 functions with other 11 optimization algorithms
by Bureerat [3], and the performance of FWA was ranked 6th,
which is higher than Particle Swarm Optimization (PSO) and
Genetic Algorithm (GA). Some researches were conducted
to improve the performance of FWA [4] [5]. FWA was
also applied to multi-objective problems by Zheng et.al. [6].
K. Ding, S.Q. Zheng and Y. Tan [7] proposed a Parallel
Fireworks Algorithm based on GPU. Y. Zheng, X. Xu, and
H. Ling [8] proposed a hybrid algorithm combining FWA and
DE. Gao, Hongyuan, and Ming Diao [9] proposed a Cultural
Firework Algorithm (CFA), which combines the idea of Cul-
ture Algorithms and FWA. In the practical problem of Non-
negative Matrix Factorization [10] [11] [12], FWA turned out
to be efficient especially when the number of dimension is
large. Other applications of FWA were introduced in [13] and
[14]. Judging from its performance and application potential,
the FWA is a new promising algorithm.

C. Contribution

Both algorithms of FWA and EFWA remain to be im-
proved in many aspects. For example, neither way of cal-
culating the explosion amplitude in the two algorithms are
reasonable. Considering the explosion search in FWA and
EFWA, the amplitude is a very important factor influencing
the performance. In this paper, we first analyze their dis-
advantages and drawbacks, and reveal that their explosion
amplitudes are not adjusted properly.

To improve the mechanism of calculating the amplitude of
explosion in the FWA and the EFWA, an adaptive explosion
amplitude is proposed. We use the distance between the best
firework and a certain selected individual as the explosion
amplitude. We analyze the property of our adaptive amplitude
and proved that it can adjust itself adaptively according to
the search results. By applying adaptive explosion ampli-
tude to the EFWA, a new algorithm called the Adaptive
Fireworks Algorithm (AFWA) is proposed. To illustrate the
performance of the AFWA and confirm its advantage over
EFWA, some experiments are conducted on the CEC13’s
28 benchmark functions. From the results we draw the
conclusion that the adaptive explosion amplitude is effective
in enhancing the local search capability of the fireworks.
The AFWA not only beats EFWA, but also outperforms
SPSO2007 and SPSO2011 significantly.
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D. Synopsis

A brief introduction of the EFWA is presented in section
II. A review and analysis of the way explosion amplitudes are
calculated in the FWA and the EFWA is presented in Section
III. In Section IV, we propose the new adaptive amplitude
operator. In Section V, the Adaptive Fireworks Algorithm
is proposed. In Section VI, experimental environment and
results are illustrated. The analysis of the results and some
brief discussion are shown in Section VII. The conclusion is
drew in Section VIII.

II. FRAMEWORK OF THE EFWA

Same as the FWA and other evolutionary algorithms, the
structure of EFWA can be briefly divided into four main
parts:

1) Initialization
The algorithm chooses m points randomly in the search

space as the fireworks of the first generation.
2) Explosion
Each firework generates a certain number of sparks within

a certain amplitude. The sparks are generated randomly
within the hypersphere with the firework as its center and
the amplitude as its radius. Same as the FWA, the number
and amplitude are calculated according to their fitness. The
better a firework’s fitness is, the more sparks it generates and
the shorter its amplitude is, vice versa. If the location of a
spark generated is out of bound, it will be mapped into the
search space randomly, which is different from the FWA.

3) Mutation
A kind of so-called Gaussian mutation happens here. Each

firework stretches along the direction between the current
location of the firework and the location of the best firework
in the EFWA instead of along the direction toward the origin
in the FWA.

4) Selection
The best individual is always kept as the fireworks of

next generation. Other m−1 fireworks are randomly chosen
among the rest individuals in the EFWA.

The part 2), 3) and 4) are repeated until the termination
criteria is met, such as the evaluation times limit or a given
precision demand.

Judging from its structure, the EFWA is a typical evolu-
tionary algorithm. We will briefly introduce some operators
in the EFWA that we will use later. For convenience, we
unified all the notations.

Same as in the FWA, the numbers of explosion sparks of
fireworks are calculated as follows:

Ni = N̂ ⋅ f(X♯)− f(Xi)
m
∑

j=1

(f(X♯)− f(Xj))
(1)

where N̂ is a parameter controlling the overall spark num-
bers, Xi is the ith firework, X♯ stands for the firework
with the worst (maximum) fitness. In order to avoid the
overwhelming effects of fireworks at good locations, the
number of sparks is bounded by

Ni =







Nmin if Ni < Nmin

Nmax if Ni > Nmax

Ni otherwise
(2)

where Nmin and Nmax are the lower bound and upper bound
for the spark numbers.

Same as in the FWA, the explosion amplitudes of the
fireworks are calculated as follows:

Ai = Â ⋅ f(Xi)− f(X∗)
m
∑

j=1

(f(Xj)− f(X∗))
(3)

where Â is a parameter controlling the overall explosion am-
plitude, X∗ stands for the firework with the best (minimum)
fitness.

In addition, a minimal amplitude check is proposed in the
EFWA, reads

Ai =

{

Amin if Ai < Amin

Ai otherwise
(4)

where

Amin(t) = Ainit −
Ainit −Afinal

evaltimes

√

(2 ∗ evaltimes− t)t
(5)

where Ainit and Afinal are two parameters controlling the
initial and final minimum explosion amplitude, t is the
current evaluation times, evaltimes stands for the total
evaluation times allowed.

Algorithm 1 shows how the sparks are generated in the
EFWA.

Algorithm 1 Generating sparks for Xi

1: for j = 1 to Ni do
2: for each dimension k = 1, 2, ...d do
3: sample r from U(0, 1)
4: if r < 0.5 then
5: sample r from U(−1, 1)
6: sij

(k) ← Xi
(k) + r ⋅Ai

7: if s(k)ij < LB or s(k)ij > UB then
8: sample r from U(0, 1)

9: s
(k)
ij ← LB + r ⋅ (UB − LB)

10: end if
11: end if
12: end for
13: end for
14: return all the sij

where Ni is the number of sparks generated by Xi, Ai is
the amplitude of Xi, UB and LB stand for the upper bound
and lower bound of the search space respectively, U(a, b)
stands for the uniform distribution on [a, b].

In step 3 and 4, the EFWA randomly chooses about half of
the dimensions in explosion in order to concentrate its search,
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since the number of sparks are very limited compared to the
dimension number.

Algorithm 2 shows how Gaussian mutation is conducted
in the EFWA.

Algorithm 2 Generating the Gaussian sparks
1: for j ← 1 to NG do
2: Randomly select i from 1, 2..m
3: sample r from N(0, 1)
4: for each dimension k = 1, 2, ...d do
5: Gj

(k) ← Xi
(k) + r ⋅ (X∗(k) −Xi

(k))
6: if Gj

(k) < LB or Gij
(k) > UB then

7: sample r from U(0, 1)
8: Gj

(k) ← LB + r ⋅ (UB − LB)
9: end if

10: end for
11: end for
12: return all the Gj

where NG is the number of Gaussian sparks, m is the
number of fireworks, X∗ stands for the best firework, UB
and LB stand for the upper bound and lower bound of the
search space respectively, U(a, b) stands for the uniform dis-
tribution on [a, b], N(�, �) stands for the normal distribution
with mean � and standard deviation �.

In summary, we have the complete framework of the
Enhanced Fireworks Algorithm, shown in Algorithm 3.

Algorithm 3 Enhanced Fireworks Algorithm
1: randomly select m fireworks in the potential space
2: evaluate their fitness
3: repeat
4: calculate Ni according to Eq.(1) and Eq.(2)
5: calculate Ai according to Eq.(3), Eq.(4) and Eq.(5)
6: for each firework, generate Ni sparks within amplitude

Ai according to Algorithm 1
7: generate NG Gaussian sparks according to Algorithm

2
8: evaluate all the sparks’ fitness
9: keep the best individual as a firework

10: randomly choose other m−1 fireworks among the rest
individuals

11: until termination criteria is met
12: return the best individual and its fitness

The EFWA significantly improved the performance of
FWA, especially on functions whose optimums are far from
origin. More importantly, some operators unreasonable in the
FWA are corrected in the EFWA. This is the main reason
why we apply our improvement to the EFWA rather than
the FWA.

III. ANALYSIS ON THE AMPLITUDE IN FWA AND EFWA

Considering the explosion search manner in the FWA and
the EFWA, the amplitude of each fireworks is a fatal variable
influencing the performance of the algorithm. As shown in

Eq.(3), the amplitudes of other fireworks (except for the best
one) are calculated according to the difference between their
fitness and the best one’s. However, the amplitude of the
best firework is always 0 in Eq.(3). In the FWA, there is
no other operators to deal with this problem, which means
the best firework will not contribute to the algorithm, despite
its most numerous sparks. Note that according to Eq.(1), the
better a firework’s fitness is, the more sparks it generates. In
the FWA, The best fireworks takes the most and provides the
least.

Thus, in the EFWA, in order to make sure the best firework
works, a minimal amplitude check is adopted, preventing the
amplitude of the best firework from being 0. As is shown
in Eq.(4) and Eq.(5), the threshold of the amplitude is a
nonlinear decrease function of the generation number. In the
EFWA, the threshold is actually the amplitude of the best
firework.

However, any preset amplitude, linear decrease or nonlin-
ear decrease, whatever the parameters are set, cannot fit the
evaluation function well: in some functions, it decreases too
fast, and in others too slow. Decreasing too fast causes the
search range converges early before the minima is reached.
Decreasing too slow causes the search range is still too large
to search precisely even when the minima is already within
the search range. In either case, the algorithm performs bad.

The amplitudes of other fireworks in FWA and EFWA
are calculated according to Eq.(3) adaptively, while the
amplitude of the best firework still remains a big problem.
Although it only influences local search of the algorithm,
it is a key to the performance. The amplitude of the best
firework need to be adjusted automatically in order to fit all
evaluation functions.

IV. ADAPTIVE EXPLOSION AMPLITUDE

In this section, we propose an adaptive method, using
already generated sparks to calculate the explosion amplitude
of the best firework. We use the information obtained in this
generation to calculated the amplitude of the best firework
in the next generation. Considering the selection in EFWA,
the best firework in next generation is the best individual
found (could be a spark generated or a firework) in this
generation. As we already know, all the amplitudes of other
fireworks (in the next generation) are calculated according to
the difference between their fitness and the best firework. The
main problem is to get a reasonable amplitude of the best
firework. For convenience, we only consider one firework
within this section.

To calculate an adaptive amplitude, we choose an indi-
vidual and use its distance to the best individual, which is
the firework in next generation, as the amplitude of the next
explosion. The individual we choose subjects to the following
conditions:

1) Its fitness is worse than the firework of this generation.
2) Its distance to the best individual (the firework of next

generation) is minimal among all individuals subjecting to
1).

Namely,
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ŝ = argmin
si

(d(si, s
∗)) (6)

with constraint

f(si) > f(X) (7)

where si stands for all sparks generated by the firework,
s∗ stands for the best individual among all sparks and
the firework, X stands for the firework , d is a certain
measurement of distance. Note that the algorithm always
choose the best individual as the firework in next generation.

Condition 1) requires that the difference (in fitness) be-
tween this individual and the best individual is bigger than
that between the firework and the best individual, reads

f(ŝ)− f(s∗) > f(X)− f(s∗) (8)

An intuitive understanding of this inequality is it assures
that the scale on the domain of the evaluation function within
the range d(ŝ, s∗) is at least bigger than the improvement
made in this generation. We aim to find a better location s̃
in the next explosion such that

f(s∗)− f(s̃) > f(X)− f(s∗) (9)

by estimating the potential range d(s̃, s∗) with d(ŝ, s∗). The
algorithm makes a correspondence between the range and the
domain. Some deeper consideration and its properties will be
discussed after we present the complete algorithm.

On the other hand, condition 2) helps to make sure the
amplitude converges. If a farther individual subjecting to
condition 1) is chosen, the amplitude could be, in the worst
case, double the amplitude of this explosion. Under that
circumstances, there is no guarantee the amplitude won’t
be locked on the maximum value (the range of the search
space, for example). While, on the contrary, choosing the
nearest individual is quite safe because if the function is
regular locally and the sparks are numerous enough, the
minimum distance would be at most slightly longer than the
amplitude in this generation. Although we cannot promise
the amplitude decreases every time, but with big iteration
times and numerous sparks, it converges in general, as is
shown in Fig.1.

Fig. 1. Adaptive Amplitude on Sphere Function

For example, in Fig. 2, the red dot with fitness 1.0 is
the firework of this generation, and yellow dots are the
sparks generated by it. Obviously, we will choose the yellow
dot with fitness 0.7 as the firework in the next explosion.

According to Eq.(6) and Eq.(7), we choose the individual
whose fitness is 1.1 as ŝ and use its distance to the 0.7
individual (s∗) as the amplitude of next explosion. Without
condition 1) we will choose the 0.8 individual, which makes
the algorithm converges too fast. Without condition 1) we
will choose the 1.5 individual, which makes the algorithm
doesn’t converge at all. If the evaluation function changes
regularly, with numerous sparks, there is good chance we
find the individual with fitness 0.3 in the next explosion, if
0.7 is not close to local minima.

Fig. 2. An Example of How the Adaptive Amplitude is Calculated

It’s clear that this algorithm does not care either the scale
of the range or the domain. Rather, it detects the relationship
between the scale of the range and the scale of the domain
adaptively without any more evaluation. Changing the scale
of either will not influence the performance. In a sense, it
provides the gradient information of the evaluation function.

Considering the way fireworks explode in the Enhanced
Fireworks Algorithm, where they explode in each dimension
independently, we use infinity norm as the distance measure,
namely the maximum difference among all dimensions. Be-
sides, in order to further slow down the convergence rate and
improve the global search, the adaptive amplitude calculated
above is multiplied by a certain coefficient (usually bigger
than 1). Finally, considering the sparks of each explosion
is limited, in order to minimize the influence of very bad
luck (for example, every spark is worse than the firework,
in which case the amplitude shrinks very fast, or on the
contrary the amplitude doubled last time), we also adopt
a simple smoothing mechanism, which uses the average of
the amplitude calculated above and the amplitude of this
generation as the amplitude.

The complete algorithm of calculating the amplitude is
shown in Algorithm 4.

In Algorithm 4, UB and LB stand for the upper bound
and lower bound of the search space respectively, s1...sn
stands for all sparks generated by the firework in generation
g, X stands for the firework in generation g, s∗ stands for
the best individual in generation g, namely the firework in
generation g + 1.

The parameter � has a great impact on the performance
of the algorithm. In a sense, it controls the balance between
global search and local search. If � is too small, the adaptive
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Algorithm 4 Calculate the Adaptive Amplitude for the
Firework of Generation g + 1

1: A(g + 1)← UB − LB
2: for i = 1 to n do
3: if ∣∣si − s∗∣∣∞ > A(g + 1) and f(si) > f(X) then
4: A(g + 1)← ∣∣si − s∗∣∣∞
5: end if
6: end for
7: A(g + 1)← � ⋅A(g + 1)
8: A(g + 1)← 0.5 ⋅ (A(g) +A(g + 1))
9: return A(g + 1)

amplitude converges too fast to a local minima without
searching the neighbourhood. While if it is too big, the
adaptive amplitude doesn’t converge. Generally speaking,
as long as it converges stably, the bigger the better. In
experiment we usually use � = 1.3 empirically.

The computational complexity of Algorithm 4 is O(n),
which means it doesn’t add much cost. Actually, compared
to other operators such as generating sparks, O(n) is not
dominant.

For most optimization problems, the process of searching
by only one firework can be briefly divided into 3 stages
(note that they are not strictly distinguished):

1) Global search. At the beginning, the algorithm doesn’t
have any information about the evaluation function, so it has
to explore globally to decide which region is comparatively
promising for further exploitation. In our algorithm, the
amplitude of the firework is set to the range of the search
space at the beginning, and the sparks it generates will
be distributed in the whole search space. In this way, the
algorithm detects the rough information about which region
is good and which is not. Then the algorithm will choose
the best individual among all the sparks and the firework.
As far as the amplitude is concerned, it’s really hard to
predict whether it will become longer or shorter. There are
two possible cases, roughly speaking, as shown in Fig. 3.

Fig. 3. Two Cases in Explosion. Left: ŝ and s∗ are on the different sides
of the firework; Right: ŝ and s∗ are on the same side of the firework.

In the first case, ŝ and s∗ are on the different sides of the
firework. To the limited information we have, we can assume
in reason that the firework is in the same local region as ŝ
and s∗, and that the d(ŝ, s∗) gives the longest estimate of the
region’s scale. In this case, the amplitude will most probably
become longer and the s∗ will walk a longest step toward
the potential local best.

In the second case, ŝ and s∗ are on the same side of the

firework. Recall that the fitness of ŝ we use is worse than the
firework, while s∗ is better. To the limited information we
have, we can assume in reason that the firework is not in the
same local region as ŝ and s∗, and that the region containing
s∗ is more promising than that containing the firework ,and
that the d(ŝ, s∗) gives the longest estimate of the region’s
scale. In this case, the amplitude will most probably become
shorter, in order to give up the region of the firework and
search more efficiently.

In summary, d(ŝ, s∗) always gives the longest possible
estimate of the scale of the local region containing s∗ and
keeps the search most efficient.

2) Local search. When the firework enters a certain local
region, which we can assume as a bowl region, the main
task is to walk toward the bottom as fast as possible.
When the amplitude is still much shorter than the distance
between the firework and the bottom, we can assume that
the neighbourhood of the firework is monotonous, which
means ŝ and s∗ will undoubtedly on the different sides of
the firework. From the monotonic we can also assume that
the s∗ is very close to the border of the firework’s amplitude,
because there is no farther spark in its direction. Then, it is
most likely that d(ŝ, s∗) > d(X, s∗), as shown in Fig. 4.

Fig. 4. Local Search

As shown in Fig. 5, the experimental result also supports
this conclusion.

Fig. 5. A Histogram of the Ratio by Which the Amplitude Increases at
Stage 2)

In summary, the amplitude will become longer and longer
in stage 2) to fasten the search as long as the firework is still
far from the local minima.

3) Refine search. At the end of the search, when the local
minima is already within the amplitude of the firework, the
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algorithm need to search more precisely than in the above
stages. In this case, the s∗ is not the farthest spark, rather it is
the spark closest to the local minima. So, contrary to stage 2),
the amplitude will most probably become shorter and shorter
(shown in Fig. 6) and enable the algorithm to search more
and more precisely, unless the local minima is not within
the amplitude any longer, which brings the algorithm back
to stage 2). Finally, as we have shown in Fig. 1, the amplitude
converges after all, and the local minima is certainly reached.

Fig. 6. Refine Search

The properties of our algorithm in all the 3 stages proves
it a promising global-to-local search algorithm.

There are some extreme cases for the algorithm:
1) It is possible that all the sparks’ fitness is worse than

the firework’s. It is most likely to happen in stage 3). Usually
it implies that the firework is quite close to the local minima,
while the amplitude is too large. In our algorithm, if it
happens, ŝ will just be the closest spark to the firework, and
the amplitude in next generation will become shorter than this
generation. When the amplitude is reduced to a reasonable
level (there is certainly a better location in a very small
neighbourhood unless the local minima is already reached),
the algorithm will go on to work normally.

2) It is possible that all the sparks’ fitness is better than the
firework’s. It is most likely to happen in stage 1). According
to Algorithm 4, the amplitude will be set to the range of
the search space. It is still reasonable because the firework
can be considered a local maxima in this case, which means
search around it will be meaningless.

So, even in extreme cases, the algorithm has a strong
capability of error correction.

The explosion amplitude could be considered as the step
size in the Fireworks Algorithm. To the best of our knowl-
edge, the adaptive explosion amplitude we proposed is a
brand new method to control the step size in an evolutionary
algorithm.

V. ADAPTIVE FIREWORKS ALGORITHM

In this section we will apply the adaptive amplitude to the
Enhanced Fireworks Algorithm.

At the beginning after initialization, we set the amplitude
of the best firework to the range of the search space. Then,

for each generation, we use the method introduced in section
IV to calculate the amplitude of the best firework in the next
generation.

When there are more than two fireworks adopted in the
algorithm, the ŝ we look for in section IV could be a spark
as well as a firework.

The amplitudes of other fireworks are still calculated
according to Eq.(3), and the minimal amplitude check is
dropped in our algorithm since it is designed to control the
amplitude of the best firework. Except for the amplitude of
the best firework, we basically follow the operators in the
EFWA.

Algorithm 5 shows the complete version of the Adaptive
Fireworks Algorithm.

Algorithm 5 Adaptive Fireworks Algorithm
1: randomly select m fireworks in the potential space
2: evaluate their fitness
3: A∗ ← UB − LB
4: repeat
5: calculate Ni according to Eq.(1) and Eq.(2)
6: calculate Ai (except for A∗) according to Eq.(3)
7: generate Ni sparks according to Algorithm 1
8: generate Gaussian sparks according to Algorithm 2
9: evaluate all sparks’ fitness

10: calculate A∗ according to Algorithm 4
11: keep the best individual as a firework
12: randomly choose other m−1 fireworks among the rest

individuals
13: until termination criteria is met
14: return the best individual and its fitness

where m is the number of fireworks, UB and LB stand
for the upper bound and lower bound of the search space
respectively, Ai stands for the amplitude of each firework,
Ni stands for the number of sparks of each firework, A∗

stands for the amplitude of the best firework.
We can see from Algorithm 5 that the number of param-

eters adopted in the AFWA is less than that in the EFWA,
since the EFWA adopts 2 parameters in minimal amplitude
check, which is now replaced by adaptive amplitude using
only 1.

VI. EXPERIMENT

In order to illustrate and compare the performance of
AFWA and EFWA, experiments on 28 CEC13’s benchmark
functions [15] were conducted. The introduction of the 28
functions is shown in Table I. In AFWA and EFWA, m = 5,
Nmin = 2, Nmax = 100, N̂ = 200, Â = 100 and NG = 5.
In AFWA, � = 1.3. Besides, the results of SPSO2007 and
SPSO2011, which is the latest version of the Standard PSO,
were adopted as a baseline. The parameters of SPSO2007
are the same as [16], and the results of SPSO2011 are
obtained directly from [17] and http://t.cn/8Fqg1rN.
Evaluation times: 300000, Run times: 51, Dimension: 30.
Experiment environment: MATLAB2011b; Win 7; Intel Core
i7-2600 CPU; 3.7GHZ; 8GB RAM.
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TABLE I
CEC13’S 28 BENCHMARK FUNCTIONS

No. Name

Unimodal
Functions

1 Sphere Function
2 Rotated High Conditioned Elliptic Function
3 Rotated Bent Cigar Function
4 Rotated Discus Function
5 Different Powers Function

Basic
Multimodal
Functions

6 Rotated Rosenbrocks Function
7 Rotated Schaffers F7 Function
8 Rotated Ackleys Function
9 Rotated Ackleys Function
10 Rotated Griewanks Function
11 Rastrigins Function
12 Rotated Rastrigins Function
13 Non-Continuous Rotated Rastrigins Function
14 Schwefel’s Function
15 Rotated Schwefel’s Function
16 Rotated Katsuura Function
17 Lunacek Bi Rastrigin Function
18 Rotated Lunacek Bi Rastrigin Function
19 Expanded Griewanks plus Rosenbrocks Function
20 Expanded Scaffers F6 Function

Composition
Functions

21 Composition Function 1 (Rotated)
22 Composition Function 2 (Unrotated)
23 Composition Function 3 (Rotated)
24 Composition Function 4 (Rotated)
25 Composition Function 5 (Rotated)
26 Composition Function 6 (Rotated)
27 Composition Function 7 (Rotated)
28 Composition Function 8 (Rotated)

The mean error of the 4 algorithms is presented in Table
II.

The ranking of the 4 algorithms’ mean error on 28
benchmark functions was calculated, shown in Table III.

A set of T-tests were also conducted to illustrate whether
the improvement of AFWA over EFWA is significant. The
null hypothesis is the results of the AFWA and those of the
EFWA come from distributions with equal means. H = 1
indicates that the null hypothesis can be rejected at the 5%
level. Table IV shows the H and p values.

Fig. 7 shows the time consumed by each algorithm.

Fig. 7. Time Consumed by Each Algorithm on 28 Functions

VII. DISCUSSION

According to Table II,III and IV, we can see that AFWA
outperformed EFWA significantly: except for function 2 and
function 3 where AFWA and EFWA performed almost the
same, EFWA only beat AFWA on function 4 and function

TABLE II
MEAN ERROR ON 28 FUNCTIONS

Fun.\Alg. SPS02007 SPSO2011 EFWA AFWA

1 0.0000E+00 0.0000E+00 8.4987E-02 0.0000E+00
2 6.0817E+06 3.3849E+05 5.8486E+05 7.7759E+05
3 6.6257E+08 2.8841E+08 1.1588E+08 1.4990E+08
4 1.0284E+05 3.8643E+04 1.2217E+00 2.1172E+01
5 0.0000E+00 5.4221E-04 8.0517E-02 5.9500E-04
6 2.5243E+01 3.7901E+01 3.2152E+01 2.8939E+01
7 1.1275E+02 8.7916E+01 1.4417E+02 9.6581E+01
8 2.0952E+01 2.0916E+01 2.0952E+01 2.0910E+01
9 2.9323E+01 2.8769E+01 2.9843E+01 2.5666E+01
10 2.3808E-01 3.4019E-01 8.4819E-01 5.9482E-02
11 6.2592E+01 1.0496E+02 2.7947E+02 1.1153E+02
12 1.1533E+02 1.0396E+02 4.0648E+02 1.7181E+02
13 1.7898E+02 1.9386E+02 3.5115E+02 2.5091E+02
14 1.5877E+03 3.9910E+03 4.0183E+03 2.8938E+03
15 4.3050E+03 3.8093E+03 4.2843E+03 3.9328E+03
16 1.2711E+00 1.3066E+00 5.7506E-01 5.5301E-01
17 9.9841E+01 1.1626E+02 2.1685E+02 1.4416E+02
18 1.7963E+02 1.2063E+02 1.7235E+02 1.7682E+02
19 6.4771E+00 9.5101E+00 1.2365E+01 6.8633E+00
20 1.5000E+01 1.3463E+01 1.4520E+01 1.3100E+01
21 3.3537E+02 3.0879E+02 3.2833E+02 2.9813E+02
22 2.9832E+03 4.2988E+03 5.1547E+03 3.3632E+03
23 6.9666E+03 4.8313E+03 5.7311E+03 4.5682E+03
24 2.8972E+02 2.6675E+02 3.0495E+02 2.7532E+02
25 3.1026E+02 2.9928E+02 3.3751E+02 2.9757E+02
26 2.5725E+02 2.8605E+02 3.0248E+02 2.7057E+02
27 8.1625E+02 1.0046E+03 1.2165E+03 9.8336E+02
28 6.9249E+02 4.0132E+02 1.2292E+03 3.1624E+02

TABLE III
RANKING OF MEAN ERROR ON 28 FUNCTIONS

Fun.\Alg. SPS02007 SPSO2011 EFWA AFWA

1 1 1 4 1
2 4 1 2 3
3 4 3 1 2
4 4 3 1 2
5 1 2 4 3
6 1 4 3 2
7 3 1 4 2
8 3 2 4 1
9 3 2 4 1

10 2 3 4 1
11 1 2 4 3
12 2 1 4 3
13 1 2 4 3
14 1 3 4 2
15 4 1 3 2
16 3 4 2 1
17 1 2 4 3
18 4 1 2 3
19 1 3 4 2
20 4 2 3 1
21 4 2 3 1
22 1 3 4 2
23 4 2 3 1
24 3 1 4 2
25 3 2 4 1
26 1 3 4 2
27 1 3 4 2
28 3 2 4 1

Mean 2.4286 2.1786 3.3929 1.8929
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TABLE IV
T-TEST ON AFWA VS. EFWA

Function Number H p

1 1 0.0000E+00
2 0 9.9028E-01
3 0 2.7459E-01
4 1 2.3319E-172
5 1 0.0000E+00
6 1 1.8752E-122
7 1 1.1644E-103
8 1 0.0000E+00
9 1 1.1737E-191
10 1 0.0000E+00
11 1 2.6480E-40
12 1 5.3906E-03
13 1 1.0226E-15
14 1 8.9976E-18
15 1 8.1931E-03
16 1 5.7970E-254
17 1 8.1730E-72
18 1 1.5146E-75
19 1 3.0206E-187
20 1 1.4371E-259
21 1 7.7820E-67
22 1 2.6944E-28
23 1 8.3888E-22
24 1 3.4469E-147
25 1 2.2101E-157
26 1 7.1659E-88
27 1 1.1631E-87
28 1 3.0053E-17

18. AFWA and EFWA share almost all the parameters in
common, so the significant difference in their performance
proved that the new adaptive amplitude is significantly effec-
tive. More precisely, since the global search in AFWA and
EFWA are almost the same, the adaptive amplitude actually
improved its local search capability.

According to Table II, AFWA performed much better
than SPSO2007 and SPSO2011: AFWA beats SPSO2011 on
18 out of 27 functions and beats SPSO2007 on 16 out of
27 functions (except for function 1 where they are even).
According to Table III, judging from the overall performance,
AFWA is the best algorithm among all the 4 algorithms.

In terms of computation cost, as is shown in Fig. 3, the
time consumed by AFWA and EFWA were very close, which
is less than SPSO. The computation cost of calculating the
adaptive amplitude is very low(O(n)), compared to other
operators such as generating sparks.

Judging from the performance and the computation cost,
the Adaptive Fireworks Algorithm is a very promising,
efficient and simple algorithm.

VIII. CONCLUSION

In this paper, we analyzed the amplitude of explosion in
the FWA and the EFWA, then we proposed an adaptive
amplitude. The distance of the best firework and a certain
individual subjecting to some conditions is employed as the
amplitude of the explosion. We analyzed the property of
the adaptive amplitude and come to the conclusion that the
adaptive amplitude for explosion is a theoretically promising
operator. Replacing the amplitude operator in EFWA by

adaptive amplitude, we proposed a new algorithm called
Adaptive Fireworks Algorithm. According to the experimen-
tal results on CEC13’s 28 benchmark functions, the perfor-
mance is greatly improved: the AFWA not only outperforms
EFWA but also beats SPSO 2007 and SPSO2011 totally.
The results proved that the adaptive amplitude is effective
because AFWA greatly improved performance of EFWA, and
meanwhile the computation cost of AFWA is not obviously
bigger than EFWA.
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