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Abstract. As a distributed system, swarm robotics is well suited for
multiple targets search tasks. In this paper, a new approach based on
triangle formation and random search is proposed for high efficiency,
demonstrating excellent abilities of exploration and exploitation in exper-
iments. In addition, a new random walk strategy of linear ballistic
motion, integrated with triangle estimation, is put forward as a com-
parison algorithm, the performance of which can serve as a benchmark.
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1 Introduction

Swarm robotics, inspired from the self-organization phenomena in nature, is a
relatively new field, on which people have done lots of various research work [1].
With large number of individuals, swarm robotic system is appropriate for tasks
involving area coverage [2], such as searching for multiple targets. When the tar-
gets can generate fitness values in certain range and can be collected, it comes to
the issue we concern [3]. The multi-target search strategy has a broad prospect of
application, such as hunting a submarine [11], searching for victims and wreck-
age after air crash or shipwreck, monitoring the leak water quality [2], exploring
and destroying battlefield targets, and so on.

Behavior-based design methods are commonly used in the task of searching
for targets, such as methods based on artificial potential functions [4] or methods
adapted from some heuristic algorithms [5,6]. GES [7] and IGES [8] we proposed
before borrowed some ideas from the FWA [9], a heuristic algorithm inspired by
the firework explosion. Mathematical physics methods are also used to analyze
the foraging and migratory behaviors of animals, which is often referred to as
“random search” [11,12] or “stochastic optimal foraging theory” [13].

Another thing needed to be introduced here is the formation control for
multiple robots or vehicles, and what we used is the behavior-based control [14],
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where each robot determines its proper position based on a reference point which
can be a leader, a neighbor or the unit-center of the whole group.

The rest of the paper is organized as follows. In Sect. 2 , the multiple targets
search problem and an idealized model are stated. In Sect. 3, the Triangle Forma-
tion Search strategy is described. In Sect. 4, experimental results and discussions
are presented. Finally, the work is concluded in Sect. 5.

2 Problem Statement

In the multiple targets search problem, a swarm of robots are delivered into a
vast unknown space, where multiple targets are distributed randomly. Robots
are expected to search and collect the targets as soon as possible using some
collaborative mechanism. In the simplest case, only three kinds of objects are
considered: environment space, robots and targets. Obstacles, decoys [10] and
inference sources can also be introduced into the problem [3]. Since we focus on
the search efficiency in this paper, only the simplest case are studied.

Fig. 1. A screenshot of the problem at the beginning of a simulation. Red rounds stand
for the targets. The background color illustrates the fitness value of that position. The
robot phalanx is in the center of the figure. (Color figure online)

2.1 An Idealized Model

An idealized model of the problem is shown in Fig. 1. The environment is a
1000*1000 square while the robot is a unit square. Robots can memorize infor-
mation (positions and fitness values) of 10 iterations. Each target is abstracted
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to be a round with radius of rt (10 units), and robots in the round can locate the
target directly. Positions and fitness values of targets are generated randomly,
and fitness ranges from Fmax − 2 to Fmax (40 units). Influence scopes of targets
are presented as a series of annuli, and each annulus is 0.5rt width which is also
the maximum speed limit of robots to ensure the variance of fitness values in
two adjacent iterations is small. From the inside out, the fitness value decreases
by 1 unit till 0, and greater ones are chosen as the fitness values in overlapped
areas. Discrete fitness values are adopted because the hardware design in swarm
robotics should be as simple as possible which may lead to low quality sensors
and fault sensing results [15]. 10 iterations are required for one robot to collect
a target while 10 robots can do that in one iteration. The sphere of local inter-
action between robots is a round of radius 2rt. One problem that has not been
considered here is avoiding collisions of robots resulting from route intersection.

3 Triangle Formation Search Strategy

3.1 Characteristics of the Problem

– Compared with each individual robot, the entire search space is vast, so the
swarm is supposed to have nice ability of exploration. The influence scopes of
all targets cover a large proportion of the entire search space, so the swarm
should bear excellent ability of exploitation.

– In order to prevent excessive concentration of resources and give full play to
the group exploration ability, the entire swarm should disperse as much as
possible in the initial stage.

– The integration of local information is essential to improve the group exploita-
tion ability, so each robot should ensure certain degree of connection with
neighboring robots, i.e. form local groups (or niches) with other robots.

In our triangle formation search (TFS) strategy, the swarm is divided into three-
robot teams which are arranged in a triangle, including one leader and two
other members. According to the conclusions above, the TFS strategy may be a
promising approach, for the three-robot teams can balance the exploration and
exploitation of the swarm.

3.2 Five Stages of the TFS Strategy

– Initial grouping: Divide the whole swarm into three-robot teams, and robots
insufficient to form a team will search alone.

– Initial diffusion: Firstly, the leaders will count the number of neighboring
robots and select a sparse direction.

– Search in areas without fitness: The leader will search randomly, and the step
lengths are submitted to some type of probability distribution, such as a Lévy
or exponential distribution.

– Search in areas with fitness: The leader will estimate the gradient direction
according to the information obtained by the team and update its position.
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– Target collecting: Robots having found targets will broadcast the information
within the team and the other two will move towards the target.

In stages of diffusion and search, members in teams will follow the leader and
maintain the formation. Since the strategy involves formation control which
increases the complexity of the system, for convenience, we restrict the exchange
of information within the team, and the formation cannot be restored once
broken.

3.3 Key Issues to be Tackled in the TFS Strategy

Unified Grouping. Taking into account the initial formation of the robot
phalanx and the simplicity of implementation, we assign a global ID for each
robot in an “S” shape order. Then, the robot whose ID is a multiple of 3 serves
as a leader, closely followed by two other members of the team.

Diffusion Control. In order to make full used of the exploration ability of the
swarm, an initial diffusion stage is introduced, in which he leaders will monitor
the number of neighbors and terminate diffusion if the number has fallen below
a certain threshold. We carried out experiments to determine the threshold from
3 to 10, and the optimal value is about 3.

Fig. 2. (a) Calculate the gradient direction when all robots have different fitness values.
(b) Robots determine their own roles in role switching process. (b) Robots maintain
the triangle formation with the aid of their internal compasses.

Random Search. As is mentioned above, the leaders will search randomly in
areas without fitness. And there are already some conclusions drawn from the
one-dimensional and bidimensional cases of random search [13].

– When the coverage rate of influence scopes of all targets is high (i.e. dense
distribution). “stochastic laws governing run and tumble movement patterns
come into play and have a clear impact on the search success, with Lévy-like
features becoming beneficial [13].”
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– When the coverage rate is low (i.e. sparse distribution), ballistic strategies are
optimal for non-renewable targets while Lévy flights are optimal strategies for
renewable targets.

In our problem model, the coverage rate is high and the targets are non-
renewable, so a Lévy-like strategy is suitable and the leader in TFS strategy
performs ballistic flights reoriented at exponentially distributed times, and the
mean value of the distribution is set to 2 ∗ MapLength (i.e. 2 ∗ 1000).

Gradient Estimation. The leader will integrate the fitness values and positions
of the team, and calculate the approximate gradient direction based on the
supposition that the fitness value varies almost linearly alone a line in local
area. Our basic idea is to construct a vector perpendicular to the local contours,
and various cases are presented as follows.

– Case I: all three members share the same fitness value, which means that the
team is in the area without fitness, and the leader will search randomly.

– Case II: two robots share the same better fitness value, then the gradient
vector equals the center of the two better positions minus the worse one.

– Case III: two robots share the same worse fitness value, then the gradient
vector equals the better position minus the center of the two worse ones.

– Case IV: all robots have different fitness values, then the gradient is per-
pendicular to the local contour line (Fig. 2(a)). In Fig. 2(a), A, B and C
stand for the robots in a team, and the fitness values satisfy the inequal-
ity f(A) > f(B) > f(C). Based on the local linear variation, f(B′) = f(B)
and the position of B′ can be calculated from Eq. 1. The line BB′ serves as a
contour line, whose vertical vector B′P is the gradient direction (Eq. 2).

BB′ = BC + CA · f(B) − f(C)
f(A) − f(C)

. (1)

{
B′P · BB′ = 0
B′P · B′A > 0 . (2)

Role Switching. In order to avoid turning abruptly, to facilitate the main-
tenance of formation and the estimation of gradient direction, a role switching
trick is introduced. At each iteration, the robot with the maximum fitness value
serves as the leader while the other two determine their roles (i.e. left wing or
right wing) according to their relative positions. As is shown in Fig. 2(b), robot
A is the leader and A′ is its next position. AP is the right vertical vector of
AA′. If AB · AP > AC · AP , then robot B serves as the right wing, else the
left wing.
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Formation Control. Each robot is assumed to be equipped with a compass.
The leader will broadcast its next position within the team per iteration, and
its members will determine their roles and next positions. As is shown in Fig. 2,
given the positions of A and A′, the positions of left wing and right wing (i.e. L
and R) can be calculated. To maintain the formation, the leader will monitor the
distances(D) from itself to its members, and slow down if the distance exceeds
a certain threshold (T ), otherwise accelerate for high efficiency (Eq. 3, where α
and β are factors for deceleration and acceleration). Parameters α and β are
set to 0.75 and 1.33 respectively while T is set to 0.8 ∗ Lengh, where Length
(0.8 ∗ 2rt) is the ideal side length of the triangle.

Vleader =
{

Vleader · α,D > T
Vleader · β,D ≤ T

. (3)

4 Simulation Results and Discussions

4.1 Algorithms for Comparison

Four searching strategies are chosen as comparison algorithms, which are TFS,
IS, RPSO and IGES. All parameters of algorithms are tuned under the same
experimental conditions, where the map size is 1000*1000, containing 50 robots
and 10 targets. Details and parameters values of TFS strategy are presented in
section “Triangle Formation Search Strategy”.

The Independent Search (IS) strategy, is a new random walk strategy com-
bining linear ballistic motion with triangle estimation technology. In areas with-
out fitness, robots will move along a straight line until perceiving fitness values.
In areas with fitness, robots will estimate the gradient direction using history
information and triangle estimation technology introduced in Section “Gradient
Estimation”. Current position, the best and worst positions in history serve as
the vertices. In the TFS strategy, if a robot does not belong to any team, it will
search alone according to the IS strategy.

In Robotic Particle Swarm Optimization (RPSO [6]), each robot acts as a
particle and determines the gbest individual in a spacial-based topology. And
IGES [8] is an improved version of GES [7], and the basic idea for intra-group
cooperation is moving the group center towards the center of best positions in
the group, or splitting the group when the group size exceeds some threshold
value or members within the group share the same fitness value.

4.2 Experimental Setup and Results

The map size is 1000*1000 and 10 targets are generated randomly, covering
about 70% of the map, while other setup information is stated in Section “An
Idealized Model”. In the experiment, six tests are carried out with 25, 50, 75,
100, 150, 200 robots in turn. In each test, 20 random maps are generated and
each strategy is repeated for 20 times, and the results in this section are the
average value of these 400 runs.
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The criterion for measuring the efficiency of searching strategies, is the num-
ber of iterations required for a swarm of robots to collect all 10 targets. Another
criterion indicating the computational load is the CPU time used by the swarm
in simulation. The experimental results are presented in Table 1 and Fig. 3.

Table 1. Iterations and time costed by each strategy at various population sizes.

Population RPSO IGES IS TFS

Iterations Time Iterations Time Iterations Time Iterations Time

25 587.77 23.91 294.68 15.39 275.35 9.47 312.54 14.74

50 417.94 38.90 240.00 20.13 229.74 7.87 211.07 20.14

75 374.13 64.78 217.62 41.87 208.47 12.25 178.35 25.06

100 334.41 94.95 205.07 46.09 195.72 14.52 166.21 38.21

150 295.97 196.71 189.36 81.48 176.76 20.22 147.13 64.33

200 269.84 347.61 180.45 151.41 167.71 27.34 138.99 104.85
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Fig. 3. Iterations costed by each strategy at various population sizes.

4.3 Discussions

As the results show, the efficiency of RPSO is the lowest among four strategies,
though we have introduced a random vector to improve its performance by
avoid robots’ vibrating. We can infer that traditional heuristic algorithms for
high dimensional optimization may not apply to swam robotics, which focuses
on two or three-dimensional problem scenarios, and the key distinction is the
simplicity of gradient estimation in low dimensional cases even with interference.
It is worth pointing out that there are few local extrema in the fitness landscape,
which plays a critical role to such results.
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In the figure, there is a stable difference between IS and IGES. Since IGES has
diffusion mechanism and IS works as random walk in areas without fitness, both
of them possess excellent exploration ability. So the difference mainly results from
the triangle estimation technology, which provides a more accurate direction
to approximate the local gradient. Actually, additional experiments show that
the IS integrated with independent strategies from IGES instead of triangle
estimation technology, shares similar performance with IGES.

When the population size is small, the exploration ability is important for a
search strategy, for IS shows the best performance while TFS performs poorly
when the number of robots is 25. Under such circumstances, some mechanisms
for maintaining connectivity, such as mutual attraction or formation control,
may limit the exploration range of the swarm.

As the population size becomes larger (such as 50 or larger), the potential
merits of the TFS strategy emerge and it outperforms other three strategies.
When the population size is 75, compared with IS and IGES, the search efficiency
of TFS increases 14.45% and 18.04% respectively, which means the triangle
formation improves the local exploitation ability of the swarm and leads to a
more accurate gradient direction than that estimated in IS. In addition, the
downtrends of the curves in Fig. 3 demonstrate that both IS and TFS possess
excellent scalability like IGES and RPSO. As we can see, three members are
enough to construct a proper gradient direction while small team size tends to
high exploration performance, so we adopt triangle formation technology.

As to the CPU time costed by each strategy, the IS has the overwhelming
superiority, benefiting from its simplicity, while the TFS surpasses the other two
strategies. Although the algorithm flow of TFS is kind of complex, its computa-
tion load is not heavy, which is a nice property for swarm robotics.

The performance of the IS strategy is qualified as a benchmark for such
problem scenario in terms of efficiency and energy conservation.

5 Conclusion

In this paper, a triangle formation search (TFS) strategy and an independent
search (IS) strategy were proposed, both of which bear high search efficiency
and light computational load compared with RPSO and IGES. Among all four
strategies, the TFS is the most efficient while the IS is the most energy-efficient,
demonstrating the validity of the triangle estimation technology. In addition, the
IFS and IS also show great scalability like RPSO and IGES.

As far as we know, technologies for formation control and rand walk have
not been applied to the multiple targets search task in swarm robotics, and the
IS strategy is qualified as a benchmark for its simplicity and performance.
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