®

Check for
updates

Generating Adversarial Malware
Examples for Black-Box Attacks Based
on GAN

Weiwei Hu'"?3 and Ying Tan'2:3(&)

1 School of Intelligence Science and Technology, Peking University,
Beijing 100871, China
{weiwei.hu,ytan}@pku.edu.cn
2 Key Laboratory of Machine Perceptron (MOE), Peking University,
Beijing 100871, China
3 Institute for Artificial Intelligence, Peking University, Beijing 100871, China

Abstract. Machine learning has been used to detect new malware in
recent years, while malware authors have strong motivation to attack
such algorithms. Malware authors usually have no access to the detailed
structures and parameters of the machine learning models used by mal-
ware detection systems, and therefore they can only perform black-box
attacks. This paper proposes a generative adversarial network (GAN)
based algorithm named MalGAN to generate adversarial malware exam-
ples, which are able to bypass black-box machine learning based detection
models. MalGAN uses a substitute detector to fit the black-box mal-
ware detection system. A generative network is trained to minimize the
generated adversarial examples’ malicious probabilities predicted by the
substitute detector. The superiority of MalGAN over traditional gradi-
ent based adversarial example generation algorithms is that MalGAN is
able to decrease the detection rate to nearly zero and make the retraining
based defensive method against adversarial examples hard to work.

Keywords: Malware detection + Adversarial examples + Generative
adversarial network

1 Introduction

In recent years, many machine learning based algorithms have been proposed
to detect malware, which extract features from programs and use a classifier to
classify programs between benign programs and malware. For example, Schultz
et al. proposed to use dynamic-link libraries (DLL), application programming
interfaces (API) and strings as features for classification [24], while Kolter et al.
used byte level n-gram as features [10,11].

Most researchers focused their efforts on improving the detection performance
(e.g. true positive rate, accuracy and AUC) of such algorithms, but ignored the

This paper is the arXiv version of https://arxiv.org/abs/1702.05983.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Tan and Y. Shi (Eds.): DMBD 2022, CCIS 1745, pp. 409-423, 2022.
https://doi.org/10.1007/978-981-19-8991-9_29


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8991-9_29&domain=pdf
https://arxiv.org/abs/1702.05983
https://doi.org/10.1007/978-981-19-8991-9_29

410 W. Hu and Y. Tan

robustness of these algorithms. Generally speaking, the propagation of malware
will benefit malware authors. Therefore, malware authors have sufficient moti-
vation to attack malware detection algorithms.

Many machine learning algorithms are very vulnerable to intentional attacks.
Machine learning based malware detection algorithms cannot be used in real-
world applications if they are easily to be bypassed by some adversarial tech-
niques.

Recently, adversarial examples of deep learning models have attracted the
attention of many researchers. Szegedy et al. added imperceptible perturbations
to images to maximize a trained neural network’s classification errors, making
the network unable to classify the images correctly [25]. The examples after
adding perturbations are called adversarial examples. Goodfellow et al. proposed
a gradient based algorithm to generate adversarial examples [6]. Papernot et al.
used the Jacobian matrix to determine which features to modify when generating
adversarial examples [18]. The Jacobian matrix based approach is also a kind of
gradient based algorithm.

Grosse et al. proposed to use the gradient based approach to generate adver-
sarial Android malware examples [7]. The adversarial examples are used to fool
a neural network based malware detection model. They assumed that attackers
have full access to the parameters of the malware detection model. For differ-
ent sizes of neural networks, the misclassification rates after adversarial crafting
range from 35% to 84%.

In some cases, attackers have no access to the architecture and weights of
the neural network to be attacked; the target model is a black box to attackers.
Papernot et al. used a substitute neural network to fit the black-box neural
network and then generated adversarial examples according to the substitute
neural network [17]. They also used a substitute neural network to attack other
machine learning algorithms such as logistic regression, support vector machines,
decision trees and nearest neighbors [16]. Liu et al. performed black-box attacks
without a substitute model [13], based on the principle that adversarial examples
can transfer among different models [25].

Machine learning based malware detection algorithms are usually integrated
into antivirus software or hosted on the cloud side, and therefore they are black-
box systems to malware authors. It is hard for malware authors to know which
classifier a malware detection system uses and the parameters of the classifier.

However, it is possible to figure out what features a malware detection algo-
rithm uses by feeding some carefully designed test cases to the black-box algo-
rithm. For example, if a malware detection algorithm uses static DLL or API
features from the import directory table or the import lookup tables of PE pro-
grams [14], malware authors can manually modify some DLL or API names in
the import directory table or the import lookup tables. They can modify a benign
program’s DLL or API names to malware’s DLL or API names, and vice versa.
If the detection results change after most of the modifications, they can judge
that the malware detection algorithm uses DLL or API features. Therefore, in
this paper we assume that malware authors are able to know what features a



Adversarial Malware Examples Based on GAN 411

malware detection algorithm uses, but know nothing about the machine learning
model.

Existing algorithms mainly use gradient information and hand-crafted rules
to transform original samples into adversarial examples. This paper proposes
a generative neural network based approach which takes original samples as
inputs and outputs adversarial examples. The intrinsic non-linear structure of
neural networks enables them to generate more complex and flexible adversarial
examples to fool the target model.

The learning algorithm of our proposed model is inspired by generative adver-
sarial networks (GAN) [5]. In GAN, a discriminative model is used to distinguish
between generated samples and real samples, and a generative model is trained
to make the discriminative model misclassify generated samples as real samples.
GAN has shown good performance in generating realistic images [4,15].

The proposed model in this paper is named as MalGAN, which generates
adversarial examples to attack black-box malware detection algorithms. A sub-
stitute detector is trained to fit the black-box malware detection algorithm, and a
generative network is used to transform malware samples into adversarial exam-
ples. Experimental results show that most of the adversarial examples generated
by MalGAN successfully bypass the detection algorithms and MalGAN is very
flexible to fool further defensive methods of detection algorithms.

2 Architecture of MalGAN

2.1 Overview

The architecture of the proposed MalGAN is shown in Fig. 1.

Benign &
Malware Adversarial Labelling Adversarial
Malware Malware Examples
Examples with Labels

Black-Box

. Detector
Noise

~ Generator Substitute
Detector

Benign

Fig. 1. The architecture of MalGAN.



412 W. Hu and Y. Tan

The black-box detector is an external system which adopts machine learning
based malware detection algorithms. We assume that the only thing malware
authors know about the black-box detector is what kind of features it uses.
Malware authors do not know what machine learning algorithm it uses and do
not have access to the parameters of the trained model. Malware authors are
able to get the detection results of their programs from the black-box detector.
The whole model contains a generator and a substitute detector, which are both
feed-forward neural networks. The generator and the substitute detector work
together to attack a machine learning based black-box malware detector.

In this paper we only generate adversarial examples for binary features,
because binary features are widely used by malware detection researchers and
are able to result in high detection accuracy. Here we take API feature as an
example to show how to represent a program. For malware detection on the
Microsoft Windows operating systems, APIs are the most used features. If M
APIs are used as features, an M-dimensional feature vector is constructed for
a program. If the program calls the d-th API, the d-th feature value is set to
1, otherwise it is set to 0. For Android malware detection, additional features
such as permissions from the manifest file of an APK are also used by many
researchers [3,20,22]. In such case, if an Android program requires a permission,
the corresponding feature value is set to 1.

The main difference between this model and existing algorithms is that the
adversarial examples are dynamically generated according to the feedback of
the black-box detector, while most existing algorithms use static gradient based
approaches to generate adversarial examples.

The probability distribution of adversarial examples from MalGAN is deter-
mined by the weights of the generator. To make a machine learning algorithm
effective, the samples in the training set and the test set should follow the same
probability distribution or similar probability distributions. However, the gener-
ator can change the probability distribution of adversarial examples to make it
far from the probability distribution of the black-box detector’s training set. In
this case the generator has sufficient opportunity to lead the black-box detector
to misclassify malware as benign.

2.2 Generator

The generator is used to transform a malware feature vector into its adversarial
version. It takes the concatenation of a malware feature vector m and a noise
vector z as input. m is a M-dimensional binary vector, where M represents the
number of features. Each element of m corresponds to the presence or absence of
a feature. z is a Z-dimensional vector, where Z is a hyper-parameter. Each ele-
ment of z is a random number sampled from a uniform distribution in the range
[0,1). The effect of z is to allow the generator to generate diverse adversarial
examples from a single malware feature vector.

The input vector is fed into a multi-layer feed-forward neural network with
weights 6,. The output layer of this network has M neurons and the activation
function used by the last layer is sigmoid which restricts the output to the range



Adversarial Malware Examples Based on GAN 413

(0,1). The output of this network is denoted as o. Since malware feature values
are binary, binarization transformation is applied to o according to whether an
element is greater than 0.5 or not, and this process produces a binary vector o’.

When generating adversarial examples for binary malware features we only
consider to add some irrelevant features to malware. Removing a feature from the
original malware may crack it. For example, if the “WriteFile” API is removed
from a program, the program is unable to perform normal writing function and
the malware may crack. The non-zero features in the binary vector o’ which
have zero feature values in m act as the irrelevant features to be added to the
original malware. The final generated adversarial example can be expressed as
m’ = m|o’ where “|” is element-wise binary OR operation.

To make the adversarial example executable, malware authors need to add
the irrelevant features to the source code of the original malware. For example,
if a malware detection algorithm uses API features, malware authors should
intentionally call the irrelevant APIs in the source code. Then the modified
source code should be compiled into the final adversarial malware program.
The adversarial malware will have the whole malicious functions of the original
malware. The source code should be modified carefully, to make sure that adding
the irrelevant features does not influence the existing functions of the original
malware. Malware authors can also develop some automatic tools for adding
irrelevant features, in order to generate a large number of adversarial malware
examples.

For Android malware features extracted from the manifest files of APKs, it is
more easy to insert the irrelevant features. For example, if an Android malware
detection algorithm uses permission features, the irrelevant permissions can be
easily inserted into the manifest file without influencing the original function of
the malware.

m’ is a binary vector, and therefore the gradients are unable to back prop-
agate from the substitute detector to the generator. A smooth function G is
defined to receive gradient information from the substitute detector, as shown
in Formula 1.

Gy, (m, z) = max (m, o). (1)

max (-, ) represents element-wise max operation. If an element of m has
the value 1, the corresponding result of GG is also 1, which is unable to back
propagate the gradients. If an element of m has the value 0, the result of G is
the neural network’s real number output in the corresponding dimension, and
gradient information is able to go through. It can be seen that m’ is actually
the binarization transformed version of Gy, (m, z).

2.3 Substitute Detector

Since malware authors know nothing about the detailed structure of the black-
box detector, the substitute detector is used to fit the black-box detector and
provides gradient information to train the generator.



414 W. Hu and Y. Tan

The substitute detector is a multi-layer feed-forward neural network with
weights 65 which takes a program feature vector @ as input. It classifies the pro-
gram between benign program and malware. We denote the predicted probability
that x is malware as Dy, ().

The training data of the substitute detector consist of adversarial malware
examples from the generator, and benign programs from an additional benign
dataset collected by malware authors. The ground-truth labels of the training
data are not used to train the substitute detector. The goal of the substitute
detector is to fit the black-box detector. The black-box detector will detect this
training data first and output whether a program is benign or malware. The
predicted labels from the black-box detector are used by the substitute detector.

3 Training MalGAN

To train MalGAN malware authors should collect a malware dataset and a
benign dataset first.
The loss function of the substitute detector is defined in Formula 2.

Lp =—EzeBBpenig, 108 (1 — Do, (x))

- EmEBBMazwm-e IOg Ded (w)

(2)

BBBRenign is the set of programs that are recognized as benign by the black-
box detector, and BBasaiware is the set of programs that are detected as malware
by the black-box detector.

To train the substitute detector, L p should be minimized with respect to the
weights of the substitute detector.

The loss function of the generator is defined in Formula 3.

Lg=Enm €SMalware;Z~Puniform[0,1) log Dy, (Gag (m, Z)) (3)

SMaiware 18 the actual malware dataset, not the malware set labelled by the
black-box detector. L is minimized with respect to the weights of the generator.

Minimizing Lg will reduce the predicted malicious probability of malware
and push the substitute detector to recognize malware as benign. Since the sub-
stitute detector tries to fit the black-box detector, the training of the generator
will further fool the black-box detector.

The whole process of training MalGAN is shown in Algorithm 1.

In line 2 and line 4, different sizes of minibatches are used for malware and
benign programs. The ratio of M’s size to B’s size is the same as the ratio of
the malware dataset’s size to the benign dataset’s size.



Adversarial Malware Examples Based on GAN 415

Algorithm 1. The Training Process of MalGAN

1: while not converging do

2: Sample a minibatch of malware M

3: Generate adversarial examples M’ from the generator for M

4: Sample a minibatch of benign programs B

5: Label M’ and B using the black-box detector

6: Update the substitute detector’s weights 64 by descending along the gradient

Vo, Lp
T Update the generator’s weights 6, by descending along the gradient Vg, Lg
8: end while

4 Experiments

4.1 Experimental Setup

The main dataset used in this paper was crawled from a program sharing web-
site’. We downloaded 180 thousand PC programs in Microsoft Windows operat-
ing systems from this website and about 70% of them are malware. API features
are used for this dataset. An 160-dimensional binary feature vector is constructed
for each program, based on 160 system level APIs.

We will also report the results on the Drebin Android malware dataset?
when comparing MalGAN with the algorithm proposed by Grosse et al., since
Grosse et al. used this Android dataset [7]. The Drebin dataset contains 8 kinds
of features, such as hardware components, requested permissions and API calls.
After removing the features which appear less than 5 times in the dataset, we got
44942 features and used these features to train MalGAN. However, the dataset
only contains 5560 malware samples, which is too small for normal deep learning
applications. Therefore, we only used this dataset as a supplemental dataset for
comparison. Most experiments and analyses were conducted on the crawled 180
thousand programs.

In order to validate the transferability of adversarial examples generated by
MalGAN, we tried several different machine learning algorithms for the black-
box detector. The used classifiers include random forest (RF), logistic regression
(LR), decision trees (DT), support vector machines (SVM), multi-layer percep-
tron (MLP), and a voting based ensemble of these classifiers (VOTE).

We adopted two ways to split the dataset. The first splitting way regards 80%
of the dataset as the training set and the remaining 20% as the test set. MalGAN
and the black-box detector share the same training set. MalGAN further picks
out 25% of the training data as the validation set and uses the remaining training
data to train the neural networks. Some black-box classifiers such as MLP also
need a validation set for early stopping. The validation set of MalGAN cannot be
used for the black-box detector since malware authors and antivirus vendors do

! https://malwr.com/.
2 https:/ /www.sec.cs.tu-bs.de/~danarp/drebin /index.html.


https://malwr.com/
https://www.sec.cs.tu-bs.de/~danarp/drebin/index.html

416 W. Hu and Y. Tan

not communicate on how to split dataset. Splitting validation set for the black-
box detector should be independent of MalGAN; MalGAN and the black-box
detector should use different random seeds to pick out the validation data.

The second splitting way picks out 40% of the dataset as the training set
for MalGAN, picks out another 40% of the dataset as the training set for the
black-box detector, and uses the remaining 20% of the dataset as the test set.

In real-world scenes the training data collected by the malware authors and
the antivirus vendors cannot be the same. However, their training data will
overlap with each other if they collect data from public sources. In this case the
actual performance of MalGAN will be between the performances of the two
splitting ways.

Adam [9] was chosen as the optimizer. We tuned the hyper-parameters on
the validation set. For the dataset with 180 thousand programs, 10 was chosen
as the dimension of the noise vector z. The generator’s layer size was set to
170-256-160, the substitute detector’s layer size was set to 160-256-1, and the
learning rate 0.001 was used for both the generator and the substitute detector.
For the Drebin dataset, we used the same network structures as Grosse et al.[7].
The maximum number of epochs to train MalGAN was set to 100. The epoch
with the lowest detection rate on the validation set is finally chosen to test the
performance of MalGAN.

4.2 Experimental Results

We first analyze the case where MalGAN and the black-box detector use the
same training set. For malware detection, the true positive rate (TPR) means the
detection rate of malware. After adversarial attacks, the reduction in TPR can
reflect how many malware samples successfully bypass the detection algorithm.
TPR on the training set and the test set of original samples and adversarial
examples is shown in Table 1. The datasets with 180 thousand programs is used
here.

Table 1. True positive rate (in percentage) on original samples and adversarial exam-
ples when MalGAN and the black-box detector are trained on the same training set.
“Adver.” represents adversarial examples.

Training set Test set

Original | Adver. | Original | Adver.
RF 97.62 0.20 95.38 0.19
LR 92.20 0.00 92.27 0.00
DT 97.89 0.16 93.98 0.16
SVM | 93.11 0.00 93.13 0.00
MLP |95.11 0.00 94.89 0.00
VOTE | 97.23 0.00 95.64 0.00




Adversarial Malware Examples Based on GAN 417

For random forest and decision trees, the TPRs on adversarial examples range
from 0.16% to 0.20% for both the training set and the test set, while the TPRs
on the original samples are all greater than 93%. When using other classifiers
as the black-box detector, MalGAN is able to decrease the TPR on generated
adversarial examples to zero for both the training set and the test set. That is
to say, for all of the backend classifiers, the black-box detector can hardly detect
any malware generated by the generator. The proposed model has successfully
learned to bypass these machine learning based malware detection algorithms.

The structures of logistic regression and support vector machines are very
similar to neural networks and MLP is actually a neural network. Therefore, the
substitute detector is able to fit them with a very high accuracy. This is why
MalGAN can achieve zero TPR for these classifiers. While random forest and
decision trees have quite different structures from neural networks so that Mal-
GAN results in non-zero TPRs. The TPRs of random forest and decision trees
on adversarial examples are still quite small, which means the neural network
has enough capacity to represent other models with quite different structures.
The voting of these algorithms also achieves zero TPR. We can conclude that the
classifiers with similar structures to neural networks are in the majority during
voting.

The convergence curve of TPR on the training set and the validation set
during the training process of MalGAN is shown in Fig. 2. The black-box detector
used here is random forest, since random forest performs very well in Table 1.

—— Training Set
Validation Set

TPR

0 20 40 60 80 100
Epoch

Fig. 2. The change of the true positive rate on the training set and the validation set
over time.

TPR converges to about zero near the 40th epoch, but the convergence curve
is a bit shaking, not a smooth one. This curve reflects the fact that the training
of GAN is usually unstable. How to stabilize the training of GAN has attracted
the attention of many researchers [1,21,23].

Now we will analyze the results when MalGAN and the black-box detector
are trained on different training sets. Fitting the black-box detector trained on



418 W. Hu and Y. Tan

a different dataset is more difficult for the substitute detector. The experimental
results are shown in Table 2.

Table 2. True positive rate (in percentage) on original samples and adversarial exam-
ples when MalGAN and the black-box detector are trained on different training sets.
“Adver.” represents adversarial examples.

Training set Test set

Original | Adver. | Original | Adver.
RF 95.10 0.71 94.95 0.80
LR 91.58 0.00 |91.81 0.01
DT 91.92 2.18 91.97 2.11
SVM |92.50 0.00 92.78 0.00
MLP | 94.32 0.00 94.40 0.00
VOTE | 94.30 0.00 |94.45 0.00

For SVM, MLP and VOTE, TPR reaches zero, and TPR of LR is nearly
zero. These results are very similar to Table 1. TPRs of random forest and deci-
sion trees on adversarial examples become higher compared with the case where
MalGAN and the black-box detector use the same training data. For decision
trees the TPRs rise to 2.18% and 2.11% on the training set and the test set
respectively. However, 2% is still a very small number and the black-box detec-
tor will still miss to detect most of the adversarial malware examples. It can be
concluded that MalGAN is still able to fool the black-box detector even trained
on a different training set.

4.3 Comparison with the Gradient Based Algorithm to Generate
Adversarial Examples

Existing algorithms of generating adversarial examples are mainly for images.
The difference between image and malware is that image features are continuous
while malware features are binary.

Grosse et al. modified the traditional gradient based algorithm to generate
binary adversarial malware examples [7]. They did not regard the malware detec-
tion algorithm as a black-box system and assumed that malware authors have
full access to the architecture and the weights of the neural network based mal-
ware detection model. The misclassification rates of adversarial examples range
from 35% to 84% under different hyper-parameters.

We applied MalGAN on the Drebin dataset used by Grosse et al. with a
malware ratio of 0.5 to attack a black-box random forest. The TPRs on the
test set are 5.63% and 6.87% respectively when MalGAN and random forest
are trained on the same training set and on different training sets. MalGAN is
able to make more malware undetected than the gradient based approach. This



Adversarial Malware Examples Based on GAN 419

gradient based approach is under the white-box assumption, while MalGAN
produces better results with a harder black-box assumption. In the following
experiments we will continue to use the dataset with 180 thousand programs
since it has much more malware examples than the Drebin dataset.

The algorithm proposed by Grosse et al. uses an iterative approach to gen-
erate adversarial malware examples. At each iteration the algorithm finds the
feature with the maximum likelihood to change the malware’s label from mal-
ware to benign. The algorithm modifies one feature at each iteration, until the
malware is successfully classified as a benign program or there are no features
available to be modified.

We tried to migrate this algorithm to attack a random forest based black-
box detection algorithm. A substitute neural network is trained to fit the black-
box random forest. Adversarial malware examples are generated based on the
gradient information of the substitute neural network.

TPR on the adversarial examples over the iterative process is shown in Fig. 3.
Please note that at each iteration not all of the malware samples are modified.
If a malware sample has already been classified as a benign program at previous
iterations or there are no modifiable features, the algorithm will do nothing on
the malware sample at this iteration.

TPR

0.4+

---- Training Set without Retraining
------- Test Set without Retraining
—— Training Set with Retraining
—-— Test Set with Retraining

0.2+

0.0

0 20 40 60 80 100 120 140 160
Iteration

Fig. 3. True positive rate on the adversarial examples over the iterative process when
using the algorithm proposed by Grosse et al..

On the training set and the test set, TPR converges to 93.52% and 90.96%
respectively. In this case the black-box random forest is able to detect most
of the adversarial examples. The substitute neural network is trained on the
original training set, while after several iterations the probability distribution of
adversarial examples will become quite different from the probability distribution
of the original training set. Therefore, the substitute neural network cannot
approximate the black-box random forest well on the adversarial examples. In
this case the adversarial examples generated from the substitute neural network
are unable to fool the black-box random forest.



420 W. Hu and Y. Tan

In order to fit the black-box random forest more accurately on the adversarial
examples, we tried to retrain the substitute neural network on the adversarial
examples. At each iteration, the current generated adversarial examples from the
whole training set are used to retrain the substitute neural network. As shown
in Fig. 3, the retraining approach make TPR. converge to 46.18% on the training
set, which means the black-box random forest can still detect about half of the
adversarial examples. However, the retrained model is unable to generalize to the
test set, since the TPR on the test set converges to 90.12%. The odd probability
distribution of these adversarial examples limits the generalization ability of the
substitute neural network.

MalGAN uses a generative network to transform original samples into adver-
sarial samples. The neural network has enough representation ability to perform
complex transformations, making MalGAN able to result in very low TPRs
on both the training set and the test set. While the representation ability of
the gradient based approach is too limited to generate high-quality adversarial
examples.

4.4 Retraining the Black-Box Detector

Several defensive algorithms have been proposed to deal with adversarial exam-
ples. Gu et al. proposed to use auto-encoders to map adversarial samples to
clean input data [8]. An algorithm named defensive distillation was proposed
by Papernot et al. to weaken the effectiveness of adversarial perturbations [19].
Li et al. found that adversarial retraining can boost the robustness of machine
learning algorithms [12]. Chen et al. compared these defensive algorithms and
concluded that retraining is a very effective way to defend against adversarial
examples, and is robust even against repeated attacks [2].

In this section we will analyze the performance of MalGAN under the retrain-
ing based defensive approach. If antivirus vendors collect enough adversarial
malware examples, the can retrain the black-box detector on these adversar-
ial examples in order to learn their patterns and detect them. Here we only
use random forest as the black-box detector due to its good performance. After
retraining the black-box detector, it is able to detect all adversarial examples,
as shown in the middle column of Table 3.

Table 3. True positive rate (in percentage) on the adversarial examples after the
black-box detector is retrained.

Before retraining MalGAN | After retraining MalGAN
Training set | 100 0
Test set 100 0

However, once antivirus vendors release the updated black-box detector pub-
licly, malware authors will be able to get a copy of it and retrain MalGAN to



Adversarial Malware Examples Based on GAN 421

attack the new black-box detector. After this process the black-box detector
can hardly detect any malware again, as shown in the last column of Table 3.
We found that reducing TPR from 100% to 0% can be done within one epoch
during retraining MalGAN. We alternated retraining the black-box detector and
retraining MalGAN for ten times. The results are the same as Table3 for the
ten times.

To retrain the black-box detector antivirus vendors have to collect enough
adversarial examples. It is a long process to collect a large number of malware
samples and label them. Adversarial malware examples have enough time to
propagate before the black-box detector is retrained and updated. Once the
black-box detector is updated, malware authors will attack it immediately by
retraining MalGAN and our experiments showed that retraining MalGAN takes
much less time than the first-time training. After retraining MalGAN, new
adversarial examples remain undetected. This dynamic adversarial process lands
antivirus vendors in a passive position. Machine learning based malware detec-
tion algorithms can hardly work in this case.

5 Conclusions

This paper proposed a novel algorithm named MalGAN to generate adversarial
examples from a machine learning based black-box malware detector. A neu-
ral network based substitute detector is used to fit the black-box detector. A
generator is trained to generate adversarial examples which are able to fool the
substitute detector. Experimental results showed that the generated adversarial
examples are able to effectively bypass the black-box detector.

Adversarial examples’ probability distribution is controlled by the weights
of the generator. Malware authors are able to frequently change the probability
distribution by retraining MalGAN, making the black-box detector cannot keep
up with it, and unable to learn stable patterns from it. Once the black-box
detector is updated malware authors can immediately crack it. This process
making machine learning based malware detection algorithms unable to work.

Acknowledgment. This work is supported by the Science and Technology Inno-
vation 2030 - ‘New Generation Artificial Intelligence’ Major Project (Grant Nos.:
2018AAA0100302), and partially supported by National Natural Science Foundation
of China (Grant No. 62076010 and 62276008).

References

1. Arjovsky, M., Bottou, L.: Towards principled methods for training generative
adversarial networks. In: NIPS 2016 Workshop on Adversarial Training. In review
for ICLR, vol. 2016 (2017)

2. Chen, X., Li, B., Vorobeychik, Y.: Evaluation of defensive methods for DNNs
against multiple adversarial evasion models (2016). https://openreview.net /forum?
id=ByToKu9ll


https://openreview.net/forum?id=ByToKu9ll
https://openreview.net/forum?id=ByToKu9ll

422

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

W. Hu and Y. Tan

Daniel, A., Michael, S., Malte, H., Hugo, G., Konrad, R.: Drebin: efficient and
explainable detection of android malware in your pocket. In: Proceedings of 21th
Annual Network and Distributed System Security Symposium (NDSS) (2014)
Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a Laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems, pp. 1486-1494 (2015)

Goodfellow, 1., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672-2680 (2014)

Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversar-
ial perturbations against deep neural networks for malware classification. arXiv
preprint arXiv:1606.04435 (2016)

Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adversar-
ial examples. arXiv preprint arXiv:1412.5068 (2014)

Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. J. Mach. Learn. Res. 7, 2721-2744 (2006)

Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 470-478. ACM (2004)

Li, B., Vorobeychik, Y., Chen, X.: A general retraining framework for scalable
adversarial classification. arXiv preprint arXiv:1604.02606 (2016)

Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples
and black-box attacks. arXiv preprint arXiv:1611.02770 (2016)

Microsoft: Microsoft portable executable and common object file format speci-
fication (2013). https://download.microsoft.com/download/9/c/5/9¢5b2167-8017-
4bae-9fde-d599bac8184a/pecoff _v83.docx

Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 (2016)

Papernot, N., McDaniel, P., Goodfellow, 1., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against deep learning systems using adversarial examples.
arXiv preprint arXiv:1602.02697 (2016)

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 372-387. IEEE (2016)
Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to
adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium
on Security and Privacy (SP), pp. 582-597. IEEE (2016)

Peiravian, N., Zhu, X.: Machine learning for android malware detection using per-
mission and API calls. In: 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 300-305. IEEE (2013)

Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)


http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1606.04435
http://arxiv.org/abs/1412.5068
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1604.02606
http://arxiv.org/abs/1611.02770
https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/pecoff_v83.docx
https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/pecoff_v83.docx
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1602.02697
http://arxiv.org/abs/1511.06434

22.

23.

24.

25.

Adversarial Malware Examples Based on GAN 423

Sahs, J., Khan, L.: A machine learning approach to android malware detection.
In: 2012 European Intelligence and Security Informatics Conference (EISIC), pp.
141-147. IEEE (2012)

Salimans, T., Goodfellow, 1., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Neural Information Pro-
cessing Systems, pp. 22262234 (2016)

Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection
of new malicious executables. In: 2001 IEEE Symposium on Security and Privacy,
2001. S&P 2001. Proceedings, pp. 38—49. IEEE (2001)

Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)


http://arxiv.org/abs/1312.6199

	Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
	1 Introduction
	2 Architecture of MalGAN
	2.1 Overview
	2.2 Generator
	2.3 Substitute Detector

	3 Training MalGAN
	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Comparison with the Gradient Based Algorithm to Generate Adversarial Examples
	4.4 Retraining the Black-Box Detector

	5 Conclusions
	References




