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Abstract. This paper proposes a new framework that optimizes anti-spam 
model with heuristic swarm intelligence optimization algorithms, and this 
framework could integrate various classifiers and feature extraction methods. In 
this framework, a swarm intelligence algorithm is utilized to optimize a 
parameter vector, which is composed of parameters of a feature extraction 
method and parameters of a classifier, considering the spam detection problem 
as an optimization process which aims to achieve the lowest error rate. Also, 2 
experimental strategies were designed to objectively reflect the performance of 
the framework. Then, experiments were conducted, using the Fireworks 
Algorithm (FWA) as the swarm intelligence algorithm, the Local Concentration 
(LC) approach as the feature extraction method, and SVM as the classifier. 
Experimental results demonstrate that the framework improves the performance 
on the corpora PU1, PU2, PU3 and PUA, while the computational efficiency is 
applicable in real world. 
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1 Introduction 

Spam, defined as Unsolicited Commercial E-mails (UCE) or Unsolicited Bulk  
E-mails (UBE), has become a significant problem for both recipients and Internet 
Service Providers (ISPs). For recipients, coping with spam is time-consuming; 
furthermore, spam frequently contains images that recipients find offensive, or 
attached malicious programs that attack recipients’ computers. For ISPs, large scale of 
spam is a considerable burden on their systems. Commtouch reported that in Q4 2012, 
the average daily spam level was 90 billion messages per day, which is a slight 
increase over Q3 2012. [1] Ferris Research revealed that spam cost $130 billion 
worldwide in 2009, which was a 30% raise over the 2007 estimates. [2] Therefore, it 
is necessary to find an effective method for the spam detection. 

Many approaches were proposed to handle the problem. In fact, Spam detection 
involves mainly three research fields, namely term selection, feature extraction, and 
classifier design. In the classifier design field, many machine learning (ML) methods 
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were adopted to classify emails, such as Support Vector Machine (SVM) [3]–[6], k-
Nearest Neighbor (k-NN), Naive Bayes (NB), Artificial Neural Network (ANN), 
Boosting, and Artificial Immune System (AIS). As the performance of an ML method 
depends on the extraction of discriminative feature vectors, feature extraction 
methods are crucial to the process of spam filtering. Commonly used feature 
extraction methods are, for example, Concentration-based Feature Construction 
(CFC) [4], Local concentration (LC) [7] and Bag-of-Words (BoW). The researches of 
term selection have also attracted much attention from researchers all over the world, 
widely utilized methods including Information Gain (IG) [8], Term Frequency 
Variance (TFV) [9] and Document Frequency (DF).  

In previous research, parameters in the anti-spam process are set simply and 
manually. However, the manual setting might cause several problems. For instance, 
lack of prior knowledge may lead to improper parameter setting, repeated attempts of 
users cost overmuch human effort, and the inflexibility of the dataset-relevant 
parameters should also be taken into counted. 

To solve the problems, this paper proposes a new framework that automatically 
optimizes parameters in anti-spam model with heuristic swarm intelligence 
optimization algorithms, and this framework could integrate various classifiers and 
feature extraction methods. 2 experimental strategies were designed to objectively 
reflect framework performance. Then, experiments are conducted, using the 
Fireworks Algorithm (FWA) as the Swarm Intelligence algorithm, the Local 
Concentration approach as the feature extraction method, and SVM as the classifier. 
Experimental results demonstrate that the framework improved the performance on 
the corpora PU1, PU2, PU3 and PUA, and the computational efficiency is applicable 
in real world.  

The remainder of the paper proceeds as follows. To begin with, we will provide a 
brief background on the LC approach and the FWA in Section II. The proposed 
framework for anti-spam is presented in Section III. In Section IV, the corpora, the 
criteria and the experimental setup are described, and experiments results are 
analyzed in detail. Section V concludes the paper. 

2 Related Works 

2.1 Local Concentration (LC) Based Feature Extraction Approach  
for Anti-spam 

In an anti-spam model, feature extraction is an essential step. The feature extraction 
method decides spatial distribution characteristics of email sample points, influencing 
construction of a specific email classification model and the final classification 
performance. An effective feature extraction method is able to extract extinguishing 
features of emails, endowing different kinds of emails possessing obvious spatial 
distribution difference. Moreover, it should be capable of reducing the complexity and 
difficulty of classification, so as to improve overall performance of the anti-spam 
model. The Local-concentration (LC) approach is proved to meet both of the 
requirements mentioned above. It not only greatly reduces feature dimensionality by 
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remaining the position-correlated information of emails, but also performs better in 
terms of both accuracy and measure compared to the BoW approach and the GC 
approach. 

Inspired from the biological immune system, the LC feature extraction approach is 
able to extract position-correlated information from messages by transforming each 
area of a message to a corresponding LC feature effectively. Two implementation 
strategies of the LC approach were designed by using a fixed-length sliding window 
and a variable-length sliding window. To incorporate the LC approach into the whole 
process of spam filtering, a generic LC model is designed. In the LC model, two types 
of detector sets are at first generated by using term selection methods and a well-
defined tendency threshold. Then a sliding window is adopted to divide the message 
into individual areas. After segmentation of the message, the concentration of 
detectors is calculated and taken as the feature for each local area. Finally, all the 
features of local areas are combined as a feature vector of the message. 

Fig. 1. Training and classification phases of the LC model 

The generic structure of the LC model is shown in Fig. 1. The tokenization is a 
simple step, where messages are tokenized into words (terms), while term selection, 
detector set construction and LC calculation are quite essential to the model. 

In the term selection step, terms are sorted in the order of importance and the top 
m% of the terms are selected to form the gene library. The term selection rate 
parameter, m%, decides the size of the gene library, influencing the computational 
complexity of the detector construction algorithm and distinguishability of detectors 
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in the next step. An optimal value of m% is supposed to effectively screen out noise 
terms, while guarantee the existence of the informative terms. 

In the detector construction step, the tendency of each detector, namely the 
difference between a term’s posterior probability of presence in normal emails and 
that in spams, is calculated. If the tendency of a term exceeds ߠ, the term will be 
added into the detector set. This parameter, ߠ , as the standard of detector set 
construction, is capable of controlling significance of detector matching, yet can’t be 
set too high, so as not to cause loss of information. 

In the LC calculation step, the number of sliding windows, N, no matter in fix-
length LC approach or in variable-length LC approach, is an important parameter, 
since it decides the size of a single sliding window and defines the local region,. As a 
result, it has a great impact on the dimensionality of LC feature vectors, and also 
performance of the algorithm. 

The above three parameters, as well as the parameters of classifiers in the 
classification step, are fairly essential in LC approach. They, as a whole, heavily 
influence the performance of the anti-spam model.  

In the previous research, these parameters in LC approach were set simply and 
manually. However, the manual setting might cause several problems. For instance, lack 
of prior knowledge may lead to improper parameter setting, repeated attempts of users 
cost overmuch human effort, and the inflexibility of the dataset-relevant parameters 
should also be taken into counted. To solve these difficulties, a parameter-optimized  
LC approach using Fireworks Algorithm is proposed in this paper. 

2.2 Fireworks Algorithm 

In recent years, swarm intelligence (SI) algorithms have been popular among 
researchers who are working on optimization problems. SI algorithms, e.g. Fireworks 
Algorithm (FWA) [10], Particle Swarm Optimization (PSO), Ant System, Clonal 
Selection Algorithm, and Swarm Robots, etc., have advantages in solving many 
optimization problems. Among all the SI algorithms, FWA is one of the most popular 
algorithms for searching optimal locations in a D-dimensional space. 

Like most swarm intelligence algorithms, FWA is inspired by some intelligent 
colony behaviors in nature. Specifically, the framework of FWA is mimicking the 
process of setting off fireworks. The explosion process of a firework can be viewed as 
a search in the local space around a specific point where the parent firework is set off 
through the offspring sparks generated in the explosion. 

Assume the population size of fireworks is N and the population size of generated 
spark is M. Each fireworks ݅ሺ݅ ൌ 1, 2, ⋯ , ܰሻ  in a population has the following 
properties: a current position ݔ௜, a current explosion amplitude ܣ௜ and the amount of 
the generated sparks ݏ௜. Each firework generates a number of sparks within a fixed 
explosion amplitude.  In each generation, N fireworks set off within a feasible 
bounds within explosion amplitude ܣ௜  and spark size ݏ௜ , then the spark are 
generated. In addition, the fireworks algorithm also takes Gaussian mutation operators 
to enhance local search capability. 
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The best firework is kept for the next generation, and the other ܰ െ 1 fireworks 
for the next generation are selected based on their distance to other fireworks or 
randomly as to keep the diversity in the set, which includes the N fireworks, the 
generated sparks and Gaussian mutation fireworks. The fireworks algorithm continues 
conducting these operations till the termination criteria is satisfied. 

As to the optimization problem ݂, a point with better fitness is considered as a 
potential solution, which the optima locate nearby with high chance, vice versa. 
Suppose FWA is utilized to solve a general optimization problem:  ݁ݖ݅݉݅݊݅ܯ ݂ሺݔሻ א ܴ, ݔ א ܴ௡ (1)

where x ൌ ,ଵݔ ,ଶݔ ⋯ , ௗݔ  denotes a location in the potential space, ݂ሺݔሻ  is an 
objective function, and ܴ௡  denotes the potential space. Then the FWA is 
implemented to find a point ݔ א ܴ௡, which has the minimal fitness value. This is also 
how the optimization of the anti-spam process is implemented. 

3 Parameter Optimization of Local-Concentration Model  
for Spam Detection by Using Fireworks Algorithm 

The classification problem that whether an email is spam or a normal email, is here 
considered as an optimization problem, that is, to achieve the lowest error rate by 
finding the optimal parameter vector in the potential search space. 

The optimal vector ܲכ ൌ൏ ,כଵܨ ,כଶܨ  ⋯ , ,כ௡ܨ ,כଵܥ ,כଶܥ  ⋯ , כ௠ܥ ൐ , composes of 2 
parts: the first part is the feature calculation relevant parameters ܨଵכ, ,כଶܨ  ⋯ ,  and ,כ௡ܨ
the second part is the classifier relevant parameters ܥଵכ, ,כଶܥ  ⋯ ,  The optimal .כ௠ܥ
vector ܲכ  is the vector whose cost function ܨܥሺܲሻ  associated with classification 
achieves the lowest value, with ܨܥሺܲሻ ൌ ሺܲሻ (2)ݎݎܧ

where ݎݎܧሺܲሻ is the classification error measured by 10-fold cross validation on the 
training set. Input vector P consists of two parts – parameters  ܨଵכ, ,כଶܨ  ⋯ ,  כ௡ܨ
associated with a certain feature extraction method and ܥଵכ, ,כଶܥ  ⋯ ,  associated כ௠ܥ
with a certain classifier.  ܨଵכ, ,כଶܨ  ⋯ , כ௡ܨ  uniquely determine the performance of 
feature construction, while ܥଵכ, ,כଶܥ  ⋯ ,  influence the performance of a certain כ௠ܥ
classifier. Different feature extraction methods hold different parameters and lead to 
different performance. For LC approach, specifically, ݉, the Term Selection Rate, 
helps select the top ݉  % terms with descending importance in term set, which 
determines the term pool size. ߠ, the Proclivity Threshold, the minimal difference of 
a term’s frequency in non-spam e-mails minus that in spam e-mails, has an assistant 
function in  screening out terms with greater discrimination. ܰ, the number of sliding 
windows, determines the dimensionality of the feature vector of emails. Different 
classifiers hold different parameters and also lead to different performance. 
Parameters associated with neural network, which determine the structure of the 
network, include number of layers, number of nodes within a layer and each 
connection weight between two nodes. SVM-related parameters that determine the 
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position of optimal hyper-plane in feature space, include cost parameter C and kernel 
parameters, just to name a few.  

The vector ܲ  is the optimization objective whose performance is measured by ܨܥሺܲሻ. Therefore, the optimization of concentrations can be formulated as follows.  
Finding ܲכ ൌ൏ ,כଵܨ ,כଶܨ  ⋯ , ,כ௡ܨ ,כଵܥ ,כଶܥ  ⋯ , כ௠ܥ ൐,  so that ܨܥሺܲכሻ ൌ ሺܲሻሼிభ,ிమ,⋯,ி೘,஼భ,஼మ,⋯,஼೘ሽ୫୧୬ܨܥ  (3)

Several optimization approaches not demanding an analytical expression of the 
objective function such as particle swarm optimization (PSO), genetic algorithms 
(GA) and so forth can be employed for the optimization process. Fireworks Algorithm 
was used to design concentrations.  

Figure 2 shows the optimization process of Parameter Optimization of Local-
Concentration Model for Spam Detection Using Fireworks Algorithm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Process of the Parameter Optimization of Local-Concentration Model for Spam 
Detection by Using Fireworks Algorithm 

This framework utilizes the Fireworks Algorithm to optimize parameters in the 
Local Concentration approach. Not only the essential parameters in the LC approach, 
but also the classifier-relevant parameters are optimized in this framework, so that the 
whole anti-spam process gets optimized. 
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This framework optimizes anti-spam model with heuristic Swarm Intelligence 
optimization algorithms, which could integrate various classifiers and feature 
extraction methods.  

4 Experiments 

4.1 Experimental Corpora 

The experiments were conducted on four benchmark corpora PU1, PU2, PU3, and 
PUA, using 10-fold cross validation. The corpora have been preprocessed with 
removal of attachments, HTML tags, and header fields except for the subject. The 
duplicates were removed from the corpora in that they may lead to over-optimistic 
conclusions in experiments. In PU1 and PU2, only the duplicate spam, which arrived 
on the same day, are deleted. While in PU3 and PUA, all duplicates (both spam and 
legitimate e-mail) are removed, even if they arrived on different days. Different from 
the former PU1 corpus (the one released in 2000), the corpora are not processed with 
removal of stop words, and no lemmatization method is adopted. The details of the 
corpora are given as follows. 

1) PU1: The corpus includes 1099 messages, 481 messages of which are spam. The 
ratio of legitimate e-mail to spam is 1.28. The preprocessed legitimate messages 
and spam are all English messages, received over 36 months and 22 months, 
respectively. 

2) PU2: The corpus includes 721 messages, 142 messages of which are spam. The 
ratio of legitimate e-mail to spam is 4.01. Similar to PU1, the preprocessed 
legitimate messages and spam are all English messages, received for over 22 
months. 

3) PU3: The corpus includes 4139 messages, 1826 messages of which are spam. 
The ratio of legitimate e-mail to spam is1.27. Unlike PU1 and PU2, the legitimate 
messages contain both English and non-English ones. While spam are derived 
from PU1, Spam Assassin corpus and other sources. 

4) PUA: The corpus includes 1142 messages, 572 messages of which are spam. The 
ratio of legitimate e-mail to spam is 1. Similar to PU3, the legitimate e-mail 
contain both English and non-English messages, and spam is also derived from 
the same sources. 

4.2 Evaluation Criteria 

In spam filtering, many evaluation methods or criteria have been designed for 
comparing performance of different algorithms [12], [13]. We adopted four 
evaluation criteria, which were spam recall, spam precision, accuracy, and ܨఉ 
measure, in all our experiments to do a before-and-after comparison. Among the 
criteria, accuracy and ܨఉ measure are more important, for accuracy measures the total 
number of messages correctly classified, and ܨఉ is a combination of spam recall and 
spam precision. 
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1) Spam recall: It measures the percentage of spam that can be filtered by an 
algorithm or model. High spam recall ensures that the filter can protect the users 
from spam effectively. It is defined as follows: ܴௌ ൌ ݊௦՜௦݊௦՜௦ ൅ ݊௦՜௟ (4)

where ݊௦՜௦ is the number of spam correctly classified, and ݊௦՜௟ is the number 
of spam mistakenly classified as legitimate e-mail. 

2) Spam precision: It measures how many messages, classified as spam, are truly 
spam. This also reflects the amount of legitimate e-mail mistakenly classified as 
spam. The higher the spam precision is, the fewer legitimate e-mail have been 
mistakenly filtered. It is defined as follows: 

ௌܲ ൌ ݊௦՜௦݊௦՜௦ ൅ ݊௟՜௦ (5)

where ݊௟՜௦ is the number of legitimate e-mail mistakenly classified as spam, and ݊௦՜௦ has the same definition as in (4). 
3) Accuracy: To some extent, it can reflect the overall erformance of filters. It 

measures the percentage of messages (including both spam and legitimate e-mail) 
correctly classified. It is defined as follows: A ൌ ݊௟՜௟ ൅ ݊௦՜௦݊௟ ൅ ݊௦  (6)

where ݊௟՜௟ is the number of legitimate e-mail correctly classified, ݊௦՜௦ has the 
same definition as in (4), and ݊௟  and ݊௦  are, respectively, the number of 
legitimate e-mail and the number of spam in the corpus. 

 to ௦ܲ. It ߚ measure: It is a combination of ܴ௦ and ௦ܲ, assigning a weight ࢼࡲ (4
reflects the overall performance in another aspect. ܨఉ  measure is defined as 
follows: ܨఉ ൌ ሺ1 ൅ ଷሻߚ ܴ௦ ൅ ௦ܲߚଶ ௦ܲ ൅ ܴ௦ (7)

In our experiments, we adopted ߚ ൌ 1 as done in most approaches [12]. In this case, 
it is referred to as ܨଵ measure. In the experiments, the values of the four measures 
were all calculated. However, only accuracy and ܨଵ measure are used for parameter 
selection and comparison of different approaches. Because they can reflect overall 
performance of different approaches, and ܨଵ combines both ܴ௦ and ௦ܲ. In addition, ܴ௦ and ௦ܲ, respectively, reflect different aspects of the performance, and they cannot 
reflect the overall performances of approaches, separately. That is also the reason why 
the ܨఉ is proposed. We calculated them just to show the components of ܨଵ in detail. 

4.3 Experimental Setup 

All the experiments were conducted on a PC with Intel Core i5-2300 CPU and 4G 
RAM. The LC-based model with variable-length sliding window was optimized and 
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the term selection method utilized was information gain. SVM was employed as 
classifier and LIBSVM was applied for the implementation of the SVM.10-fold cross 
validation was utilized on each corpora. Since FWA is a stochastic algorithm, the 
experimental results we present are average results under ten independent runs. 
Accuracy, recall, precision and F1 measure were selected as evaluation criteria, in 
which accuracy and F1 measure are main ones since they can reflect the overall 
performance of spam filtering. 

4.4 Experimental Results and Analysis 

Two strategies for experiments were designed to investigate the effectiveness of the 
proposed optimization process of LC model. In both strategies, optimization of the 
LC model is conducted on the training set and finally examined on the testing set in 
each fold. In this case, the original training set is further divided into a new training 
set and a testing set for computing the fitness to evaluate the LC model that the 
current spark is corresponding to. 

For the consideration of efficiency, the first strategy (strategy-1) is designed by 
defining a validation set on the original training set and making it independent from 
the original training set, e.g. the original training set is divided into a new training set 
and a validation set. The fitness of each spark is independently computed on the 
validation set after a corresponding classifier is trained on the new training set. The 
optimal model that corresponding to the optimal spark achieved and trained on the 
new training set is finally examined on the testing set in each fold. In this strategy, 
fitness of each spark is evaluated on an independent validation set in each fold, thus 
the computational complexity is relatively low and the optimization process of the LC 
model could be finished quickly. 

Table 1. Performance comparison of LC before and after optimization with strategy-1 

Corpus Approach Precision (%) Recall (%) Accuracy (%) F1 (%) 

PU1 
LC 94.85 95.63 95.87 95.21 

Strategy-1 96.55 95.21 96.33 95.81 

PU2 
LC 95.74 77.86 94.79 85.16 

Strategy-1 95.15 80.71 95.35 86.65 

PU3 
LC 96.68 94.34 96.03 95.45 

Strategy-1 95.81 95.71 96.18 95.69 

PUA 
LC 95.60 94.56 94.91 94.94 

Strategy-1 96.63 94.56 95.53 95.49 
 

Experiments were conducted on the original PU1, PU2, PU3 and PUA corpus to 
verify the effectiveness of strategy-1. Table 1 shows the optimization results with 
strategy-1 as well as the performance of the original LC model. It is clear that the 
performance of the LC model is improved with the optimization process defined by 
strategy-1, indicating that strategy-1, e.g. the FWA-based optimization process, is 
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effective to improve the performance of the original LC model. On the other hand, as 
shown in Table 1, the performance improvement of the LC model with strategy-1 is 
limited due to that the validation set cannot well reflect the data distribution of the 
testing set all the time.  

For the consideration of robustness, the second strategy (strategy-2) is designed 
based on strategy-1. Different from strategy-1, the fitness of each spark in this 
strategy is not simply computed on an independent validation set. Instead, 10-fold 
cross validation mechanism is employed in the process of computing fitness of each 
spark, where the original training set is divided into ten parts and one of them is 
defined as the validation set and others are defined as the new training set in each 
fold. The current spark is evaluated by training a corresponding model on the new 
training set and computing fitness on the validation set ten times. In this case, each 
spark is comprehensively evaluated by the performance on 10 folds. The optimal 
model that is corresponding to the optimal spark achieved and trained on the original 
training set is finally examined on the testing set. In this strategy, fitness of each spark 
is evaluated on the training set   by 10-fold cross validation, overcoming the shortage 
of strategy-1 that the performance improvement of LC model is totally dependent on 
the consistency of data distribution in validation set and testing test. Strategy-2 
enhances the robustness of the optimization process and is considered to achieve the 
improvements, with great performance, of the LC model. 

Table 2. Performance comparison of LC before and after optimization with strategy-2 

Corpus Approach Precision (%) Recall (%) Accuracy (%) F1 (%) 

PU1s 
LC 100 92.36 96.67 95.88 

Strategy-2 100 96.64 98.57 98.22 

PU2s 
LC 100 64.00 90.71 74.62 

Strategy-2 100 94.17 98.57 96.57 

PU3s 
LC 97.84 91.30 95.37 94.34 

Strategy-2 98.25 95.91 97.56 97.02 

PUAs 
LC 95.78 90.72 93.64 92.68 

Strategy-2 98.75 96.44 97.73 97.42 
 

Considering the efficiency of experiments, we randomly selected part of each 
corpora instead of the original corpus to investigate the effectiveness of strategy-2, 
e.g. 20% samples of PU1, PU2 and PUA were selected to form PU1s, PU2s and 
PUAs, and 10% samples of PU3 were selected to form PU3s. Table 2 presents the 
comparison of LC model before and after the optimization with strategy-2. It is 
notable that strategy-2 indeed brings a great improvement to the performance of the 
LC model, validating the effectiveness (taken the precision, recall, accuracy and F1 
into account) of this strategy as well as the FWA-based optimization process. But the 
drawback of strategy-2 is that employing 10-fold cross validating in computing the 
fitness of sparks is time consuming. However, in fact, the usual offline training of the 
spam filters in the real world endows this strategy with usability.  
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5 Conclusion 

This paper proposes a new framework that optimizes anti-spam model with heuristic 
swarm intelligence optimization algorithms, and this framework could integrate 
various classifiers and feature extraction methods. 2 experimental strategies were 
designed to objectively reflect the performance of the framework. Then, experiments 
are conducted, using the Fireworks Algorithm (FWA) as the Swarm Intelligence 
algorithm, the Local Concentration approach as the feature extraction method, and 
SVM as the classifier. During the experiments, 3 core parameters of the LC approach 
and 2 core parameters of SVM were optimized by using FWA. Experimental results 
demonstrated that the framework improved the performance on the corpora PU1, 
PU2, PU3 and PUA, and the computational efficiency is applicable in real world.  

In future work, we intend to incorporate other swarm intelligence algorithms, 
feature extraction methods and classifiers into the framework, and investigate their 
performance under these configurations. 
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