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Abstract. Benchmarking is key for developing and comparing optimiza-
tion algorithms. In this paper, a GPU-based test suit for real-parameter
optimization, dubbed cuROB, is introduced. Test functions of diverse
properties are included within cuROB and implemented efficiently with
CUDA. Speedup of one order of magnitude can be achieved in compari-
son with CPU-based benchmark of CEC’14.
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1 Introduction

Proposed algorithms are usually tested on benchmark for comparing both per-
formance and efficiency. However, as it can be a very tedious task to select and
implement test functions rigorously. Thanks to GPUs’ massive parallelism, a
GPU-based optimization function suit will be beneficial to test and compare
optimization algorithms.

Based on the well known CPU-based benchmarks presented in [1,2,3], we
proposed a CUDA-based real parameter optimization test suit, called cuROB,
targeting on GPUs. We think cuROB can be helpful for assessing GPU-based
optimization algorithms, and hopefully, conventional CPU-based algorithms can
benefit from cuROB’s fast execution.

Considering the fact that research on the single objective optimization algo-
rithms is the basis of the research on the more complex optimization algorithms
such as constrained optimization algorithms, multi-objective optimizations al-
gorithms and so forth, in this first release of cuROB a suit of single objective
real-parameter optimization function are defined and implemented.

The test functions are selected according to the following criteria: 1) the func-
tions should be scalable in dimension so that algorithms can be tested under
various complexity; 2) the expressions of the functions should be with good
parallelism, thus efficient implementation is possible on GPUs; 3) the functions
should be comprehensible such that algorithm behaviours can be analysed in
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the topological context; 4) last but most important, the test suit should cover
functions of various properties in order to get a systematic evaluation of the
optimization algorithms.

The source code and a sample can be download from code.google.com/

p/curob/.

1.1 Symbol Conventions and Definitions

Symbols and definitions used in the report are described in the following. By
default, all vectors refer to column vectors, and are depicted by lowercase letter
and typeset in bold.

– [·] indicates the nearest integer value
– �·� indicates the largest integer less than or equal to
– xi denotes i-th element of vector x
– f(·), g(·) and G(·) multi-variable functions
– fopt optimal (minimal) value of function f
– xopt optimal solution vector, such that f(xopt) = fopt
– R normalized orthogonal matrix for rotation
– D dimension
– 1 = (1, . . . , 1)T all one vector

1.2 General Setup

The general setup of the test suit is presented as follows.

– Dimensions The test suit is scalable in terms of dimension. Within the
hardware limit, any dimension D ≥ 2 works. However, to construct a real
hybrid function, D should be at least 10.

– Search Space All functions are defined and can be evaluated over RD,
while the actual search domain is given as [−100, 100]D.

– fopt All functions, by definition, have a minimal value of 0, a bias (fopt)
can be added to each function. The selection can be arbitrary, fopt for each
function in the test suit is listed in Tab. 1.

– xopt The optimum point of each function is located at original. xopt which
is randomly distributed in [−70, 70]D, is selected as the new optimum.

– Rotation Matrix To derive non-separable functions from separable ones,
the search space is rotated by a normalized orthogonal matrix R. For a given
function in one dimension, a different R is used. Variables are divided into
three (almost) equal-sized subcomponents randomly. The rotation matrix for
each subcomponent is generated from standard normally distributed entries
by Gram-Schmidt orthonormalization. Then, these matrices consist of the
R actually used.

1.3 CUDA Interface and Implementation

A simple description of the interface and implementation is given in the following.
For detail, see the source code and the accompanied readme file.
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Interface. Only benchmark.h need to be included to access the test func-
tions, and the CUDA file benchmark.cu need be compiled and linked. Before
the compiling start, two macro, DIM and MAX CONCURRENCY should be
modified accordingly. DIM defines the dimension of the test suit to used while
MAX CONCURRENCY controls the most function evaluations be invoked con-
currently. As memory needed to be pre-allocated, limited by the hardware, don’t
set MAX CONCURRENCY greater than actually used.

Host interface function initialize () accomplish all initialization tasks, so must
be called before any test function can be evaluated. Allocated resource is released
by host interface function dispose ().

Both double precision and single precision are supported through
func evaluate () and func evaluatef () respectively. Take note that device pointers
should be passed to these two functions. For the convenience of CPU code, C in-
terfaces are provided, with h func evaluate for double precision and
h func evaluatef for single precision. (In fact, they are just wrappers of the GPU
interfaces.)

Efficiency Concerns. When configuration of the suit, some should be taken
care for the sake of efficiency. It is better to evaluation a batch of vectors than
many smaller. Dimension is a fold of 32 (the warp size) can more efficient. For
example, dimension of 96 is much more efficient than 100, even though 100 is
little greater than 96.

1.4 Test Suite Summary

The test functions fall into four categories: unimodal functions, basic multi-
modal functions, hybrid functions and composition functions. The summary of
the suit is listed in Tab. 1. Detailed information of each function will given in
the following sections.

2 Speedup

Under different hardware, various speedups can be achieved. 30 functions are
the same as CEC’14 benchmark. We test the cuROB’s speedup with these 30
functions under the following settings: Windows 7 SP1 x64 running on Intel
i5-2310 CPU with NVIDIA 560 Ti, the CUDA version is 5.5. 50 evaluations
were performed concurrently and repeated 1000 runs. The evaluation data were
generated randomly from uniform distribution.

The speedups with respect to different dimension are listed by Tab. 2 (sin-
gle precision) and Tab. 3 (double precision). Notice that the corresponding di-
mensions of cuROB are 10, 32, 64 and 96 respectively and the numbers are as
in Tab. 1

Fig. 1 demonstrates the overall speedup for each dimension. On average,
cuROB is never slower than its CPU-base CEC’14 benchmark, and speedup of
one order of magnitude can be achieved when dimension is high. Single precision
is more efficient than double precision as far as execution time is concerned.
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Table 1. Summary of cuROB’s Test Functions

No. Functions ID Description

Unimodal
Functions

0 Rotated Sphere SPHERE Optimum easy
to track1 Rotated Ellipsoid ELLIPSOID

2 Rotated Elliptic ELLIPTIC

Optimum hard
to track

3 Rotated Discus DISCUS
4 Rotated Bent Cigar CIGAR
5 Rotated Different Powers POWERS
6 Rotated Sharp Valley SHARPV

Basic
Multi-modal
Functions

7 Rotated Step STEP
With

adepuate
global

structure

8 Rotated Weierstrass WEIERSTRASS
9 Rotated Griewank GRIEWANK
10 Rastrigin RARSTRIGIN U
11 Rotated Rastrigin RARSTRIGIN
12 Rotated Schaffer’s F7 SCHAFFERSF7
13 Rotated Expanded Griewank plus Rosenbrock GRIE ROSEN
14 Rotated Rosenbrock ROSENBROCK

With
weak
global

structure

15 Modified Schwefel SCHWEFEL U
16 Rotated Modified Schwefel SCHWEFEL
17 Rotated Katsuura KATSUURA
18 Rotated Lunacek bi-Rastrigin LUNACEK
19 Rotated Ackley ACKLEY
20 Rotated HappyCat HAPPYCAT
21 Rotated HGBat HGBAT
22 Rotated Expanded Schaffer’s F6 SCHAFFERSF6

Hybrid
Functions

23 Hybrid Function 1 HYBRID1
With different
properties for

different variables
subcomponents

24 Hybrid Function 2 HYBRID2
25 Hybrid Function 3 HYBRID3
26 Hybrid Function 4 HYBRID4
27 Hybrid Function 5 HYBRID5
28 Hybrid Function 6 HYBRID6

Composition
Functions

29 Composition Function 1 COMPOSITION1
Properties similar

to particular
sub-function

when approaching
the corresponding

optimum

30 Composition Function 2 COMPOSITION2
31 Composition Function 3 COMPOSITION3
32 Composition Function 4 COMPOSITION4
33 Composition Function 5 COMPOSITION5
34 Composition Function 6 COMPOSITION6
35 Composition Function 7 COMPOSITION7
36 Composition Function 8 COMPOSITION8

Search Space: [−100, 100]D , fopt = 100
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Table 2. Speedup (single Precision)

D NO.3 NO.4 NO.5 NO.8 NO.9 NO.10 NO.11 NO.13 NO.14 NO.15

10 0.59 0.20 0.18 12.23 0.49 0.28 0.31 0.32 0.14 0.77
32 3.82 2.42 2.00 47.19 3.54 1.67 3.83 5.09 2.06 3.54
64 4.67 2.72 2.29 50.17 3.56 0.93 3.06 2.88 2.20 3.39
94 13.40 10.10 8.50 84.31 11.13 1.82 9.98 9.66 8.75 6.73

D NO.16 NO.17 NO.19 NO.20 NO.21 NO.22 NO.23 NO.24 NO.25 NO.26

10 0.80 3.25 0.36 0.20 0.26 0.45 0.63 0.44 2.80 0.52
32 5.57 10.04 3.46 1.22 1.42 6.44 3.95 3.43 11.47 3.36
64 5.45 13.19 3.27 2.10 2.27 3.81 4.62 3.07 14.17 3.34
96 14.38 23.68 11.32 8.26 8.49 11.60 13.67 10.64 30.11 10.71

D NO.27 NO.28 NO.29 NO.30 NO.31 NO.32 NO.33 NO.34 NO.35 NO.36

10 0.65 0.72 0.70 0.55 0.71 3.49 3.50 0.84 1.28 0.70
32 2.73 3.09 3.63 3.10 4.10 12.39 12.51 5.25 5.19 3.33
64 3.86 4.01 3.21 2.67 3.38 12.68 12.63 3.80 5.27 3.13
96 12.04 11.32 8.15 6.27 8.49 23.67 23.64 9.50 11.79 7.93

Table 3. Speedup (Double Precision)

D NO.3 NO.4 NO.5 NO.8 NO.9 NO.10 NO.11 NO.13 NO.14 NO.15

10 0.56 0.19 0.17 9.04 0.43 0.26 0.29 0.30 0.14 0.75
32 3.78 2.43 1.80 33.37 3.09 1.59 3.52 4.81 1.97 3.53
64 4.34 2.49 1.93 30.82 3.15 0.92 2.87 2.74 2.11 3.29
96 12.27 9.24 6.95 46.01 9.72 1.78 9.62 8.74 7.87 5.92

D NO.16 NO.17 NO.19 NO.20 NO.21 NO.22 NO.23 NO.24 NO.25 NO.26

10 0.79 2.32 0.34 0.18 0.26 0.45 0.59 0.43 1.97 0.52
32 5.10 6.79 3.28 1.13 1.29 6.10 3.63 3.14 8.15 3.23
64 4.75 8.29 3.06 1.99 2.18 3.32 4.02 2.77 9.80 2.92
96 11.91 13.81 9.75 7.37 7.78 10.24 11.55 9.57 20.81 9.40

D NO.27 NO.28 NO.29 NO.30 NO.31 NO.32 NO.33 NO.34 NO.35 NO.36

10 0.79 2.32 0.34 0.18 0.26 0.45 0.59 0.43 1.97 0.52
32 5.10 6.79 3.28 1.13 1.29 6.10 3.63 3.14 8.15 3.23
64 4.75 8.29 3.06 1.99 2.18 3.32 4.02 2.77 9.80 2.92
96 11.91 13.81 9.75 7.37 7.78 10.24 11.55 9.57 20.81 9.40
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Fig. 1. Overall Speedup

3 Unimodal Functions

3.1 Shifted and Rotated Sphere Function

f1(x) =

D∑

i=1

z2i + fopt (1)

where z = R(x− xopt).

Properties

– Unimodal
– Non-separable
– Highly symmetric, in particular rotationally invariant

3.2 Shifted and Rotated Ellipsoid Function

f4(x) =

D∑

i=1

i · z2i + fopt (2)

where z = R(x− xopt).

Properties

– Unimodal
– Non-separable
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3.3 Shifted and Rotated High Conditioned Elliptic Function

f2(x) =
D∑

i=1

(106)
i−1
D−1 z2i + fopt (3)

where z = R(x− xopt).

Properties

– Unimodal
– Non-separable
– Quadratic ill-conditioned
– Smooth local irregularities

3.4 Shifted and Rotated Discus Function

f5(x) = 106 · z21 +
D∑

i=2

z2i + fopt (4)

where z = R(x− xopt).

Properties

– Unimodal
– Non-separable
– Smooth local irregularities
– With One sensitive direction

3.5 Shifted and Rotated Bent Cigar Function

f6(x) = z21 + 106 ·
D∑

i=2

z2i + fopt (5)

where z = R(x− xopt).

Properties

– Unimodal
– Non-separable
– Optimum located in a smooth but very narrow valley

3.6 Shifted and Rotated Different Powers Function

f4(x) =

√√√√
D∑

i=1

|zi|2+4 i−1
D−1 + fopt (6)

where z = R(0.01(x− xopt)).
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Properties

– Unimodal
– Non-separable
– Sensitivities of the zi-variables are different

3.7 Shifted and Rotated Sharp Valley Function

f4(x) = z2i + 100 ·
√√√√

D∑

i=2

z2i + fopt (7)

where z = R(x− xopt).

Properties

– Unimodal
– Non-separable
– Global optimum located in a sharp (non-differentiable) ridge

4 Basic Multi-modal Functions

4.1 Shifted and Rotated Step Function

f3(x) =

D∑

i=1

�zi + 0.5�2 + fopt (8)

where z = R(x− xopt)

Properties

– Many Plateaus of different sizes
– Non-separable

4.2 Shifted and Rotated Weierstrass Function

f9(x) =
D∑

i=1

(
kmax∑

k=0

ak cos (2πbk(zi + 0.5))

)
−D ·

kmax∑

k=0

ak cos (2πbk ·0.5)+fopt (9)

where a = 0.5, b = 3, kmax = 20, z = R(0.005 · (x − xopt)).

Properties

– Multi-modal
– Non-separable
– Continuous everywhere but only differentiable on a set of points
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4.3 Shifted and Rotated Griewank Function

f10(x) =

D∑

i=1

z2i
4000

−
D∏

i=1

cos(
zi√
i
) + 1 + fopt (10)

where z = R(6 · (x − xopt)).

Properties

– Multi-modal
– Non-separable
– With many regularly distributed local optima

4.4 Shifted Rastrigin Function

f11(x) =

D∑

i=1

(
z2i − 10 cos(2πzi)

)
+ 10 ·D + fopt (11)

where z = 0.0512 · (x− xopt).

Properties

– Multi-modal
– Separable
– With many regularly distributed local optima

4.5 Shifted and Rotated Rastrigin Function

f12(x) =

D∑

i=1

(
z2i − 10 cos(2πzi) + 10

)
+ fopt (12)

where z = R(0.0512 · (x− xopt)).

Properties

– Multi-modal
– Non-separable
– With many regularly distributed local optima

4.6 Shifted Rotated Schaffer’s F7 Function

f17(x) =

(
1

D − 1

D−1∑

i=1

(
(1 + sin2(50 ·w0.2

i )) · √wi

)
)2

+ fopt (13)

where wi =
√
z2i + z2i+1, z = R(x− xopt).
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Properties

– Multi-modal
– Non-separable

4.7 Expanded Griewank plus Rosenbrock Function

Rosenbrock Function: g2(x, y) = 100(x2 − y)2 + (x− 1)2

Griewank Function: g3(x) = x2/4000− cos(x) + 1

f18(x) =

D−1∑

i=1

g3(g2(zi, zi+1)) + g3(g2(zD, z1)) + fopt (14)

where z = R(0.05 · (x− xopt)) + 1.

Properties

– Multi-modal
– Non-separable
–

4.8 Shifted and Rotated Rosenbrock Function

f7(x) =

D−1∑

i=1

(
100 · (z2i − zi+1)

2 + (zi − 1)2
)
+ fopt (15)

where z = R(0.02048 · (x− xopt)) + 1.

Properties

– Multi-modal
– Non-separable
– With a long, narrow, parabolic shaped flat valley from local optima to global

optima

4.9 Shifted Modified Schwefel Function

f13(x) = 418.9829×D−
D∑

i=1

g1(wi), wi = zi+420.9687462275036 (16)

g1(wi) =

⎧
⎪⎪⎨

⎪⎪⎩

wi · sin(
√|wi|) if |wi| ≤ 500

(500 − mod(wi, 500)) · sin
(√

500 − mod(wi, 500)
)
− (wi−500)2

10000D if wi > 500

(mod(−wi, 500) − 500) · sin
(√

500 − mod(−wi, 500)
)
− (wi+500)2

10000D if wi < −500

(17)

where z = 10 · (x− xopt).
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Properties

– Multi-modal
– Separable
– Having many local optima with the second better local optima far from the

global optima

4.10 Shifted Rotated Modified Schwefel Function

f14(x) = 418.9829×D−
D∑

i=1

g1(wi), wi = zi+420.9687462275036 (18)

where z = R(10 · (x − xopt)) and g1(·) is defined as Eq. 17.

Properties

– Multi-modal
– Non-separable
– Having many local optima with the second better local optima far from the

global optima

4.11 Shifted Rotated Katsuura Function

f15(x) =
10

D2

D∏

i=1

(1 + i

32∑

j=1

|2j · zi − [2j · zi]|
2j

)
10

D1.2 − 10

D2
+ fopt (19)

where z = R(0.05 · (x− xopt)).

Properties

– Multi-modal
– Non-separable
– Continuous everywhere but differentiable nowhere

4.12 Shifted and Rotated Lunacek bi-Rastrigin Function

f12(x) = min

(
D∑

i=1

(zi − μ1)
2, dD + s

D∑

i=1

(zi − μ2)
2)

)

+10 · (D−
D∑

i=1

cos(2π(zi −μ1)))+ fopt (20)

where z = R(0.1 · (x− xopt) + 2.5 ∗ 1), μ1 = 2.5, μ2 = −2.5, d = 1, s = 0.9.

Properties

– Multi-modal
– Non-separable
– With two funnel around μ11 and μ21
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4.13 Shifted and Rotated Ackley Function

f8(x) = −20 · exp
⎛

⎝−0.2

√√√√ 1

D

D∑

i=1

x2
i

⎞

⎠− exp

(
1

D

D∑

i=1

cos(2πxi)

)
+ 20+ e+ fopt

(21)
where z = R(x− xopt).

Properties

– Multi-modal
– Non-separable
– Having many local optima with the global optima located in a very small

basin

4.14 Shifted Rotated HappyCat Function

f16(x) = |
D∑

i=1

z2i −D|0.25 + (
1

2

D∑

j=1

z2j +

D∑

j=1

zj)/D + 0.5 + fopt (22)

where z = R(0.05 · (x− xopt))− 1.

Properties

– Multi-modal
– Non-separable
– Global optima located in curved narrow valley

4.15 Shifted Rotated HGBat Function

f17(x) = |(
D∑

i=1

z2i )
2 − (

D∑

j=1

zj)
2|0.5 + (

1

2

D∑

j=1

z2j +
D∑

j=1

zj)/D + 0.5 + fopt (23)

where z = R(0.05 · (x− xopt))− 1.

Properties

– Multi-modal
– Non-separable
– Global optima located in curved narrow valley

4.16 Expanded Schaffer’s F6 Function

Schaffer’s F6 Function: g4(x, y) =
sin2(

√
x2 + y2)− 0.5

(1 + 0.001 · (x2 + y2))2
+ 0.5

f19(x) =

D−1∑

i=1

g4(zi, zi+1) + g4(zD, z1) + fopt (24)

where z = R(x− xopt).
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Properties

– Multi-modal
– Non-separable

5 Hybrid and Composition Functions

Hybrid functions are constructed according to [3]. For each hybrid function, the
variables are randomly divided into subcomponents and different basic functions
(unimodal and multi-modal) are used for different subcomponents.

Composition functions are constructed in the same manner as in [2,3]. The
constructed functions are multi-modal and non-separable and merge the proper-
ties of the sub-functions better and maintains continuity around the global/local
optima. The local optimum which has the smallest bias value is the global op-
timum. The optimum of the third basic function is set to the origin as a trip
in order to test the algorithms’ tendency to converge to the search center. Note
that, the landscape is not only changes along with the selection of basic function,
but the optima, σ and λ can effect it greatly.

The detailed specifications of hybrid and composition functions can be found
in the extended version of this paper1, along with illustrations for all 2-D func-
tions except hybrid functions.
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