
AMulti-branch Ensemble Agent Network
for Multi-agent Reinforcement Learning

Renlong Chen1,2 and Ying Tan1,2(B)

1 Nanjing Kangbo Intelligent Health Academy, Nanjing 211100, China
2 Key Laboratory of Machine Perception (Ministry of Education), Peking University,

Beijing 100871, China
{reo,ytan}@pku.edu.cn

Abstract. Multi-agent Reinforcement Learning (MARL) has drawn wide atten-
tion in recent years as a bunch of real-world complex scenes can be abstracted as
multi-agent systems (MAS). Partially observable cooperative multi-agent setting,
in which agents have to learn to coordinate with allies by actions conditioning on
their own partial observation and share a single global reward each time-step, is
the most concerned MAS by existing MARL algorithms with centralized training
and decentralized executing. One key challenge is how to make effective oriented
exploration. In this work, we propose a new agent network called Multi-branch
Ensemble Agent Network (MEAN) to encourage the oriented exploration. We
evaluate our MEAN with existing Q-learning based MARL algorithms on Star-
Craft II micro-management challenges. Extensive evaluations show that algo-
rithms equipped with MEAN achieve much better performance on both homo-
geneous and heterogeneous scenarios compared with the initial algorithms.

Keywords: Multi-agent reinforcement learning · Multi-branch ensemble ·
Multi-agent systems · Swarm intelligence

1 Introduction

Over the past decades, multi-agent reinforcement learning (MRAL) has been studied
extensively and developed a lot, which plays an important role in addressing many
real-world problems, such as autonomous car designing, game strategy, robot swarm
coordination, complex control tasks, etc. In a multi-agent system (MAS), agents are
required to obtain a policy which can coordinate with other agents to gain maximized
accumulated global rewards.

While there are many challenges for optimizing a policy of MRAL. Firstly, the size
of joint action space expands exponentially as the number of agents grows [4,10]. Sec-
ondly, the learning process is unstable and non-markovian because the agent not only
interacts with environment but also interacts with other agents with changing policies
[6,7]. Furthermore, the credit assignment is also one of the biggest challenges in fully
cooperative scenarios. Those challenges make it extremely difficult to train agents indi-
vidually in MAS. The paradigm of centralized training with decentralized execution
(CTDE) [9] has drawn more attention recently for alleviating the above constraints.
c© Springer Nature Singapore Pte Ltd. 2021
Y. Tan et al. (Eds.): DMBD 2021, CCIS 1454, pp. 485–498, 2021.
https://doi.org/10.1007/978-981-16-7502-7_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7502-7_44&domain=pdf
http://orcid.org/0000-0003-2481-5194
http://orcid.org/0000-0001-8243-4731
https://doi.org/10.1007/978-981-16-7502-7_44


486 R. Chen and Y. Tan

Fig. 1. The MEAN Framework. The left block is the overall architecture consisting of individual
value function networks for N agents and a centralized value function network to assign credit.
The right block is MEAN, including m branches. Each branch is a basic DRQN composed of a
fully-connected layer and a GRU layer, followed by a fully-connected layer with dimension of
number of actions.

In CTDE, each agent can only select its action conditioning on the local observation.
To coordinate all agents, a centralized Q value function shared by all agents is usually
needed during centralized training. The centralized Q value function builds a connec-
tion between the global reward and individual value function of each agent. However,
it is often impractical to learn a centralized value function directly due to the curse of
dimensionality, quite apart from connecting the individual value functions. Many algo-
rithms tend to put forward some structural hypothesis. For example, VDN [14] assumes
that the centralized value is the sum of individual values from all agents, QMIX [10]
assumes that the centralized value function is a monotonic function of individual value
functions. QTRAN [13] further relaxes those restrictions to a more general assumption
that optimal joint action derived from centralized value is equivalent to optimal action
chosen from agents’ individual Q value functions.

Those algorithms under CTDE structure are usually based on Q learning. Despite Q
learning has achieved great success in single agent environment tasks, where the envi-
ronment has dense rewards that are easy to find by taking random sequences of actions.
However, it tends to fail when the rewards are sparse and hard to find. Poor exploration
is an inherent defect of Q learning [3] as it follows the bellman optimal equation to iter-
ate value function. ε-greedy is one of the most extensively used techniques to encourage
exploration in Q learning. ε-greedy generates random actions instead of action which
makes Q value optimal by a decay probability. ε-greedy can only provide random explo-
ration in practice. Unfortunately, random exploration usually does not work in multi-
agent systems because coordinated actions are rarely searched by random exploration.
Oriented exploration is needed in multi-agent tasks.



A Multi-branch Ensemble Agent Network 487

To tackle down this problem, we propose a novel agent architecture called Multi-
branch Ensemble Agent Network (MEAN). MEAN improves oriented exploration by
introducing multi-branch ensemble in individual Q value function which makes the
final individual value as a sample from a distribution. The pseudo distribution contains
the information learned from the past training episode transition data, meanwhile the
structure makes sure that the ensembled Q value is an unbiased estimation of original
individual Q value. The knowledge distillation furthermore helps each branch to learn
from ensembled individual Q value.

We evaluate MEAN with VDN, QMIX and QTRAN which are most representa-
tive Q-learning based CTDE algorithms on a range of StarCraft II micro-management
tasks. Experiments show that our MEAN achieves significant improvement compar-
ing to original algorithms and helps to explore winning states in very early episodes.
Ablation experiments show how knowledge distillation and exploration loss improve
oriented exploration.

The remains of this paper are as follow, we first introduce some background knowl-
edge for multi-agent reinforcement learning and multi-branch ensemble. Then we
describe Multi-branch Ensemble Agent Network Architecture. Next, evaluation of the
proposed method in StarCraft Multi-Agent Challenge are provided. Conclusion of this
paper is given in the last section.

2 Background

2.1 Dec-POMDP

A multi-agent task could be formulated as a decentralized partially observable Markov
decision process (Dec-POMDP) [2]. It’s formally defined as a tuple

G = 〈N, s, �A, T, �r, �O,Z, γ〉 (1)

where N is the number of agents. s denotes the state of the environment to which
agents have no access during interaction with the environment. �A = (A1, A2, . . . , AN )
denotes the set of joint action where Ai is the local actions set agent i can take at each
time-step which controlled by its own policy πi : Oi×Ai → [0, 1]. State transition func-
tion is T (s′|s,�a) : S× �A×S → [0, 1]. The joint reward function �r = (r1, r2, . . . , rN ) :
S × �A → �N consists of individual reward ri. �O = (O1, O2, . . . , ON ) denotes the set of
joint observation controlled by the observation function Z : S × �A → �O. The scenario
discount factor is γ ∈ [0, 1].

There are generally two types of multi-agent tasks according to whether there are
competitive goals among allies or not. We focus on fully cooperative tasks. In those
settings, agents will share an identical reward r = r1 = r2 = · · · = rN . The multi-
agent system aims at learning a policy πi(ai|oi) which maximizes the expectation of
discounted accumulated return E(G) where G =

∑T
t=0 γtrt, T is the accumulated

horizon.



488 R. Chen and Y. Tan

Algorithm 1. Training Procedure for MEAN

1: Initialize individual Q network and target network with parameters θ and θ− respectively,
centralized Q network with parameters θc, replay buffer D with capacity ND , training batch
size Nb and other hyper-parameters

2: for each training step do
3: for each episode do
4: for t = 1 to max time − step do
5: Obtain global state st
6: for i = 1 to Number of agents do
7: Obtain observation oti for each agent i
8: Compute weights g according to partial observation oti
9: Compute individual Q value Qi according to outputs of each branch and weights

g
10: end for
11: Execute joint action at in environment
12: Obtain the global reward rt
13: end for
14: Store episode transitions in D, replacing the oldest episode if |D| ≥ ND
15: end for
16: Sample a batch of Nb episodes from D
17: Calculate TD-loss Le according to Eq. 6 and Lb for each branch if needed
18: Calculate knowledge distillation loss Lkd according to Eq. 7
19: Calculate exploration loss according to Eq. 11
20: Update θ by minimizing L = LTD + αLkd + βLe

21: Update target network parameters θ → θ− every C training steps
22: end for

2.2 Reinforcement Learning

Reinforcement Learning [15] has been widely investigated to solve the single agent
POMDP problems. Q-learning uses value iteration to update an action-value function
Q(s, a) = E[G|S = s,A = a] by a∗ = argmaxaQ(s, a). However, when using
Q-learning to solve some complex problems, it encounters the problem of high dimen-
sional curse on both state and action spaces since traditional Q-learning uses table or
parameterized function to represent the Q function. Deep Q Network (DQN) [8] tackles
down this problem by using a deep neural network to represent Q function. There have
been several techniques applied to stabilize the training process of DQN, such as target
network and experience replay. The original DQN updates parameters θ by minimizing
the following TD loss

L(θ) = E(s,a,r,s′)[(r + γ max
a′

Q(s′, a′; θ−) − Q(s, a; θ))2] (2)

where Q(s′, a′; θ−) is the target network whose parameters θ− synchronizes with the
main network parameters θ.



A Multi-branch Ensemble Agent Network 489

2.3 Multi-branch Ensemble Knowledge Distillation

There have been a lot of existing methods for knowledge distillation. A typical distilla-
tion process starts with a larger network with high-capacity parameters or architecture
as a teacher model, followed by training a smaller student network targeting predicting
the teacher network’s outputs or some high-level feature representations [1,5,11]. [5]
improved a small network by distilling knowledge from a larger teacher network. The
rationale behind knowledge distillation is that a larger network’s prediction provides
extra supervision than conventional supervised learning with objective function using
training data labels. However, conventional knowledge distillation methods require a
two-stage training process or rely on a pre-trained powerful teacher model. [18] pro-
posed a multi-branch ensemble strategy for one-stage online distillation.

3 Methods

3.1 Hypothesis Constraints for Centralized Value Function

The joint action space of all agents in a multi-agent system surges exponentially with
respect to the increase of the number of agents, which makes it impractical to learn a
single value function for all agents in some scenarios, implying that utilizing an individ-
ual value function conditioning on local observation for each agent is one of the feasible
ways. Meanwhile, to coordinate allies’ behaviors, we have to train a centralized value
function for all agents. To learn a stable and trainable centralized value function, we
have to incorporate a hypothesis constraint for centralized value function. One practical
hypothesis constraint is as follow

argmax
a

Qtot(o,a) =

⎛

⎜
⎝

argmaxa1 Q1(o1, a1)
...

argmaxaN QN (oN , aN )

⎞

⎟
⎠ (3)

Equation 3 establishes a structural constraint linkage between individual value func-
tions and the centralized value function, therefore, this hypothesis constraint could be
regarded as a form of credit assignment. However, it is impractical to use Eq. 3 directly
in training phase because it lacks a formulaic factorization to compute.

The following non-negative linear assumption is a sufficient condition for Eq. 3

Qtot(o,a) =
N∑

i=1

αiQi(oi, ai)

αi ≥ 0

(4)

where Qtot denotes the centralized Q value function and Qi is the individual Q value
function for agent i. VDN simply sets all combination coefficients αi, i ∈ {1, · · · , N}
to 1, which is a quite strong constraint. QMIX relaxes the constraint to a general addi-
tive value factorization by enforcing ∂Qtot/∂Qi ≥ 0, i ∈ {1, · · · , N}. Therefore, VDN
can be regarded as a special case of the QMIX algorithm. QTRAN relaxes the constraint
even further and exploration in a larger hypothesis space structured by a sufficient and



490 R. Chen and Y. Tan

necessary condition of Eq. 3. To this end, QTRAN has to optimize the joint value func-
tion in the full joint action space, so that QTRAN suffers from computational challenge
and the scalability. Applicable range of QTRAN are therefore limited.

Table 1. The features of all scenarios in experiments

Map name Allies Enemies

3m 3 Marines 3 Marines

8m 8 Marines 8 Marines

2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots

3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots

1c3s5z 1 Colossi, 5 Stalkers & 5 Zealots 1 Colossi, 5 Stalkers & 5 Zealots

3s vs 3z 3 Stalkers 3 Zealots

3.2 Multi-branch Ensemble Agent Network

Here we describe our Multi-branch Ensemble Agent Network and Fig. 1 depicts the
overview of MEAN architecture. For description convenience, we take vanilla VDN
[14] as a backend mixer example. It is straightforward to apply MEAN to algorithms
with other Q value mixers, such as QMIX [10] and QTRAN [13]. To this end, we
assume that VDN has a mixer network as well, which simply sums all individual Q
value to get Qtot.

During the execution phase, at time-step t, agent i takes as input the agent’s
observation oit, each branch with parameters θj computes individual value function
Qi

j(o
i
t, a

i; θj) based on those inputs. The Hyper network produces the weight coeffi-
cient g(oit). We therefore ensemble outputs of m branches by the hyper network to the
individual value function we use in execution as

Qi(oit, a
i; θ) =

m∑

j=0

gj · Qi
j(o

i
t, a

i; θj) (5)

During the training phase, the centralized Q value is produced by Qtot(o,a, s; θ) =
∑N

i=1 Qi(oi, ai). The vanilla algorithm trains the network by TD loss defined as

Le(θ) =
b∑

i=1

[yi
tot − Qtot(o,a, s; θ))]2 (6)

where b is the batch size of sampled transitions per training iteration, ytot = r +
γ maxa′ Qtot(o′,a′, s′; θ−) and θ− denotes the parameters of the target network.

In algorithms which satisfy the hypothesis of Eq. 4, we can similarly get the
Qi

tot composed of the Qi
j by each branch. We can enhance the learning pro-

cess of each branch by minimizing the TD loss w.r.t Qi
tot defined as Lb(θ) =

∑b
i=1

∑m
j=1[y

i
tot − Qj

tot(o,a, s; θ))2], where m denotes the number of branches,

Qj
tot =

∑N
i=1 αiQi

j(o
i, ai). In those setups, the final TD loss is LTD = Le + Lb,

otherwise, the final TD loss LTD is identical with Le.



A Multi-branch Ensemble Agent Network 491

Knowledge Distillation. Besides the TD loss w.r.t Qi
j , we can enhance each branch

by distilling knowledge from ensembled teacher back into branches. To quantify the
alignment between branches and the ensembled teacher, we use

Lkd =
N∑

i=1

m∑

j=1

‖Qi
j − Qi‖22 (7)

where ‖ · ‖22 is the squared L2-norm. For algorithms with Actor-Critic architecture, we
use Kullback Leibler Divergence

Lkd =
N∑

i=1

m∑

j=1

pe(a|o; θe) log pe(a|o; θe)
pj(a|o; θj) (8)

where |A| represents the number of action dimension, pe and pj represent the softmax
predictions of actions of the ensembled teacher and branch respectively, θe and θj are
for the parameters of the ensembled teacher and branch respectively.

Table 2. Mean performance of the test win percentage

Map IQL COMA VDN QMIX QTRAN

Original MEAN Original MEAN Original MEAN

3m 100 91 97 100 95 96 86 66

8m 91 94 75 99 91 98 93 86

2s3z 39 66 80 91 86 99 32 95

3s5z 0 0 30 91 78 95 0 20

1c3s5z 7 30 90 99 100 100 42 90

3s vs 3z 0 0 56 98 14 100 0 21

Oriented Exploration. A large number of works apply ε-greedy action selector to
implement exploration in Q learning. The basic idea of ε-greedy is choosing random
actions for agents with a decay probability. However, ε-greedy exploration is a ran-
dom strategy which provides none oriented exploration. Despite the action selection
in Q learning does not require a softmax probability, softmax function is monotoni-
cally increasing, which indicates argmaxa Q(o,a) = argmaxa σ(Q(o,a)), we can
consider an action selection probability w.r.t the Q value instead in the following dis-
cussion.

Different from the policy gradient based methods, we cannot sample actions by
the probability. Nevertheless, in multi-branch ensemble architecture, the final probabil-
ity is composed of probabilities from each branch. Therefore, in multi-branch ensem-
ble setup, the probability is no longer deterministic. Meanwhile, since each branch is
trained under the same objective function, the probability from each branch can be con-
sidered as a sample from a distribution. Consider a m-branch agent with binary actions,



492 R. Chen and Y. Tan

assume that P (a = 1) = θi of branch i is sampled from a normal distribution with
mean value μ and variance σ2. The overall mean value and variance of final probability
θ =

∑m
i=1 giθi are as follow

E(θ) = E(
m∑

i=1

giθi) = μ
m∑

i=1

gi = μ

D(θ) = D(
m∑

i=1

giθi) = σ2 ·
m∑

i=1

m∑

j=1

gigj = σ2

(9)

In order to encourage exploration, a larger variance σ2 is needed. To satisfy this
requirement, we can penalize the normalized cosine similarity of outputs from each
branch by squared Frobenius norm. Let Hi be the normalized matrix of branch outputs
of agent i, the exploration loss encourages orthogonality between branches

Le =
N∑

i=1

‖Hi�Hi‖2F (10)

where ‖ · ‖2F denotes squared Frobenius norm. However, using Eq. 10 to encourage
exploration will hurt the Q value training process because squared Frobenius norm
would cause the mean value of weighted Q value converged to 0. We propose a revised
version of exploration loss defined as:

Le =
N∑

i=1

‖(Hi − H
i
)
�
(Hi − H

i
)‖2F (11)

We experiment with those two kinds of exploration losses, which we will discuss in
detail.

Here we describe the overall goal of training as minimizing the following loss:

L = LTD + αLkd + βLe (12)

where α, β are hyper-parameters to control the interaction of the loss terms. The general
training procedure for MEAN is provided in Algorithm 1.

4 Experiments and Results

4.1 Experimental Setup

In this section, we describe our experimental setup. We test our method in the StarCraft
Multi-Agent Challenge (SMAC) environment [12]. In this environment, each agent con-
trols an individual unit. There is a built-in multi-level AI strategy controlling the enemy
units by handcrafted heuristics. In our experiments, we set the difficulty level of built-in
AI to level 7, which means “very difficult”. The final goal is to defeat the enemy by
eliminating all opponent units. Efficacious micro-managements of units are supposed



A Multi-branch Ensemble Agent Network 493

Fig. 2. Median test win rate of VDN, QMIX, QTRAN and revised algorithms with our MEAN
architecture in six different scenarios. Revised algorithms and original algorithms are shown in
solid lines and dashed lines of the same color respectively. 25–75% percentiles are plotted shaded.
All plots share the same legend in (a).

to cause damage on enemies to the full while minimize damage received. It’s a chal-
lenging task to learn an efficacious cooperative strategy in such a POMDP environment,
therefore SMAC became a widely used benchmark for evaluating MARL methods.

4.2 Training Configurations

The architecture of agent’s Q network used in both compared algorithms and single
branch network in our method is a DRQN, which contains an embedding layer and
a GRU layer followed by a fully connected layer with |A| outputs. The hidden state’s



494 R. Chen and Y. Tan

dimension of the embedding layer and GRU layer is 64. The individual Q network takes
as input the agent’s local observation and the last chosen action. In our experiments, we
share the parameters across all agents’ individual Q networks. To yield diverse strate-
gies, we concatenate a one-hot vector of agent’s number to the original input. The archi-
tectures of our method’s mixer networks are identical with their original architectures.
All hidden states’ dimensions are 64 as well. We set γ at 0.99. Replay buffer size is set
to 5000 episodes. In each training phase, 32 episodes are sampled from replay buffer.
All Target networks used are updated after every 200 training phases. We use ε-greedy
action selector in which ε anneals from 1. to 0.05 at the first 50000 steps to encourage
exploration in the earliest training phase and remains 0.05 to ensure a minimal ran-
domness during the whole training. We test all methods at every 50 training interactive
episodes on 20 evaluation episodes with ε set to 0. Considering the balance of perfor-
mance and training speed, we use 4 branches for each agent with MEAN and take one
branch which generates the biggest mean coefficient in test rounds.

4.3 Results

Our method can easily be applied to the existing state-of-the-art algorithms such as
VDN [14], QMIX [10] and QTRAN [13] by changing the agent network. To evaluate
the improvement of our method comparing with the original version, we test them on
several StarCraft II Micro-management Maps, including 3m, 8m, 2s3z, 3s5z, 1c3s5z,
3s vs 3z, which contain both homogeneous and heterogeneous scenarios.

Table 1 shows the features of all maps we considered. All maps have different num-
ber or types of agents. The map name indicates the scenario setup. m, s, z and c denote
different types of agents, which are Marine, Stalker, Zealot and Colossus respectively.
In Map 3m, both sides have 3 Marines, there are 8 Marines on both sides in Map 8m
similarly. Map 2s3z, 3s5z and 1c3s5z are heterogeneous & symmetric, there are 2 Stalk-
ers & 3 Zealots, 3 Stalkers & 5 Zealots and 1 Colossus & 2 Stalkers & 3 Zealots on
both sides of those scenarios respectively. Map 3s vs 3z is asymmetric where ally has
3 Stalker while enemy has 3 Zealots.

The main evaluation metric is the win percentage of evaluation episodes over the
course of training. The resulting plots include the median performance as well as the
25–75% percentiles to avoid outliers’ effect. The learning curves of comparing algo-
rithms on all scenarios are shown in Fig. 2. Quantitative comparisons of all algorithms
after training for 50,000 episodes are provided in Table 2. The performance of IQL [16]
and COMA [4] are also provided in Table 2 for reference.

Overall, we could see that our MEAN architecture improves all comparing algo-
rithms in maps 2s3z, 3s5z, 1c3s5z, 3s vs 3z. In homogeneous and symmetric scenarios
such as 3m and 8m,MEAN improves the performance of VDN and QMIX. Even though
both VDN and QMIX achieve over 95% mean win rate in Map 3m, MEAN improves
the performance of these two algorithms. In Map 8m, MEAN helps VDN to win almost
all test runs. However, MEAN fails to improve the performance of QTRAN on these
two maps. The rationale behind is that symmetric scenarios with small group scale



A Multi-branch Ensemble Agent Network 495

brings more uncertainties, which means random exploration is enough to search win-
ning states. Meanwhile QTRAN has been suffered from the unstable training process.
The oriented exploration strategy of MEANworsens the effects of instability which pre-
ponderates over the benefit of oriented exploration. When it comes to harder scenarios
where random exploration is no longer capable to search winning state like heteroge-
neous & symmetric scenarios, such as 2s3z, 3s5z, 1c3s5z, MEAN improves QTRAN
significantly. In those scenarios, VDN and QMIX with MEAN achieve over 90% mean
win rate. In Map 3s vs 3z, only VDN and QMIX with MEAN have learned an effec-
tive policy to ensure success. As depicted in Fig. 2, algorithms with MEAN start to win
battles earlier than their original versions, especially in Map 3s5z, 1c3s5z and 3s vs 3z
where random exploration cannot provide effective exploration.

We also compare our MEAN with SMIX (λ) [17]. SMIX (λ) alleviates the sparse
experiences and unstable nature of MAS by enhancing the quality of centralized value
function. SMIX (λ) is beneficial to other CTDE methods as well by replacing their
centralized value function estimator. We apply our MEAN on SMIX (λ) and com-
pare all three modifications with VDN and QMIX in Map 3s5z and 3s vs 3z. Exper-
iments show that algorithms with MEAN achieve the best performance. To be spe-
cific, vdn MEAN and smix MEAN vdn outperform vdn and smix vdn. MEAN helps
algorithms to explore winning states in the very early episodes. All four compared
QMIX algorithms have learned effective policy in Map 3s5z and only the original
QMIX failed in Map 3s vs 3z. There are significant gaps between the learning curves
of qmix MEAN and smix MEAN qmix in both scenarios which indicate that MEAN
architecture improves complex centralized value function less than simple centralized
value function (Fig. 3).

4.4 Ablation

We also perform ablation experiments to investigate the influences of knowledge distil-
lation loss and exploration loss. We take VDN as an example back-end for comparison
in Map 3s5z as this map is both difficult and heterogeneous.

Amount of Parameters. Despite only one branch is used in tests, we also test the
original VDN with hidden size of 256 to show that simply scaling up the amount of
parameters cannot perform adequate exploration in difficult tasks. Meanwhile, we scale
down the amount of parameters trained in each branch to 16 hidden unit per layer, and
use all 4 branches in tests marked as vdn MEAN 16. Experiment results in Fig. 4a show
that both VDNs with MEAN outperform original VDNs in Map 3s5z which indicates
that the improvement brought by MEAN does not benefit from the large amount of
parameters during training. We will furthermore discuss the influences of knowledge
distillation loss and exploration loss.



496 R. Chen and Y. Tan

Fig. 3. Median test win rate of VDN, QMIX and revised algorithms with SMIX and our MEAN
architecture in 3s5z and 3s vs 3z.

Fig. 4.Median test win rate of ablation experiments in 3s5z.

Knowledge Distillation Loss. To investigate the influence of knowledge distillation
loss (kd loss), we compare MEAN with and without kd loss. As shown in Fig. 4b, the
learning curve of MEAN without kd loss is more flat which means the learning of



A Multi-branch Ensemble Agent Network 497

individual value function is slower than that of with kd loss. The experiment results
conform to the anticipated benefit of knowledge distillation.

Exploration Loss. To investigate the influence of exploration loss (exp loss), we first
compare exp loss with Eq. 10 and Eq. 11 abbreviated as exp loss α and exp loss β
respectively. Figure 4c shows that MEANwith exp loss β achieves more stable training
process and higher performance. The result has verified the discussion above. Next, we
evaluate MEAN with and without exploration loss. As depicted in Fig. 4c, the oriented
exploration that exp loss brought works well which reveals the necessity of exploration
loss and oriented exploration.

5 Conclusion

In this paper, Multi-branch Ensemble Agent Network is proposed to solve the oriented
exploration problem in Dec-POMDP multi-agent systems. A new norm function is
introduced to encourage oriented exploration besides random exploration provided by
ε-greedy. It is shown that MEAN architecture has explored winning state in the very
early episodes and significantly improves performance of varied comparing algorithms
with DRQN agents and the revised algorithms achieve state-of-the-art performance on
various scenarios of StarCraft II micro-management tasks.

Acknowledgement. This work is supported by the Swarm Intelligence Project of Nan-
jing Kangbo Intelligent Health Academy, and partially supported by Science and Technol-
ogy Innovation 2030 - “New Generation Artificial Intelligence” Major Project (Grant Nos.:
2018AAA0102301 and 2018AAA0100302) and by the National Natural Science Foundation of
China (Grant No. 62076010).

References

1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural Information
Processing Systems, pp. 2654–2662 (2014)

2. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized
control of Markov decision processes. Math. Oper. Res. 27(4), 819–840 (2002)

3. Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random network distillation.
arXiv preprint arXiv:1810.12894 (2018)

4. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent
policy gradients. arXiv preprint arXiv:1705.08926 (2017)

5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015)

6. Laurent, G.J., Matignon, L., Fort-Piat, L., et al.: The world of independent learners is not
Markovian. Int. J. Knowl. Based Intell. Eng. Syst. 15(1), 55–64 (2011)

7. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent actor-critic
for mixed cooperative-competitive environments. In: Advances in Neural Information Pro-
cessing Systems, pp. 6379–6390 (2017)

8. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1503.02531


498 R. Chen and Y. Tan

9. Oliehoek, F.A., Spaan, M.T., Vlassis, N.: Optimal and approximate Q-value functions for
decentralized POMDPs. J. Artif. Intell. Res. 32, 289–353 (2008)

10. Rashid, T., Samvelyan, M., De Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.: QMIX:
monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv
preprint arXiv:1803.11485 (2018)

11. Romero, A., et al.: FitNets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)
12. Samvelyan, M., et al.: The StarCraft multi-agent challenge. CoRR abs/1902.04043 (2019)
13. Son, K., Kim, D., Kang, W.J., Hostallero, D.E., Yi, Y.: QTRAN: learning to factor-

ize with transformation for cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:1905.05408 (2019)

14. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning based
on team reward. In: AAMAS, pp. 2085–2087 (2018)

15. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement Learning, vol. 135. MIT Press
Cambridge (1998)

16. Tan, M.: Multi-agent reinforcement learning: independent vs. cooperative agents. In: Pro-
ceedings of the Tenth International Conference on Machine Learning, pp. 330–337 (1993)

17. Wen, C., Yao, X., Wang, Y., Tan, X.: SMIX (λ): enhancing centralized value functions for
cooperative multi-agent reinforcement learning. In: AAAI, pp. 7301–7308 (2020)

18. Zhu, X., Gong, S., et al.: Knowledge distillation by on-the-fly native ensemble. In: Advances
in Neural Information Processing Systems, pp. 7517–7527 (2018)

http://arxiv.org/abs/1803.11485
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1905.05408

	A Multi-branch Ensemble Agent Network for Multi-agent Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Dec-POMDP
	2.2 Reinforcement Learning
	2.3 Multi-branch Ensemble Knowledge Distillation

	3 Methods
	3.1 Hypothesis Constraints for Centralized Value Function
	3.2 Multi-branch Ensemble Agent Network

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Training Configurations
	4.3 Results
	4.4 Ablation

	5 Conclusion
	References




