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Abstract—In multiagent reinforcement learning (MARL), it is
crucial for each agent to model the relation with its neighbors.
Existing approaches usually resort to concatenate the features
of multiple neighbors, fixing the size and the identity of the
inputs. But these settings are inflexible and unscalable. In this
article, we propose an attentive relational encoder (ARE), which
is a novel scalable feedforward neural module, to attentionally
aggregate an arbitrary-sized neighboring feature set for state
representation in the decentralized MARL. The ARE actively
selects the relevant information from the neighboring agents and
is permutation invariant, computationally efficient, and flexible
to interactive multiagent systems. Our method consistently out-
performs the latest competing decentralized MARL methods in
several multiagent tasks. In particular, it shows strong cooper-
ative performance in challenging StarCraft micromanagement
tasks and achieves over a 96% winning rate against the most
difficult noncheating built-in artificial intelligence bots.

Index Terms—Agent modeling, attentive relational encoder
(ARE), decentralized learning, multiagent reinforcement learning
(MARL), state representation.

I. INTRODUCTION

MULTIAGENT learning has became a key toward
artificial general intelligence (AGI) [1], [2]. Many

real-world problems involve multiple agents with partial
observability and limited communication [3]. Agents can
extract useful features from neighboring agents to make
optimal decisions and cooperation emerges in the group.
Typical examples include the swarm robotics [4], collabora-
tive filter [5], traffic signal control [6], and social network
analysis [7].

For the learning protocol in the multiagent system, although
we can adopt a centralized controller (also called as Joint
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Action Learner [8]) that receives the global rewards and
determines the action for each agent, it may be costly to set
up such a controller and sometimes it does not exist, such as
intelligent transportation systems [9]. In this article, we focus
on the decentralized protocol in multiagent reinforcement
learning (MARL), where agents are connected by a time-
varying topology structure, and they aggregate information
from all their neighbors. This also promotes the scalability
and robustness of multiagent systems.

However, when decentralized artificial intelligence (AI)
agents are trained in an interactive environment, it is tricky
to handle the state representation issue because the neighbor-
hoods are highly flexible and scalable. Previous approaches
typically represent the aggregated state by fixing the num-
ber of local team members and simply concatenating the
information received from neighboring agents, as the input
dimension must be invariant in neural-network policies and
other machine-learning models. We argue that these formula-
tions lack flexibility.

1) Concatenation leads to the linear increase in the input
dimension, which scales poorly in large system size.

2) It cannot adapt to the change in population. Other indi-
viduals may join or quit the group of local interaction,
leading to a varying dimension of representation.

3) The concatenation method requires the fixed order of
input, which hinders the property of permutation invari-
ance in the local group.

4) Incorporating all information without thinking is inef-
ficient, as some features are worthless for decision
making. Other approaches resort to some intuitive meth-
ods, e.g., averaging/max operation and histogram count.
But all these methods are prone to losing valuable
information to varying degrees and are problem specific.

In this case, an intriguing question is that can we design
a general framework that fully utilizes the neighboring
information to construct a stationary state representation,
which is also invariant to the permutation and arbitrary size
in multiagent learning?

In this article, we propose a compact neural-network-based
architecture of representation, attentive relational encoder
(ARE), for efficiently aggregating information by using an
attention mechanism. The core idea is that an agent should
know what other neighbors should pay attention to. ARE
generates the attention weights pairwise and pools the local
neighborhood to aggregate all information. We highlight that
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by modeling the attention between different neighbors, ARE
can actively select relevant information discriminately. By
pooling, it constructs a unified state representation for learn-
ing policies. With this embedding, we condition the policy
and train them simultaneously by deep reinforcement learn-
ing (DRL). The compact representation makes the learned
policy robust to the changes in the multiagent system and
also reduces the search space for the policy learning method.
Enabling learning in this framework opens up the pos-
sibility of applying learning-based methods to multiagent
interacting environments where neighbors need to be modeled
explicitly and both the quantity and identity are changeable
over time.

Our approach is fully decentralized in training and execution
and makes no assumptions about communication channels, but
each agent is given access to the state features of neighboring
agents. We use a multiagent variant of Deep Q Network [10]
to train the policy, which introduces the important sampling
technique to address the nonstationary problem in multiagent
learning [1], [11]. The effectiveness of the proposed represen-
tation framework is demonstrated using extensive empirical
evaluations on three multiagent games, Catching, Spreading,
and StarCraft II micromanagement scenarios, which explic-
itly require modeling the neighborhood. The proposed method
achieves superior results compared against other baselines.
To our knowledge, this is the first formalization of using
the attentional aggregation method for state representation in
decentralized multiagent learning.

This article is organized as follows. The related work and
difficulties are presented in Section II. Our method ARE is
presented in Section III. Description of the experimental evalu-
ation scenarios and results are provided in Section IV. Finally,
we summarize our findings in Section V.

II. RELATED WORK

A. Multiagent Reinforcement Learning

Learning in the multiagent system is essentially more diffi-
cult than in the single-agent cases, as multiple agents not only
interact with the environment but also with each other [1],
[12], [13]. Directly applying the single-agent RL algorithms
to the multiagent system as a whole is a natural approach,
which is called the centralized MARL (also called joint
action learner [8]). Centralized MARL models the interaction
between agents by tightly coupling everything inside the
model. Although feasible in execution, it suffers from the
curse of dimensionality [1] due to the large-scale joint input
space and action space. Thus, decentralized structure has more
advantages toward scalability, robustness, and speedup [14]–
[17].

In the decentralized MARL, a lot of attention has been
given to the problem of modeling other agents [13]. In this
article, we focus on how to aggregate the information col-
lected from multiple agents, and we make a short survey on
the information aggregation approaches in MARL.

B. Feature Aggregation in MARL

Concatenation: Concatenation is the simplest and most
popular approach in multiagent RL. By concatenating

other features, the augmented state contains all necessary
information for decision making. MADDPG [18] constructs
the critic for each agent by concatenating other agents’ obser-
vations and actions, from which the agents can effectively train
their actors. A centralized critic is also used in COMA [19], to
implement difference reward by comparing with a counterfac-
tual baseline. These methods are under the paradigm of cen-
tralized learning with decentralized execution [16], [18]–[21]
which is inspired from DEC-POMDPs [22]. However, concate-
nation will make the dimension increase linearly, which scales
poorly to the large size system. Also, the agent number and
identities must be fixed, which is impractical in changeable
environments.

Mean Embedding (ME): ME is a workable approach when
dealing with a variable dimension problem. By calculating
a mean representation, the output has an invariant dimen-
sion no matter how many agents are involved. CommNet [23]
learns the communication model by rescaling the communica-
tion vector by the number of agents to aggregate information.
Yang et al. [24] introduced the mean-field theory to MARL.
The interactions within the group are approximated by those
between a single agent and the average effect from the over-
all population or neighboring agents. Hüttenrauch et al. [25]
also used the ME method to tackle the representation learn-
ing problem in the swarm system. The ME has the advantage
of scalability, including dimension and permutation invariance.
However, the mean computation is isotropic. The agent has no
knowledge of each of its neighbors when pooling averagely
around its local view, which may cause ambiguous estima-
tion in many multiagent tasks where pairwise interactions are
important for cooperative decision making.

Spatiotemporal Integration: Several related works aggregate
information from other agents using some temporal or geo-
metric structures. Peng et al. [26] used bidirectional RNNs
to establish a communication protocol. Though ensuring the
propagation of information, RNNs are not inherently symmet-
ric since they process the input in a sequential manner, which
usually maintains certain social conventions and roles by fix-
ing the order of the agent. Hüttenrauch et al. [27] used a local
histogram that encodes the neighborhood relation to transmit
information, while the design of histogram is problem specific.
Another spatial integration method is linear programming. An
example is ORCA [28], which solves a low-dimensional lin-
ear program for reciprocal collision-free velocity computation.
Although perfect in theory, it is time consuming for larger
population computation.

Attention-Based Aggregator: The attention mechanism was
originally proposed for natural language processing [29].
Recent research has applied an attention mechanism in
multiagent modeling [30]–[32]. The attention mechanism
can differentiate between agents and highlight the signifi-
cant interacting agents. The closest work to ours is that of
Hoshen [33], who proposed an interaction network (VAIN)
modeling high-order interactions by the Kernel function while
preserving the structure of the problem, which is in linear
complexity in the number of vertices. However, the Kernel
function is an independent embedding that cannot model com-
plex interaction. Also, VAIN is experimented in predictive
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Fig. 1. Overview of the ARE in policy learning.

case, while the capability will be challenged in multiagent
policy learning. We will conduct further analysis and compar-
isons between our methods and VAIN in Section IV. Other
works focus on combining the attention mechanism with
communication in MARL [30], [31].

As the topology of the multiagent system usually has an
underlying graph structure [34], [35], many useful insights
can be derived from the graph learning community [36], [37].
This article is partly inspired by the graph attention network
(GAT) [7], which introduces an attention-based method to per-
form node classification of the graph-structured data. However,
unlike the static graph considered in GATs, the topology of
the multiagent system is changing over time as agents join or
leave the local group. Also, GATs are applied for learning rep-
resentation with a supervised label, while we focus on how to
aggregate variable neighboring information to help cooperative
decision making.

III. PROPOSED METHOD

In this section, we first introduce the problem background
and then elaborate on the proposed ARE and the training
method.

A. Background

We consider multiple agents operating in a partially-
observable stochastic environment, modeled as a partially
observable Markov decision process (POMDP). A stochas-
tic game G is defined by a tuple <S,U,P, r,Z,O,N,A, γ>,
where N agents, A = {a1, a2, . . . , aN}, are in an interactive
environment. s ∈ S is the true state of the environment. At each
time step, all agents simultaneously execute actions yielding
a joint action u ∈ U, then receive observation {oi} determined
by observation function O(s, u) : S × U → Z, and rewards
r(s, u) : S×U→ R for profits. P(s′|s, u) : S×U×S→ [0, 1]
is the state transition probability function, and γ is the dis-
count factor. We denote joint quantities over agents in bold,
joint quantities other than a specific agent a with the subscript
−a, i.e., u = [ua,u−a]. All agents take the goal of maximizing
the discounted reward of rt.

We consider the parameter-sharing decentralized con-
trol [38]. For simplicity and focusing on the representation
problem, we assume that each agent can perceive the features

of its neighbors in a local sensing range, and there is no other
communication protocols.

An overview of the inference flow is illustrated in Fig. 1.
All agents may behave in a possibly time-varying relation
network Gt = (A,Et), where Et stands for the set of neighbor-
hood links connecting agents at the time t. In an agent-centric
view, we denote the neighboring feature set for the agent i
as Ni = {oj}j∈Gi , where Gi is the subgraph of G induced by
all agents adjacent to agent i (we leave out t for brevity).
Therefore, our task is to design a function f with trainable
weights θ to map the neighborhood feature set to a fixed size
of aggregated high-level features, y: yi = f (Ni, θ), where
i ∈ 1, 2, . . . ,N. Our main contribution is this aggregation
module, which corresponds to the ARE module as illustrated
in Fig. 1 (in yellow) and will be elaborated in Section III-B.
Then, these aggregated features are fed into a shared decoder
to the control policy, which must select a discrete environment
action a ∼ πθ in order to maximize the reward r. The training
details will be presented in Section III-C.

B. Attentive Relational Encoder

We propose a compact neural-network-based architecture,
ARE, to aggregate the information from neighboring agents
group, whose size is changeable either due to the join or quit
of agents. The basic idea of our ARE module is to learn an
attention score for each neighbor’s feature in the entire neigh-
borhood set. The learnt score can be regarded as a credit
that automatically selects useful latent features. For exam-
ple, within a team of robots moving toward their separate
goals, one robot may not care about some neighbors which
are behind its moving direction although they are very close.
The selected features are then pooled across all elements of
the set to aggregate the information and finally served as the
state representation for the subject agent.

Fig. 2 illustrates the main components of our approach and
its execution flow. ARE consists of three encoders, Ef , Ec,
and Ea, where {f , c, a} stand for feature embedding, commu-
nication embedding, and attention embedding. In particular,
as shown in Fig. 2, we first feed all the original features
(self-feature as well as neighboring features) into two shared
encoders Ef and Ec. Ef can be regarded as an intrinsic encoder,
which keeps valuable latent features for constructing repre-
sentation, while Ec is an extrinsic encoder, which reserves the
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Fig. 2. ARE module on aggregating neighboring features.

crucial information for interactive relation modeling. Thus, we
obtain two streams of latent vectors, ef and ec

ef
i = Ef (oi) (1)

ec
i = Ec(oi). (2)

Second, ARE computes attention scores using the latent vec-
tors ec for each corresponding neighboring agent through Ea,
taking the self feature ec

i , the corresponding neighbor’s feature
ec

j , as well as an ME for other neighboring agents in Gi other
than the agents i and j

ea
ij = Ea

(
ec

i , ec
j , ec−ij

)
(3)

ec−ij =
∑

k∈Gi−{i,j} e
c
k

‖Gi − {i, j}‖ . (4)

It is worth emphasizing that the self feature is also included
in the neighboring feature set in ARE to evaluate the attention
score for each agent itself. We will discuss the efficacy of this
setting in Section IV-B4.

We add another channel of ME ec−ij besides pairwise fea-
tures, in order to model the other neighbors’ effect on the
pairwise interaction. The output of the function Ea is a set of
learnt attention activations {ea

ij}j∈Gi . This procedure is similar
to the query-key system [39]

eij ∝ φ
(
eT

i WT
k Wqej

)
(5)

where each sender broadcasts a key transformed by Wk, while
the receiver broadcasts a query transformed by Wq. The mul-
tiplication of these two parts interprets the relevance or utility
of the message. However, we implement this by a neural
layer Ea, where the high-level hidden state in neural net can
model more abundant interactions between two agents than
the query-key system, and generate the attention scores for
aggregation.

Third, the learnt attention activations are normalized across
the neighborhood set computing a set of attention weights−→ai = {aij}j∈Gi . We choose softmax as the normalization
operation, so the attention weight for the jth neighboring

feature is

aij =
exp

(
ea

ij

)
∑

k∈Gi
exp

(
ea

ik

) . (6)

Subsequently, the computed attention weights are multiplied
by their corresponding intrinsic latent features in ef , generating
a new set of deep weighted features. Finally, these weighted
features are pooled by summing up across the neighborhood
set, producing a fixed size of aggregated features which are
then fed into a shared decoder to the downstream control
policy, as illustrated in Fig. 1

yi =
∑

j

aije
f
j (7)

πi = decoder(yi). (8)

In essence, as the weighted features can be parallelly
computed and pooled, the output of the ARE module yi is per-
mutation invariant with regard to the input order. We formalize
this property in Lemma 1.

Lemma 1 (Permutation Invariance): The ARE aggregation
process (1)–(7) can be abstracted as follows:

[
y1, . . . , yk, . . . , yN

] = f (o1, . . . , ok, . . . , oN, θ). (9)

Then, for any permutation �, f is permutation invariant, i.e.,

f (o1, . . . , ok, . . . , oN, θ) = f
(
o�(1), . . . , o�(k), . . . , o�(N), θ

)
.

(10)

The proof of the lemma is in Appendix A.
We here highlight the specific form of the attention weight.

In (3), the attention embedding is generated in the scalar value
form. To model complex interaction, we can design ea

ij as
vector. Therefore, the attention score aij in (6) is also vector
and (7) is revised

yi =
∑

j

(
aij ·Wa

)	 ef
j (11)

where we first unify the dimension by multiplying a matrix
Wa, then do the Hadamard product with ef

j . For simplicity,
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we set the dimension of the attention vector aij to be the
same with ef

j , thus Wa becomes an identity matrix, and can
be ignored.

Design Discussion: In terms of the flexibility in multiagent
state representation learning, the ARE architecture is designed
with the following desirable properties and advantages over
existing approaches.

1) Computational Efficiency: ARE is computationally high
efficient since all operations are parallelizable across the
neighboring pairs and all modules are shared.

2) Quantity Invariance: Although the size of the neighbor-
ing feature set can be arbitrary, the output representation
is still irrelevant as sum pooling [in (7)] is utilized.
This property makes ARE scalable to the changeable
and dynamic interactive environments.

3) Permutation Invariance: See Lemma 1.
4) Differentiation Ability: Our method is capable of differ-

entiating the utility of multiple neighbors. By feeding
each neighbor’s feature together with self feature to the
attention module and applying the attention mechanism
on these features, ARE is able to attach importance to
more relevant neighbors’ features.

Our motivation is that whereas the original aggregation
problem may be stated in a finite-dimensional feature space,
it often happens that it is nontrivial to discriminate the rela-
tion between the elements in the set, and it is infeasible to do
aggregation operations in that space (like averaging, concate-
nation, linear program, etc.). For this reason, we propose that
the original feature space can be mapped into a much higher
dimensional space using neural network, presumably making
the aggregation easier and reasonable in that space, e.g., by
sum pooling. Furthermore, we introduce the attention mech-
anism to play the role in improving the aggregation process
by automatically selecting useful latent features across the set.
We will analyze the learned attention and its relation to the
actual behavior in Section IV-B.

C. Training: Multiagent Deep Q-Network

The ARE module is trained end-to-end by reinforcement
learning. The learning algorithm is mainly based on Deep
Q-Learning. Q-Learning [40] is a model-free, off-policy algo-
rithm which learns the state–action value function by TD-
targets. DQN [10] uses deep neural network for function
approximator. While training, it samples from a replay buffer
to eliminate the dependency between sequence data and boot-
straps the immediate reward plus the expected future reward
from the next state with a separate target model

φ ← φ + α
∑

i

∇φQφ(oi, ai)
[
Yi − Qφ(oi, ai)

]
(12)

Yi = r(oi, ai)+ γQφ′
(

o′i, argmax
a′

Qφ
(
o′i, a′i

))
(13)

where α is the learning rate and Qφ is a parameterized model
for Q function with the learning parameters φ, which esti-
mates the state–action value function. In the ARE framework,
this Q model corresponds to the decoder to the control policy,
which takes in the upstream aggregated feature yi generated
by (11) and computes Q values for each action by a forward

run. Here, (13) is a form of Double Q-learning [41], a more
stable version considering overestimation, in which the current
network φ is used to evaluate action and the target network
φ′ is used to evaluate value. Every C updates, the current Q
network is cloned to update the target network. For the explo-
ration scheme in RL, we also adopt the ε-greedy strategy [10].
The behavior policy follows the greedy policy with probability
1− ε and selects a random action with probability ε.

However, several challenges will arise when adapting DQN
methods to the multiagent environment, including the scal-
ability (curse of dimensionality) for state representation, and
nonstationary in learning [1]. The ARE structure is proposed to
address the scalability problem. For the nonstationary problem,
it becomes more serious when using DQN in decentralized
training, as the replay buffer no longer reflects the dynamics
when an experience data being sampled. Therefore, we borrow
the ideas from [11] to tackle this difficulty, which used impor-
tance sampling. Importance sampling corrects the bias when
gathering the off-environment data from experience replay. So
we augment the data tuple in replay buffer by adding the pol-
icy distribution (sampling probability for the actions) during
exploration. Then, (12) is modified as follows:

φ← φ + α
∑

i

π
tr−ai

(
u−ai |s

)

π
ti−ai

(
u−ai |s

)∇φQφ(oi, ai)
[
Yi − Qφ(oi, ai)

]

(14)

in which tr and ti are the time of replay and the time of col-
lection, respectively. The importance weight is calculated by
π t−a(u−a|s) = ∏

j∈−a πj(uj|o). This helps to disambiguate the
sampled data from the replay buffer and correct the bias for
the update direction. In addition, the update of ARE param-
eters θ also follows (14), as the Q network and ARE are
fully differentiable and can be trained by Q-learning signal
end to end.

D. Implementation Details

For completeness, the detail of the proposed method is
shown in Algorithm 1. The encoders Ef , Ec, and Ea are shared
and parameterized by fully connected layers followed by non-
linear activation functions. The decoder to the control policy is
implemented by the dueling architecture [42], where the value
and advantage streams both have a fully connected layer and
the final hidden layers of the value stream having one output
and the advantage as many outputs as there are valid actions.
The exponential linear unit (ELU) [43] is inserted between all
adjacent layers. We also use the Double Q formulation [41]
and prioritized experience replay [44] to improve the training
performance. The learning algorithm is based on (13) and (14)
and demonstrated in Section III-C.

To make the computation more efficient with the experience
replay in DQN, we augment the replay data with an adjacent
matrix It ∈ R

N×N for each time step

It =

⎡
⎢⎢⎣

1 α12 α13 . . . α1N

α21 1 α23 . . . α2N

· · · · · · · · · . . . · · ·
αN1 αN2 αN3 . . . 1

⎤
⎥⎥⎦ (15)
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Algorithm 1 ARE-Based Multiagent Decentralized DQN
Input: N agents; initial values of the encoder/decoder and

their target network parameters: θ : {Ef ,Ec,Ea}, φ, θ ′, φ′;
ε for exploration; empty experience replay D; R rounds
for multihop aggregation; target network update frequency
C

1: for episode = 1 to M do
2: Update ε−greedy for exploration
3: Receive initial observation set O = {oi}
4: for t = 1 to max− episode− length do
5: for round = 1 to R do
6: for each agent i do
7: Compute intrinsic feature ef , and extrinsic fea-

ture ec based on Eq. (1)(2)
8: Receive neighboring feature set {ec

j }j∈Gi

9: for each neighbor j do
10: Compute its attention score aij based on

Eq. (3)(4)(6)
11: end for
12: Compute the aggregated feature yi based on

Eq. (11)
13: end for
14: end for
15: Select action with the current policy ui =

argmaxu Qφ(yi, u) and ε-greedy exploration
16: Execute actions u = {u1, ..., uN} and observe reward

r and new observation set O′ = {o′i}
17: Store (oi, ui, r, o′i) and {π ti−i(uj|oj)}j∈Gi in replay

buffer D
18: O← O′
19: end for
20: Sample a random minibatch of S samples (oi, ui, r, o′i)

and {π ti−i(uj|oj)}j∈Gi from D
21: Update θ and φ based on Eq. (13)(14)
22: Every C steps reset the target network θ ′ = θ, φ′ = φ
23: end for

where αij indicates whether the agents i and j are neigh-
bors at the time t. Therefore, we can simply multiply the
neighboring feature set from all agents with this adjacent
matrix. Besides, we implement multihops layers [45] by run-
ning multiple rounds of the aggregation procedure (lines 6–13
of Algorithm 1), until getting a final aggregated state rep-
resentation for the policy decoder. In this way, each agent
will have the potential to model high-order neighbors’ interac-
tions. We will discuss these settings in Section IV. The details
of the complexity analysis of Algorithm 1 are discussed in
Appendix B.

IV. EXPERIMENTS

To justify the effectiveness of the proposed architecture,
we first conduct experiments on two toy multiagent tasks:
1) Multiagent Catching Game and 2) Multiagent Spreading
Game. Both tasks require multiple agents to interact with each
other to achieve certain goals. Finally, we evaluate ARE on a
realistic video game: StarCraft II micromanagement, where a

Fig. 3. Toy problems. (a) Catching Game. The two black paddles are trying
to collect the red balls. (b) Spreading Game. Fifty agents in purple are trying
to cover 50 black landmarks.

group of agents trying to defeat the enemies controlled by the
built-in bot.

A. Baselines

We describe three baseline models to compare against our
method. Note that we only consider decentralized learning
protocol.

Plain: A simple baseline is where the agent only uses self
feature without considering neighboring agents. This is also
known as independent Q-learning (IQL) [46]. We can write
the output as yi = θ(xi). The advantage of this plain model
is light, flexible, and naturally suited for partially observable
settings, but it is not able to coordinate with other agents.

ME: As discussed in Section II-B, ME [23], [25] tries to
obtain an integrated representation vector for each agent by
averaged pooling over all neighbors’ features. The averaged
feature is then concatenated with self feature. The output
can be written as yi = θ(

∑
j�=i ψme(xj), φ(xi)). Although it

is permutation invariant, the mean computation ignores the
difference between multiple neighbors. Especially in the non-
additive cases, agent must explicitly model each neighbor’s
influence.

VAIN: VAIN [33] is an attention-based encoding architec-
ture for predictive modeling of multiagent systems. VAIN
learns a communication vector and in addition, an attention
vector for each agent. For every interaction pair, the attention
weights are constructed by a Kernel function. The output is
given by yi = θ(∑j�=i e|ai−aj|2ψvain(xj), φ(xi)). We argue that
the Kernel function is an independent embedding that cannot
model complex interaction. In multiagent tasks, agent often
first looks at its neighbor’s status and then decides how much
importance to attach. Also, VAIN is experimented in predictive
case, while the capability will be challenged in multiagent
policy learning.

All the baseline architectures and ARE are trained by the
multiagent DQN, as described in Section III-C. We use a dis-
count factor of 0.99, L2 regularization λ = 5e−4, gradient
clip, and an Adam optimizer. The hidden layer dimensions of
the encoder and attention in ARE are (64, 32) for Catching,
(64, 64) for Spreading, and (128, 64) for SC2 combat tasks.
Unless stated otherwise, all results presented are the average
performance across 20 random simulation runs.
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(a)

(b)

Fig. 4. Performance on two toy test problems. (a) Training reward on
Catching Game by Plain (blue), ME (orange), VAIN (green), and ARE (red).
(b) Training reward on Spreading Game by Plain (blue), ME (orange), VAIN
(green), 1-hop ARE (red), and 2-hop ARE (purple).

B. Multiagent Catching Game

1) Environment Description: We first test on a simple task,
Multiagent Catching Game, which is inspired by the game
Catch introduced in [47]. This game is played on a screen of
binary pixels and the goal is to move a paddle to catch balls
that are dropped from the top of the screen. We extend this
game to the multiagent settings, as shown in Fig. 3(a), where
N paddles (in black) need to coordinate with each other to
catch as many balls (in red) as possible. In this game, each
agent has to explicitly consider its neighbors to make optimal
decisions, catching more balls for the team. Taking illustra-
tion in Fig. 3(a) as an example, if the left agent observes
two targets in each side of its view, while also another agent
on its right side, it may choose to move left, allowing the
neighboring agent to catch its only target. Only in this plan,
the overall reward is optimal. See Appendix C-A for details
on observation definition, reward structure, action space, and
training.

2) Training Performance: We train ARE and the baselines
with eight agents (N = 8). The game ends after 100 steps.
The learning curve of 500 episodes is plotted in Fig. 4(a), in
terms of team reward in each episode. The boxplot of the final
performance is also illustrated in Fig. 5(a). As the figures show,
all methods which explicitly model the neighborhood obtain
higher team reward than Plain representation. This demon-
strates that neighboring information is a critical part of higher

(a) (b)

Fig. 5. Comparison of the final performance via boxplot obtained by Plain
(blue), ME (orange), VAIN (green), and ARE (red) on two toy test problems.
(a) Catching Game. (b) Spreading Game.

TABLE I
COMPARISON BETWEEN BASELINES ON PERFORMANCE METRICS IN

CATCHING GAME. [p1 AND p2 ARE DEFINED IN (16) AND (17)]

scores in this task. However, the Plain method converges more
quickly, mainly due to its smaller state space. During simula-
tion, we notice that Plain agents usually obtain overlapped in
the same position, which indicates they simply learn to pursue
their nearest target. Attention-based representations (VAIN and
ARE) are apparently better than ME. This confirms that attach-
ing different importance on different neighbors is crucial for
coordinated decision making in frequently interactive environ-
ment. Our method outperforms the VAIN baseline by a clear
margin, due to the different mode of generating attentional
weights. As demonstrated in Section IV-A, VAIN models the
interaction between two agents by independent Kernel func-
tion: e‖ai−aj‖2 , while our method uses more expressive encoder
Ea(ai, aj, a−ij). The hidden state can model the interaction by
investigating self feature and neighbor-feature concurrently.

3) Coordination Effect: We further test the coordination
performance by quantifying two measurements, p1 and p2.
One obvious measurement is the percentage of view range,
which is the ratio between the group observation space and
the global space

p1 =
⋃

i∈A |Oi|
|S| . (16)

The other measurement p2 is the ratio between the average
amount of targets collected per agent (Gi) and the total amount
of targets collected (Ggame), in one episode

p2 = Ei∈A[Gi]

Ggame
. (17)

Note that Ggame is not the simple summation of Gi, because
there is a possibility that multiple agents collect the same tar-
get. Therefore, for a better policy, p2 should be minimized.
We also notice the best performance for p2 should be (1/|N|).
However, it cannot be guaranteed that an arbitrary target is
always accessible to a “free” agent.

We present the quantitative results of p1 and p2, and also
the average percentage of targets collected in one episode,
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(a)

(b)

Fig. 6. Illustration of learned attention in the ARE module. (a) Three sampled
screenshot of the environment. The first row is the time step. The second line
is the game board. Each agent has 3 × 3 observation. The third line is the
action generated by the trained policy. (b) Attention weights of Agent 2 and
Agent 1 for each time step. (Note: Agent 1 is only adjacent to Agent 2 in all
the three steps.)

in Table I. We notice that these metrics are consistent with
the training performance. Our method outperforms in both
p1 and p2. As the game randomly generates targets, agents
learn to be apart from each other to maximize the coverage,
in order to collect more targets and avoid getting into the
same area. This is surprising because we did not explicitly
encourage the agents to be separated, and by modeling pair-
wise attention, our architecture learns this strategy for mutual
benefits.

4) Attention Analysis: We further try to gain more insights
into the learned attention of our model and its relation with
the actual behavior. We present an example scene occupied
by three agents, whose observation range is 3 × 3 pixels, in
Fig. 6(a). We implement a scalar attention variant of ARE
and plot the attention weights of Agent 2 and Agent 1 for
each time step, in Fig. 6(b). Interestingly, we first notice that
the agent may not make much of his attention to itself. For
example, in T = 1 for Agent 2, after checking its two neigh-
bors’ observation, it “realizes” that its only target is shared
with Agent 1, while Agent 3 may struggle to catch many
more targets. So it chooses to “concern” more on its neigh-
bors, thus the attention weight to itself is the lowest, and it
moves right. Furthermore, the attention weight of a neighbor-
ing pair is not symmetric. In T = 2, Agent 1 has no targets
in its view and attaches more attention to Agent 2. In con-
trast, for Agent 2, it is busy at the dropping target on its right
side, and nearly ignores Agent 1’s information after comparing
its features.

TABLE II
COMPARISON BETWEEN BASELINES ON PERFORMANCE

METRICS IN SPREADING GAME

C. Multiagent Spreading Game

1) Environment Description: Multiagent Spreading Game
is a more complex continuous state space scenario based on
the multiagent particle environment [18], where N agents must
reach N landmarks, as illustrated in Fig. 3(b). Each agent
should avoid collision with other moving agents while mak-
ing progress toward its goal. See Appendix C-B for details on
observation definition, reward structure, and action space.

2) Training Performance: We trained ARE and the base-
lines with 50 agents (N = 50). Fig. 4(b) shows the learning
curve, and Fig. 5(b) illustrates the boxplot of the final
performance. These results are shown in terms of the 0–1
normalized mean score for each game. Our model clearly out-
performs the other three baselines. Table II shows the average
mean reward, number of collisions, and percentage of occu-
pied landmarks at the end of the random test game. We also
add 2-hop variants to the comparison. Although Plain agents
cover most of the landmarks, it leads to many collisions.
This confirms that Plain agents only learn to pursuit the land-
mark aggressively, which is reasonable as we did not provide
other agents’ state to the input. ME agents (both 1-hop and
2-hop) perform even worse than Plain representation. From the
fewer collisions and lower percentage of occupied landmarks
in Table II, we make sure that ME agents keep still and show
conservative strategy. This is mainly because the mean compu-
tation is isotropic and incurs the loss of important information
that could help cooperative decision making. The ME agent
has no knowledge of the velocity field of each of its neighbors
and only learns to keep still to avoid the emergent collision.
Therefore, we draw a conclusion that ME is more appropriate
for the symmetric tasks, where the interactions between agents
can be accumulated in an additive way, like pattern formation
in multirobot system [48], pursuit evasion and rendezvous in
swarm system [25].

The VAIN architecture performs close to 1-hop ARE. As
expected, we find that the 2-hop structure of ARE achieves
better performance than the 1-hop structure. One possible rea-
son is that by aggregating second-order neighbors’ features,
the control policy is able to condition on the entire state
representation of both the central agent and the neighboring
agents. Knowing what its neighboring situation is, an agent
can achieve a more elaborate plan.

D. Scaling Test

To investigate the scalability of ARE and the baselines, we
directly use the trained models under the settings of N = 8
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(a)

(b)

Fig. 7. Performance of baselines as a function of the number of agents
during execution. Each data point is generated by evaluating a method with
a fixed number of agents. (a) Average reward in Catching. (b) Normalized
average reward in Spreading.

to N = 20 in a 40 × 40 map Catching task, and N = 50
to N = 100 in Spreading task. Fig. 7 shows the scaling
performance.

We can see for all approaches in the Catching task, the inser-
tion of new agents increases the episode reward. Our method
outperforms the other three approaches with a higher reward
growth rate. Despite a large amount of agents are present in the
environment, they coordinate with each other to collect more
targets, resulting in collective behaviors. For Spreading task,
although the dense scenario may cause more collisions, our
method practically maintains the performance, while the other
baselines present the decline. This result is appealing. As we
can train the decentralized policy in small-scale environments
and it can generalize to large-scale multiagent system, like the
swarm system, which has a great potential in real applications.

E. Combat Task: StarCraft II Micromanagement

1) Environment Description: StarCraft is a well-known
real-time strategy game in a complex, stochastic envi-
ronment whose dynamics cannot be easily modeled [49].
Micromanagement refers to a subtask of the entire game,
which involves a local combat battle between two groups. The
player must control a group of units to move them around the
map and defeat the enemies. Recently, SC2 has drawn a lot of
attention to the reinforcement learning community [50]–[52].

Fig. 8. Two SC2 micromanagement scenarios. Left: Nine Marines versus four
Roaches; and Right: Ten Marines versus Ten Marines. ARE and all baselines
control the left side group (in red).

TABLE III
COMPARISON BETWEEN BASELINES ON PERFORMANCE METRICS IN TWO

SC2 COMBAT GAME. THE REWARD IS NORMALIZED EPISODE REWARD

It offers a platform and opportunity to explore many challeng-
ing new frontiers.

We evaluate our method on two micromanagement tasks in
SC2, nine Terran/Marines versus four Zerg/Roaches (9M_4R)
and ten Terran/Marines versus ten Terran/Marines (10M_10M)
(shown in Fig. 8 and we control the former group in “xx_xx”).
These two tasks are a little hard even for human players to
win without mastering some operation skills. We formulate
this combat game into the multiagent decentralized learning
problem, where the centralized player in the SC2 game is
replaced by a group of AI agents, each assigned to one unit.
Each agent observes local information on the unit it controls
and must select from a set of actions, like move, stop, and
attack to maximize its team reward, i.e., eliminate all ene-
mies and win the game. See Appendix C-C for details on
observation definition, reward structure, and action space.

2) Training Performance: Fig. 9 demonstrates the improve-
ment process of winning rates on these two tasks by evaluating
100 rounds during the phase of training. Table III demonstrates
the performance of final trained models on both the winning
rate and the episode reward. ARE achieves over 96% win-
ning rate against the most difficult noncheating built-in AI
bots. Compared with other baselines on this more challeng-
ing task than the toy problem aforementioned, our method
clearly shows better performance, stable convergence, which
highlights the importance of such a design facilitating the
information aggregation and utility from neighbors.

3) Analysis of Learned Policy: In this part, we focus on
the emerging multiagent high-level intelligent behaviors of our
model. We capture a few screenshots when running our trained
model in SC2 combat games. We briefly conduct a qualitative
analysis of the learned policy, as shown in Fig. 10.

Focus Fire: We first observe that the team can efficiently
attack the enemies by focusing each agent’s fire on a particular
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(a)

(b)

Fig. 9. Comparing winning rates of different methods on two combat scenar-
ios. (a) Nine Marines versus four Roaches: Plain (blue), ME (orange), VAIN
(green), and ARE (red). (b) Ten Marines versus ten Marines: Plain (blue),
ME (orange), VAIN (green), and ARE (red).

Fig. 10. Screenshots in the SC2 combat games. (a) Focus Fire. (b) Draw
Fire. (c) Injured Back.

enemy unit. In Fig. 10(a), all alliances (left side) attack one
dying enemy. Focus fire is a necessary tactic for attacking a
group of players in combat tasks because the total threat from
the enemy group has a positive correlation with the number
of living units.

Draw Fire: Draw Fire is another high-level cooperation
strategy that is often used by master players in real-time strat-
egy games. As shown in Fig. 10(b), one agent (on the right
side) draws the attention of the only enemy and other alliances
focus their fires meanwhile. This plan minimizes the team-
level damages until the only target is killed. Our model rapidly
learns this tactic mainly because that by modeling the atten-
tion between its neighbors, each agent also models its relative
position on the battlefield and knows the best response.

Injured Back: As shown in Fig. 10(c), the injured
agent (downward) retreats for not being eliminated. This is

reasonable because we give a negative reward when the agent
is destroyed by enemies (as described in Appendix C-C). Much
to our surprise, however, we continually observe that some
injured agents retrieve back and go behind the frontier full-
health alliance. They still keep outputting harms at the border
of their firing range, which is a clever strategy for preserving
power.

V. DISCUSSION

A. Strengths

The main advantages of the proposed method are its sim-
plicity and flexibility. ARE is invariant to the agents’ number,
permutation invariant to the input order. To some degree,
aggregating neighbors’ information is equivalent to enlarge the
observation space or compute some sort of summary statistic
about the state of other agents. But we provide a compact
neural-network-based aggregation architecture with an atten-
tion mechanism, which is capable of differentiating the utility
of multiple neighbors. ARE can be trained with any reinforce-
ment learning algorithm and can be easily integrated with other
network architecture. It is also scalable to the changeable and
dynamic interactive environments.

B. Limitations

The proposed approach is based on the assumption that the
agents are identically distributed and the learning process is
independent. Hence, this framework is expected to be more
suitable for independent games, in which the agents share
a common environment and have similar abilities, and their
contributions to the goal are additive. So we expect a degra-
dation of performance for asymmetric heterogeneous agents
games, or there are complex coupling effects between multiple
agents. Also, we assume all neighbors’ states are fully observ-
able. Thus, our method cannot be used to intent recognition
or agnostic opponent modeling [53]. It lacks the ability to
infer other agents’ goals. In a large-scale environment, how to
model other agents’ intentions or infer their goals is still a big
challenge.

VI. CONCLUSION

ARE has been proposed for learning-aggregated state rep-
resentation in multiagent decentralized learning. ARE is a
compact neural-network-based architecture, which efficiently
and selectively aggregates information by using an attention
mechanism and can be trained end-to-end by reinforcement
learning. Unlike the existing methods, it is permutation invari-
ant, computationally efficient, and flexible to the arbitrary
number of neighbors in the frequently interactive environ-
ment. It is remarkable that, in both synthetic multiagent tasks
and real-time strategic StarCraft games, the ARE architecture
led better performance over several baselines and also demon-
strated coordinated decision making and strong scalability. We
hope that this framework could shed some light on the future
research of multiagent learning in large-scale scenarios and
real-world problems.
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APPENDIX A
PROOF OF LEMMA 1

As the weighted features can be parallelly computed and
pooled, the output of the ARE module yi is permutation invari-
ant with regard to the input order. We present the simple proof
here.

Proof: Recall that the aggregation process can be abstracted
as follows:
[
y1, y2, . . . , yk, . . . , yN

] = f (o1, o2, . . . , ok, . . . , oN, θ). (18)

In above (18), the kth entry of the output y is computed as
follows:

yk =
N∑

i=1

(
ef

i × aki

)
=

N∑
i=1

⎡
⎣ef

i ×
exp

(
ea

ki

)
∑N

j=1 exp
(

ea
kj

)
⎤
⎦

=
N∑

i=1

⎡
⎣ef

i ×
exp

(
θ
(
ec

k, ec
i

))
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j=1 exp
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θ
(

ec
k, ec

j

))
⎤
⎦

=
∑N

i=1

[
ef

i × exp
(
θ
(
ec

k, ec
i

))]

∑N
j=1 exp

(
θ
(

ec
k, ec

j

)) . (19)

We leave out some unrelated elements for abbreviation.
Note that in above (19), both the numerator and denom-
inator are a summation of a permutation-equivalent term.
Therefore, the aggregated feature yk and also the combined
vector y are permutation invariant to the neighborhood set
{o1, o2, . . . , ok, . . . , oN}.

APPENDIX B
COMPLEXITY ANALYSIS OF ARE MODEL

ARE is computationally high efficient since all operations
are parallelizable across the neighboring pairs and all mod-
ules are shared. The time complexity of a single ARE process
can be expressed as O(N · (t1 + t2) + |E| · t3), where N
is the number of agent, |E| stands for the number of all
local connectivity edges, and t1, t2, and t3 stand for the time
consuming of running each ARE module, which correspond
to (1)–(3). In terms of implementation, the individual fea-
ture computations are fully independent and can be parallelly
computed. Thus, the total time complexity can be reduced to
O(max{t1, t2} + maxi{|Ei| · t3}). If we apply K-hop aggrega-
tion (multihop layers), the storage and parameter requirements
will have a multiplication by a factor of K. We also leverage
the sparse matrix operations to save the adjacent matrix (15),
which reduce the storage complexity to linear in terms of the
number of agents and local connectivity edges.

APPENDIX C
DETAILS OF EXPERIMENTAL SETTINGS

A. Multiagent Catching Games

As illustrated in Fig. 3(a), if a ball is successfully catched by
the paddle, a reward of 1 will be given, and −1 otherwise. For
each time step, all balls move down one unit. The action space
consists of {move(left), move(right), stay}. We assume that the
game generates random balls from the top of the screen, but no

more than the number of agents. Each agent’s observations are
local 5×5 pixels plus the position (x). To spread the neighbors’
reward and achieve the coordination effect, we reshape the
reward function as

ri = nSC
i + λ1 × nNC

i

‖Neighborsi‖
− λ2 × nND

i

‖Neighborsi‖
(20)

where nSC
i is the number of self-collected targets, and nNC

i
and nND

i are the number of neighbors-collected targets and
all dropped targets in the observation space, respectively. We
normalize these two measures and multiply them with factors.
To avoid dividing 0, the last two items will be calculated only
in neighboring situations. In our experiments, we set λ1 =
λ2 = 0.2. To maximize this return, each agent needs to catch
the target of its own, remain targets for its neighbors, and
minimize the missing targets. Reward shaping is a specialized
topic in RL, but here we find these settings work well and
leave the potential improvements for future work.

B. Multiagent Spreading Games

As illustrated in Fig. 3(b), agents are rewarded based on how
far it is from each landmark and are penalized if they collide
with other agents. In our experiments, we modify the game
settings with that each agent will be given its goal position
when initialized, and this game becomes a navigation task.

Each agent can observe other agents and landmarks in
a limited sensing range. The discrete action set consists of
{stop, move(up), move(down), move(left), move(right)}. To
enable efficient learning on obstacle avoidance, we add a small
positive constant to the priorities of “crowded” data for pro-
portional prioritized sampling in experience replay, as a large
proportion of the replay data is the trivial situation (where
no neighbors are around), especially in the early phases of
training.

C. StarCraft II Micromanagement

We adopt the observation settings in SC2 for multiagent
learning similar to existing work [19], [26]. To be specific,
the local observation for an agent consists of move features
(Boolean value, which indicates available actions), enemy fea-
tures (relative position and health ratio for each enemy), and
property features (health ratio and last action). The action con-
sists of {no-operation, stop, move(direction), attack(id)}. We
define the reward as follows:

rt
i = −�ht

j∈Ga(i)
+�ht

k∈Ge(i)

− ∥∥DeathGa(i)
∥∥t × rneg +

∥∥DeathGe(i)
∥∥t × rpos (21)

where �ht(·) = ht(·) − ht−1(·) indicates the difference of
the heath ratio between two consecutive time steps. Note that
Ga(i) is the neighboring group of the controlled agents and
Ge(i) is the enemy group. After calculating the health ratio
change, we add another two terms encouraging more ene-
mies destroyed and less teammates destroyed. We set the value
rneg = rpos = 10.
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The proposed method was tested using the PySC2 platform1

by DeepMind [50].

REFERENCES

[1] L. Busoniu, R. Babuska, and B. D. Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[2] D. Ye, M. Zhang, and A. V. Vasilakos, “A survey of self-organization
mechanisms in multiagent systems,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 47, no. 3, pp. 441–461, Mar. 2017.

[3] D. S. Bernstein, S. Zilberstein, and N. Immerman, “The complexity of
decentralized control of Markov decision processes,” in Proc. 16th Conf.
Uncertainty Artif. Intell. (UAI), Jun./Jul. 2000, pp. 32–37.

[4] Y. Tan and Z.-Y. Zheng, “Research advance in swarm robotics,” Defence
Technol., vol. 9, no. 1, pp. 18–39, 2013.

[5] J. S. Breese, D. Heckerman, and C. M. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proc. 14th Conf.
Uncertainty Artif. Intell. (UAI), Jul. 1998, pp. 43–52.

[6] T. Tan, F. Bao, Y. Deng, A. Jin, Q. Dai, and J. Wang, “Cooperative deep
reinforcement learning for large-scale traffic grid signal control,” IEEE
Trans. Cybern., early access.
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