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ABSTRACT
We investigate how multiple agents learn to coordinate to form
efficient exploration in reinforcement learning. Though straightfor-
ward, independent exploration of the joint action space of multiple
agents will become exponentially more difficult as the number of
agents increases. To tackle this problem, we propose Feudal Latent-
space Exploration (FLE) for Multi-agent Reinforcement Learning.
FLE introduces a feudal commander to learn a low-dimensional
global latent structure that instructs multiple agents to explore co-
ordinately. Under this framework, the multi-agent policy gradient
is adopted to optimize both the agent policy and latent structure
end-to-end. We demonstrate the effectiveness of this method in
two multi-agent environments which need explicit coordination.
Experimental results validate that FLE outperforms baseline MARL
approaches which use independent exploration strategy in terms
of mean rewards, efficiency, as well as the expressiveness of coordi-
nation policies.
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1 INTRODUCTION
In recent years, Multi-agent Reinforcement Learning (MARL) has
attracted a lot of attention in many application domains, such as
multi-player games [9], communication [8], traffic control [25], and
display advertising [13]. However, how to discover coordination
mode more efficiently remains an open question due to the large
exploration space, local optima, or sparse reward signals [5]. This
challenge is further exacerbated as the number of agents increases.
A common approach for multi-agent exploration is to simply adopt
heuristic methods used in single-agent RL, like adding random noise
to action space or entropy regularization to encourage abundant
exploration. However, pure independent exploration in the original
joint state/action space causes the curse of dimensionality in multi-
agent systems [5]. For example, consider a multi-agent extension
to the Turnplate game as illustrated in Figure 1a. In this game,
each agent contributes to the joint force of the central turnplate
to make it rotate as quickly as possible. The force of each agent
should be aligned clockwise or anticlockwise, which is the optimal
policy. As the number of agents increases, the exploration space is
combinatorially large, making it hard to discover the coordinated
motion pattern.

To deal with the issue of complexity, some researchers have
attempted to embrace the evolutionary approaches [2], by initializ-
ing a population of agent solutions and iterating with evaluation,

mutation, and regeneration [23, 34]. Although free to explore all
possibilities to obtain a high fitness, evolutionary approaches re-
quire large amount of evaluation times. The resulting multi-agent
group is also prone to unpredictable behavioral pattern. Besides,
it is also difficult to transfer novel exploration strategies in single-
agent RL to MARL directly. Typical works include prediction-driven
exploration [24], multiple value functions with bootstrapped sam-
ples [22], disturbance of model parameters [10], and count-based
method [1]. These methods often require auxiliary models which
increase the complexity of the training procedure, and are less scal-
able when extended to multi-agent settings. A more sophisticated
research direction is to provide agents with bonus rewards when-
ever they reach a cooperation state, either by heuristic methods
[7] or automatic learning [36]. However, these methods must be
given adequate subgoals or extra model-based training, causing
additional computational overheads.

(a) Turnplate game (b) Collision avoidance

Figure 1: Two examples of multi-agent tasks demonstrating
coordination. (a): To achieve quick rotation, all agents must
apply force clockwise or anti-clockwise. (b): To avoid colli-
sion between two face-to-face driving cars, an effective co-
ordinated instruction for both agents is to turn left (blue ar-
rows) or turn right (red arrows).

In this paper, we propose a novel approach targeting the explo-
ration challenge in MARL. The key insight behind our approach is
that, the coordination mode is often low-dimensional, multi-modal,
and with structures shared by the participating agents. To make
it clear, another case is illustrated in Figure 1b. Two face-to-face
driving cars must make decisions at the same time to avoid collision.
The coordination mode in this case is simply dual-modal, either
turn left or turn right simultaneously for both cars. Each agent



can share this decision structure and construct the decentralized
coordinated motion policy.

Drawing inspiration from these examples, we propose Feudal
Latent-space Exploration (FLE) forMulti-agent Reinforcement Learn-
ing. We introduce a deep latent model, the feudal commander, to
learn the low-dimensional and multi-modal coordination structure
of multiple agents. The agent policies then use a shared encoding
sample from this learned latent space as input, imposing a coor-
dination inductive bias on agents’ behavior. The model is fully
differentiable and can be trained end-to-end. The size of the ex-
ploration space under the proposed approach is constrained by
the feudal commander, as opposed to the combinatorial large joint
action space with vanilla independent exploration strategy. We
build the FLE framework upon the popular Multi-Agent Deep De-
terministic Policy Gradient (MADDPG) [18]. We have validated
our approach on several simulated multi-agent environments [11]
that explicitly require coordination. Experimental results show that
our method can learn effective diverse coordinated policies, while
independent exploration strategies are only able to learn unimodal
coordinated policies. We also demonstrate that the proposed FLE
is superior to baselines in terms of mean rewards, efficiency, and
scalability performance. To summarize, the main contributions in
this work are as follows:
• A simple, stochastic latent space exploration structure for
expressive multi-agent policy class.
• A promising way to deal with the complex coordination
learning problem, especially when the optimal multi-agent
policy is combinatorially hard to discover.
• A comprehensive comparison between the proposed method
and contemporary approaches through the evaluations on
several different multi-agent environments which explicitly
require team coordination.

In the reset of the paper, we will firstly present notations and
standard methods in Section 2. Our main contribution is introduced
in Section 3. Experimental results are in section 4.

2 PRELIMINARIES
2.1 Markov Games
We consider multiple agents operating in a partially-observable
stochastic environment, modeled as a partially observable Markov
decision process (POMDP). A stochastic game G is defined by 𝑁

agents interacting in an environment, with the state S, a set of
actions {A1, ...,A𝑁 }, and a set of observations {O1, ...,O𝑁 }. The
global state is 𝑠 ∈ S. Each agent 𝑖 has local observation𝑜𝑖 , and uses a
policy 𝜋𝑖 : O𝑖 ×A𝑖 ↦→ [0, 1] to execute an action 𝑎𝑖 to produce next
state according to the transition model P : S ×A𝑖 × ...×A𝑁 ↦→ S.
Each agent also receives a local reward 𝑟𝑖 : S × A𝑖 ↦→ R and a
local observation 𝑜𝑖 : S ↦→ O𝑖 . Each agent 𝑖 aims to maximize total
expected return of rewards 𝑅𝑖 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑖𝑡 where 𝛾 is discount
factor and 𝑇 is the time horizon.

2.2 Policy Gradient (PG) and Deep
Deterministic Policy Gradient (DDPG)

Policy gradient (PG) is a frequently used algorithm for model-free
RL [31]. The main idea is to directly optimize the parameter of the

policy tomaximize the reward objective 𝐽 (𝜃 ) = 𝐸𝜏∼𝑝𝜃 (𝜏) [
∑
𝑡 𝑟 (𝑠𝑡 , 𝑎𝑡 )],

where 𝜏 is the trajectory. The gradient of the policy can be written
as:

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝜋𝜃 (𝜏) [∇𝜃 log𝜋𝜃 (𝑎 |𝑠)𝑄
𝜋 (𝑠, 𝑎)], (1)

where 𝑄𝜋 (𝑠, 𝑎) is the critic to reduce the variance and leads to a
series of actor-critic algorithms [28, 30].

Deterministic Policy Gradient (DPG) [29] uses deterministic poli-
cies whose parameters 𝜃 are adjusted in an off-policy fashion. The
exploratory behavior policy is used to perform stochastic gradient
ascent. The gradient of 𝐽 (𝜃 ) is:

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝜋𝜃 (𝜏) [∇𝜃𝜋𝜃 (𝑠)∇𝑎𝑄
𝜋 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠) ] . (2)

Deep Deterministic Policy Gradient (DDPG) [17] is a variant of
DPG,where policy 𝜋 and critic𝑄 are approximatedwith deep neural
networks. Like DQN [21], DDPG uses experience replay and target
network. Exploration strategy is treated independently from the
learning algorithm, by adding noise sampled from some random
process to the actor policy, like Gaussian process and Ornstein-
Uhlenbeck process [17].

2.3 Multi-Agent Deep Deterministic Policy
Gradients (MADDPG)

Multi-agent deep deterministic policy gradients (MADDPG) [18] is
an algorithm for centralised training and decentralized execution
of multi-agent systems. It builds deterministic policies as in DDPG
for each agent, which are conditioned on each agent’s observations.
MADDPG alleviates the non-stationary problem associated with
the adaption of other agents learning process by introducing a
centralised critic for each agent. The gradient of the expected return
for agent 𝑖 with policy 𝜋𝜃𝑖 can be written as:

∇𝜃𝑖 𝐽 (𝜃𝑖 ) =
E𝜏∼𝜋𝜃1,𝑁 (𝜏) [∇𝜃𝑖𝜋𝜃𝑖 (𝑜𝑖 )∇𝑎𝑖𝑄

𝜋
𝑖 (𝑠, 𝑎1, ..., 𝑎𝑁 ) |𝑎𝑖=𝜋𝜃𝑖 (𝑜𝑖 ) ] .

(3)

For exploration issue in MADDPG, each agent can only explore
locally during the evolving process, which will lead to the curse of
dimensionality in exploration space.

3 PROPOSED METHOD
In this section, we propose Feudal Latent-space Exploration (FLE),
a framework for MARL to address the major issue outlined in
Section 1. As discovering a coordinated policy on joint action space
becomes intractable as the number of agents increases, we consider
the exploration is driven by the stochastic characteristics of a latent
space policy which has a much lower dimension. The latent space
structure is shared among all agents. We hypothesize that building
a high-level representation will make the exploration easier to
master low-dimensional diverse coordination mode. The model
computation graph is illustrated in Figure 2.

3.1 Feudal Commander
We begin by introducing a separate feudal commander encoder
𝑞𝜙 (𝑧 |𝑠), as illustrated in the left side of Figure 2. The encoder takes
in the global state and generates a latent variable 𝑧𝑔 ∈ R𝑛 , where
𝑛 is the dimension of the latent space and is much smaller than
the multi-agent joint action space ∥A1 × ... ×A𝑁 ∥. In the simplest
case, 𝑠 could be the concatenation of local observations from all
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agents, 𝑠 = (𝑜1, ..., 𝑜𝑁 ), but we could also include some global
meta information if available. The individual per-agent sub-policies
will share this module. The responsibility of coordination relies on
this commander, which exerts control over all agents through its
provision of the global view during training phase. We will show
in Section 4.4 how the commander may coordinate the actions of
agents.

We design the latent space to be stochastic. The encoder outputs
parameters to 𝑞𝜙 (𝑧 |𝑠), which constructs a Multivariate Gaussian
distribution with diagonal covariance:

𝜇𝑔 (𝑠) =𝑊𝜇𝜙 (𝑠) + 𝑏𝜇
𝑙𝑜𝑔𝜎 (𝑠)2 =𝑊𝜎𝜙 (𝑠) + 𝑏𝜎

(4)

The main considerations are as follows: 1) We can sample from
this distribution to get stochastic values of the representations,
which leads to the exploration of multi-agent policies. 2) Multi-
agent tasks may have many coordinated equilibriums (see Figure
1 for examples). Stochastic latent model is beneficial to maintain
the expressiveness of the coordination mode. During training, we
use the reparameterization trick [15] to learn the latent distribution
𝑞𝜙 (𝑧 |𝑠), by sampling 𝑧𝑔 via 𝜖 ∼ N(0, 𝐼 ) and network outputs 𝜇, 𝜎 :

𝑧𝑔 = 𝜇𝑔 (𝑠) + 𝜎𝑔 (𝑠) ⊙ 𝜖. (5)

3.2 Policy Decoder
The actions for each individual agent are independently conditional
on both the local observations and the shared latent variable. The
policy decoder first queries the 𝑧𝑔 and generates a local latent
variable 𝑧𝑖 by 𝜋𝜃1 , then combines it with the observation 𝑜𝑖 to
compute the actions by 𝜋𝜃2 :

𝜋𝑖
𝜃
(𝑎𝑖 |𝑜𝑖 , 𝑧𝑔) = 𝜋𝜃2 (𝑎𝑖 |𝑜𝑖 , 𝜋𝜃1 (𝑜𝑖 , 𝑧𝑔)) . (6)

We emphasize that the exploration in FLE is driven by the sto-
chastic of the policy, which is defined by sampling 𝑧𝑔 from the
low-dimensional latent space, rather than adding noise process to
the joint action space.

𝑧𝑧𝑔𝑔

𝜇𝜇𝑔𝑔 𝜎𝜎𝑔𝑔

𝑜𝑜1 𝑜𝑜2 𝑜𝑜𝑁𝑁…

Commander Encoder
𝑞𝑞𝜙𝜙(𝑧𝑧|𝑠𝑠)

Policy Decoder
𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠, 𝑧𝑧)

𝑜𝑜𝑖𝑖

𝑎𝑎𝑖𝑖

𝑧𝑧𝑖𝑖

Agent 𝑖𝑖

𝑤𝑤𝜙𝜙 𝑤𝑤𝜃𝜃1

𝑤𝑤
𝜃𝜃2

Figure 2: The FLE model computation graph. The global
state space is encoded into a latent distribution, from which
we sample a latent variable z. Each agent conditions a policy
decoder on z and local observation to produce the action.

3.3 Optimization
As our FLE framework requires no additional information, such
as the world’s dynamics or other prior knowledge of the task, it
can be compatible with any MARL algorithm [9, 18, 26]. In this
paper, we build the FLE framework on top of MADDPG and try to
solve continuous control problem with multi-agent coordination.
To highlight the effectiveness of FLE, we disable the exploration
strategy (Gaussian or OU process) during training process. In the
following, we will show in details how to optimize the whole model.
As we do not combine FLE with any other algorithm to conduct the
experiments, we frequently refer to FLE-MADDPG simply as FLE.

Actor-Critic Training. We still use the off-policy training by con-
structing a centralized critic. Note that for each agent 𝑖 , the intro-
duction of 𝑧𝑔 does not influence the evaluation of the critic, as the
critic has included all conditional information for generating 𝑧𝑔 .
Therefore, we can directly apply the off-policy temporal difference
to update the 𝑄𝜋

𝑖
function, just as same as MADDPG:

L(𝑄𝜋𝑖 ) = E𝑑∼D [(𝑄
𝜋
𝑖 (𝑠, 𝑎1, ..., 𝑎𝑁 ) − 𝑦)

2]

𝑦 = 𝑟𝑖 + 𝛾𝑄𝜋
′

𝑖 (𝑠
′, 𝑎′1, ..., 𝑎

′
𝑁 ) |𝑎′𝑗=𝜋 ′𝑗 (𝑜′𝑗 ,𝑧′)

𝑧′ ∼ 𝑞′
𝜙
(𝑧 |𝑠 ′),

(7)

where𝑑 = (𝑠, 𝑎𝑖 , 𝑠 ′, 𝑟𝑖 ) is sampled from the experience replayD, and
{𝜋 ′
𝑗
}, 𝑞′

𝜙
are the target policies with delayed parameters {𝜃 ′

𝑗
}, 𝜙 ′.

The update of policy actor is also same with MADDPG, except
we need to query the value of 𝑧𝑔 from the commander module for
the sampled data batch:

∇𝜃𝑖 𝐽 (𝜃𝑖 ) = E𝑑∼D

∇𝜃𝑖𝜋𝜃𝑖 (𝑜𝑖 , 𝑧𝑔)∇𝑎𝑖𝑄𝜋𝑖 (𝑠, 𝑎1, ..., 𝑎𝑁 ) |

𝑎𝑖 = 𝜋𝜃𝑖 (𝑜𝑖 )
𝑧𝑔 = 𝑞𝜙 (𝑠)

 . (8)

As the commander module can be seen as a part of the actor,
we can compute the path derivative from the 𝑄𝜋

𝑖
to the gradients

on the commander model’s parameters. A regularization item on
the stochastic latent variable 𝑧𝑔 is added to avoid model collapse,
which can positively improve the performance. The prior 𝑝 (𝑧) is
set to be an isotropic unit Gaussian distribution. Thus we construct
a regularized KL-divergence, 𝐷𝐾𝐿 (𝑞𝜙 (𝑧𝑔 |𝑠) | |𝑝 (𝑧)), as an additional
item of the actor loss:

∇𝜙 𝐽 (𝜙) =

1
𝑁

∑
𝑖

E𝑑∼D


∇𝜙𝑞𝜙 (𝑧𝑔 |𝑠)∇𝑧𝑔𝜋𝜃𝑖 (𝑜𝑖 , 𝑧𝑔)∇𝑎𝑖𝑄𝜋𝑖 (𝑠, 𝑎1, ..., 𝑎𝑁 ) |

𝑎𝑖 = 𝜋𝜃𝑖 (𝑜𝑖 )
𝑧𝑔 = 𝑞𝜙 (𝑠)


− 𝛽∇𝜙𝐷𝐾𝐿 (𝑞𝜙 (𝑧𝑔 |𝑠) | |𝑝 (𝑧)),

(9)

where we omit time 𝑡 for abbreviation. During the update, the
gradients on 𝜙 are accumulated and averaged on all local agent’s
evaluations. To sum up, the FLE-based MADDPG is summarized as
Algorithm 1.

3.4 Discussions
Centralized Training and Decentralized Execution. Centralized

Training and Decentralized Execution (CTDE) has generated re-
cent interest in Multi-agent Reinforcement Learning community
[9, 18, 26], due to the potential for centralized training of ultimately
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Algorithm 1 FLE-based MADDPG

for episode = 1 to M do
receive initial state information 𝑥 = {𝑠, 𝑜1, ..., 𝑜𝑁 }
for t = 1 to max-episode-length do

sample 𝑎𝑖 for each agent based on Eq. (4)(5)(6)
Executes 𝑎 = (𝑎1, .., 𝑎𝑁 ), observe reward 𝑟 and next state

information 𝑥 ′ = {𝑠 ′, 𝑜 ′1, ..., 𝑜
′
𝑁
}

Store (𝑥, 𝑎, 𝑟, 𝑥 ′) to replay buffer D, set 𝑥 ← 𝑥 ′

Sample a batch of samples from D
for agent 𝑖 to 𝑁 do

Update critic by minimizing the loss defined in Eq. (7)
Update actor using the sampled policy gradient de-

fined in Eq. (8)
Accumulate the gradient on 𝑧𝑔

end for
Update commander model with Eq. (9)
Update target network parameters for each agent 𝑖 and

commander module
end for

end for

decentralized policies. The centralized module exploits the actions
and observations of all agents to aid the training of local policies
for each agent.

FLE doesn’t quite meet the “decentralized execution", as the
feudal commander is a function of joint observation or global in-
formation, and each local policy must be conditioned on a same
code 𝑧𝑔 . However, this problem can be partly alleviated by intro-
ducing a distributed communication channel for local information
exchange (e.g. gossip algorithm [37]) and time-synchronized ran-
dom seed generator. Similar technique can be found in [27]. But
these discussions are beyond the scope of this paper.

Connection to Hierarchical Reinforcement Learning. Our work is
partly inspired by the Feudal RL architecture (FRL) [6, 33], and can
be viewed as a special case of Hierarchical Reinforcement Learning
(HRL). The feudal commander imitates the manager and outputs an
instruction for each worker to condition their policy on. However
in our approach, multiple workers concurrently behavior in an
interactive environment, and the “instruction" is dedicated with
coordination. Other works in multi-agent RL have also benefited
from the HRL ideas [20, 32].

Connection to Variational Autoencoder. The proposed approach
has a similar form as the encoder-decoder structure in VAE [15].
However, FLE is trained with policy gradient loss instead of re-
construction loss in standard VAE. So the latent space training
does not explicitly encourage summarization of joint observations,
but focuses on efficient multi-agent coordination. While during
inference phase, FLE samples from the feudal latent posterior. The
agents will not be informed of others’ observations with the latent
sample, but they have learnt how to interpret this sharing code to
perform coordination. Some recent works also focus on combining
variational methods and multi-agent control, such as cooperative
trajectory generation [16].

4 EXPERIMENTS
In our experimental evaluations, we aim to address the following
questions: (1) Does the proposed method outperform the baselines
which directly add noise to joint action space for exploration? (2)
Does the latent space encode meaningful information for coordi-
nated multi-agent decisions? (3) Does it promote the efficiency of
exploration in multi-agent learning?

4.1 Environments
We use the MADRL environment1 as a framework for conducting
experiments to test the potential of our method. We choose 2 con-
tinuous multi-agent control tasks for evaluation: Waterworld and
Multi-Walker. We briefly introduce these two environments here.
The details of environment settings can be found in [11].

(a) Waterworld (b) Multi-Walker

Figure 3: Two multi-agent environments.

Waterworld. Waterworld is a multi-agent continuous control
task, as illustrated in Figure 3a. In this task, multiple agents (in
blue) need to coordinate to capture moving food targets (in green)
while avoiding poison (in red). Each food target must be collected by
all agents, thus an agreement must be achieved between all agents
to move towards the same target. In our experiments, we relax
the settings by limiting each agent having only 10 range-limited
sensors for making distance and velocity measurements of other
agents, food targets and poison targets. The food reward was set to
10 and the poison reward was -1.

Multi-Walker. Multi-Walker is a more difficult continuous loco-
motion task, as shown in Figure 3b. It is based on the BipedalWalker
environment from OpenAI gym [4]. A package is placed on top of
the walkers. The walkers must learn how to move forward and
to coordinate with each other to keep the package balanced while
navigating a complex terrain. In our experiments, we set the to-
tal length of the terrain equal to 20. Dropping the package has a
penalty of -100 while moving forward has a reward of 1.

4.2 Baseline Methods and Hyperparameters
All the baseline methods adopted for comparison in this paper are
based on DDPG.We test the performance by comparing our method
against vanilla MADDPG and parameter-sharing DDPG (PS-DDPG)
[11]. In PS-DDPG, all agents share a single policy. But each agent
receives different observations, including respective index, which
is a completely decentralized learning method.
1https://github.com/sisl/MADRL
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In all the experiments, we use the Adam optimizer [14] with a
learning rate of 0.001 for critics and 0.0001 for actors. The discount
factor of reward 𝛾 is 0.95. For the soft update of target networks,
we use 𝜏 = 0.01.

𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′ (10)

The networks use RELU for hidden layers. The actor network
has two hidden layers [512, 128], and the output layer is the tanh
activation function. The critic network has three hidden layers
[1024, 512, 256]. We initialize all of the model parameters by random
normal. The capacity of the replay buffer is 9𝑒5 and every time we
take a minibatch of 1000. For MADDPG and PS-DDPG, we use an
OU process with 𝜃 = 0.15 and 𝜎 = 0.2 for the exploration noise
process. For the commander module in FLE, we set the network
structure same with the critic, and the dimension of the latent space
is set to 15. We also use the reward normalization to accelerate the
training.

4.3 Performance Comparison
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Figure 4: Left: Average rewards onWaterworld with 5 agents.
Right: Average rewards on Multi-Walker with 2 agents. Our
model (FLE) is competitive in both environments.

We firstly ran experiments with the number of agents set to 5
and 2 for Waterworld and Multi-Walker, respectively. The learn-
ing curves are demonstrated in Figure 4, where we measure the
average rewards during the training phase. 50 independent statisti-
cal runs were used to plot the results and the error bar represents
the standard error. It can be seen that our FLE outperforms other
baselines by a clear margin. Particularly, we observe in simulation
that FLE helps agent groups explore coordinated behaviors more
efficiently. For example, inWaterworld, we notice all agents are able
to quickly discover the significance of synchronized moving, while
the other methods often present unstable oscillation movements,
where agents are “pulling" each other. In Multi-Walker, all agents
learn to walk forward while keeping consistent paces to steady the
package. With the same reward settings, our method can reach the
edge of the terrain while MADDPG struggles to carry the package
or tends to fall down halfway. The PS-DDPG method performs
poorly as each agent’s policy changes during training, resulting in
a non-stationary environment [5].

Scaling toMany Agents. Wenext scaled these two tasks to include
more agents. We set the number of agent to [2, 5, 10] in Waterworld,
while [2, 3, 4] in Multi-Walker. Table 1 shows the performance com-
parison on the final results on average scores as well as the standard
error. With the number of agents increases, FLE scales better and
shows lower degradation in average performance as compared to
MADDPG and PS-DDPG. Notably, we fixed the dimension of the
latent space in FLE across all scaling experiments. This result in-
dicates that when the problem space becomes larger, the behavior
of coordination in these tasks exists in a low-dimensional struc-
ture. FLE performs exploration in a low-dimensional latent space,
therefore scales better and enables more efficient learning.

Not surprisingly, we find FLE shows higher variance than other
baselines in Table 1, as well as in Figure 4. On a whole, this high
variance mainly comes from the wide variability of coordinated
movement choice, which is caused by diverse latent samples gen-
erated by FLE. The coordination strategies are often multi-model,
and there are many equivalent ways to achieve cooperation (e.g.
move towards either target is OK if equal distance). As our method
doesn’t explicitly deal with the global long-term value, the variable
choice may cause the variance of the subsequent scores. Specifi-
cally, in Waterworld, we also notice the worst performance of FLE
is comparable with MADDPG although high variance. While in
Multi-Walker, apart from the variable coordination plans, the high
variance also comes from the randomness of the environment. We
have also tested the intermediate result during training. Although
high variance, the agents expressed high coordination without
behaving meaningless.

4.4 Model Inspection
To examine in more details of the model, we now demonstrate
empirical evidence suggesting the efficacy and meaningfulness of
our approach to coordinated exploration.

Coordinated Exploration vs. Independent Exploration. From the
view of exploration structure, our method differs from other MARL
baselines, in that the noise is sampled from a latent space and broad-
casted to the input of multi-agent policies, rather than adding noise
directly to the joint action space. To aid interpretation between
coordinated exploration and independent exploration, we compare
performance to the same FLE structure but with non-shared noise
to each individual policy. Each agent samples 𝑧𝑔 concurrently from
the commander module. The comparison result is shown in Table 1
(FLE vs. FLE w/o sharing latent).

We can see the FLE without sharing latent variables is infe-
rior to FLE as the number of agents increases, and has a similar
performance with MADDPG in Multi-Walker. This highlights the
significance of sharing structure for exploration. As the number
of agents increases, it becomes harder for multi-agent system to
discover an effective action combination if we use independent
exploration strategy. For coordinated tasks, the solution space of-
ten has low-dimensional structures that can be used to accelerate
exploration and training.

Trajectory Embedding during Learning Phase. To visualize the
multi-agent exploration during training, we plot the joint multi-
agent trajectory embedding in Multi-Walker using T-SNE [19]
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Final Reward
# of agents PS-DDPG MADDPG FLE FLE w/o sharing latent

Waterworld 2 508.4 ± 88.9 3870.6 ± 176.2 3721.3 ± 187.4 3694.3 ± 180.1
5 59.2 ± 11.5 2471.9 ± 114.1 3460.1 ± 205.3 2671.4 ± 214.6
10 10.7 ± 8.4 300.2 ± 63.7 2883.7 ± 146.9 564.7 ± 53.2

Multi-Walker 2 0.9 ± 38.7 321.6 ± 56.6 635.4 ± 85.0 370.9 ± 61.0
3 -20.1 ± 10.6 -1.4 ± 13.2 705.9 ± 94.6 28.4 ± 15.3
4 -44.3 ± 14.3 -5.8 ± 16.7 321.0 ± 39.3 9.6 ± 19.9

Table 1: Scalability Test: Performance comparison for Waterworld and Multi-Walker with different number of agents. Final
reward is determined by training until convergence, and evaluating the average reward per episode in the final epoch.

during the training process by running model checkpoints. For
clarification, we keep only the first 20 steps of trajectory, as the
performance of first 20 steps is crucial for mastering the coor-
dination in Multi-Walker. Naive methods without well-designed
coordination strategy often cause an early end of the game (usually
around 25 steps), namely the package touches the ground and the
game is over. Figure 5 illustrates the results. Each marker repre-
sents a (𝑜𝑡0, ..., 𝑜

𝑡
𝑁
, 𝑎𝑡0, ..., 𝑎

𝑡
𝑁
) tuple (red markers for FLE, blue mark-

ers for MADDPG), and [▼,■, •] represents the training episodes,
[0𝑘, 5𝑘, 10𝑘]. We find that FLE is able to escape from the area of pri-
mary stage, and successfully discovers the high reward state space
(the upper region). While MADDPG is trapped in a sub-optimal
policy space and fails to master coordination, indicating doing ex-
ploration in combinatorial action space is very tricky.

High Reward

Figure 5: The distribution of first 20 stepsmulti-agent trajec-
tory in 2-dimensional space using t-sne.

Expressiveness of Coordination. We continue by inspecting the
behavior of the latent variable 𝑧𝑔 . We conducted an experiment
for a simple 2-agents Waterworld task, where the number of food
targets is also set to 3. The game ends after all 3 targets are collected.
During the test, we fixed the random seed of the environment to
verify in a same case. We sample 10 trajectories for FLE and MAD-
DPG respectively by running trained models. The visualization of
sampled trajectories is illustrated in Figure 6a and 6b.

We observe that FLE (Figure 6a) is successfully able to capture
the wide variability of coordinated movement choice. By sampling
from the low-dimensional latent space, two agents share the same
coordinated strategy, and the trajectories demonstrate a correlated

change between two agents. This is due to the fact that in Water-
world, all agents must move in sync to reach a target. Also, the
diverse pattern of trajectories demonstrates that the latent space
encodes multi-modal strategies for coordination, as there are many
equivalent ways to achieve cooperation (e.g. move towards either
target is OK if equal distance). This behavior is also consistent with
the high variance performance of FLE demonstrated in Figure 4.
On the contrary, MADDPG performs identical trajectories, where
10 samples are overlapped. This is reasonable as the multi-agent
policies in MADDPG are deterministic.

Agent 1
start point

Agent 2
start point

FLE sampled Trajectory

(a) 10 samples of FLE Trajectories
for 2 agents.

Agent 1

start point

Agent 2
start point

MADDPG sampled Trajectory

(b) 10 samples of MADDPG Trajec-
tories for 2 agents.

Figure 6: The visualization of sampled trajectories inWater-
world. (In one plot, different colors correspond to different
trajectory samples)

To enable a more detailed semantic inspection of the learned
coordinated policies, we present a didactic case as shown in Figure
7a. As each food target must be collected by both agents, there are
two equivalent solutions, heading towards Target 1 simultaneously,
or Target 2. We ran 1000 instances of this fixed environment scene
with trained FLE model by repeatedly drawing random samples
from feudal commander. Figure 7b shows the heatmap of gener-
ated 2-d actions of two agents, namely the agent’s position on the
next time step. The warm-to-cool color spectrum reflects the dense-
to-sparse sample. We notice that the latent sample 𝑧𝑔 is exactly
significantly correlated with the agents’ coordinated actions, with
two cliques in the direction of two food targets. Different samples
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from the stochastic latent space reflect the variability in coordina-
tion mode indicating the latent variables are being utilized on the
executed policies.

(a) A Didactic example in Waterworld: two
agents are facing almost equivalent cooperation
choices.

(b) Heatmap of 1000 sampled actions of two agents in Figure 7a using
1000 shared latent samples generated by feudal commander (left: Agent
1, right: Agent 2). Examples of corresponding real actions of two latent
samples 𝑧1, 𝑧2 are also illustrated.

Figure 7: Visualization of how latent samples instruct coor-
dinated behaviors.

5 RELATEDWORK
While the field of exploration in single agent RL is popular [1, 10, 22,
24], relatively little work has been done in multi-agent RL. Jaques
et al. [12] introduce an intrinsic reward in MARL by giving agents
higher reward when its actions lead to relatively higher change
in the other agent’s behavior. Wang and Wang [35] propose an
enhanced prioritized experience replay to help agents explore more
efficiently. Böhmer et al. [3] also consider improving the exploration
with intrinsic reward and propose a centrally-assisted exploration
framework to stabilize learning. These works, although very impor-
tant, do not address the problem of exploring in a combinatorially
large multi-agent action space, and whether these techniques can
be improved when scaling to more agents. FLE concentrates on
coordinated exploration with a shared latent space, which can be
combined with the contributions of these related works.

6 CONCLUSION
In this paper, we propose a Feudal Latent-space Exploration (FLE)
method for Multi-agent Reinforcement Learning, by introducing a

global feudal commander to learn the low-dimensional and multi-
modal coordination structure of multiple agents. Each agent shares
the same sample from this latent space, and we bias them towards
learning to act coordinately. In order to isolate the contribution of
our work, we validate our approach on two multi-agent tasks that
require explicit coordination, and demonstrate significant improve-
ments over pure independent exploration in MADDPG. Moreover,
we also conduct thorough experiments and semantic inspections
to demonstrate considerably better scaling, coordination, and ex-
pressiveness performance of our method.
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