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Abstract. A neural-based method for source separation in nonlinear
mixture is proposed in this paper. A cost function, which consists of
the mutual information and partial moments of the outputs of the sep-
aration system, is defined to extract the independent signals from their
nonlinear mixtures. A learning algorithm for the parametric RBF net-
work is established by using the stochastic gradient descent method. This
approach is characterized by high learning convergence rate of weights,
modular structure, as well as feasible hardware implementation. Simu-
lation results demonstrated the success of our proposed method in this
paper.
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1 Introduction

Blind source separation in signal processing has received considerable attentions
in the last decade[1, 2]. Many blind separation algorithms have been proposed
based on different separation models. These algorithms play increasingly impor-
tant roles in many applications.

Usually, Blind source separation is to recover unobservable independent sources
(or “signals”) from several observed data masked by linear or nonlinear mixing.
Most existing algorithms for linear mixing models stem from the theory of the
independent component analysis (ICA) [3]. Therefore, a solution to blind source
separation problem exists and this solution is unique up to some trivial inde-
terminacies (permutation and scaling) according to the basic ICA theory [3].
Even though the nonlinear mixing model is more realistic and practical, most
existing blind separation algorithms developed so far are valid for linear models.
For nonlinear mixing models, many difficulties occur and both the linear ICA
theory and existing linear demixing algorithms are no longer applicable because
of the complexity of nonlinear characteristics [4].

Several authors studied the difficult problem of the nonlinear blind source
separation and proposed a few efficient demixing algorithms [4–9]. Deco [5] stud-
ied a very particular scenario of volume-conserving nonlinear transforms. Pa-
junen et al.[6] proposed model-free methods which used Kohonen’s self-organizing
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map (SOM) to extract independent sources from nonlinear mixture, but suffers
from the exponential growth of network complexity and interpolation error in
recovering continuous sources. Burel [7] proposed a nonlinear blind source sep-
aration algorithm using two-layer perceptrons by the gradient descent method
to minimize the mutual information (measure of dependence). Subsequently,
Yang et al. [8] developed an information backpropagation (BP) algorithm for
Burel’s model by natural gradient method. In their model cross nonlinearities is
included. Taleb et al. [9] proposed an entropy-based direct algorithm for blind
source separation in post nonlinear mixtures. Recently, authors[12, 13] proposed
several algorithms and approaches for separation of nonlinear mixture of sources.

2 Nonlinear mixture model

A generic nonlinear mixture model for blind source separation can be described
as x(t) = f [s(t)], where x(t) = [x1(t), x2(t), ..., xn(t)]T is the vector of observed
random variables, superscript T denotes the transposition, s(t) = [s1(t), s2(t), ..., sn(t)]T

is the vector of the latent variables called the independent source vector, f is an
unknown multiple-input and multiple-output (MIMO) mapping from Rn to Rn

called nonlinear mixing transform (NMT). If the mixing function f is linear, this
model reduces to the linear mixing. In order for the mapping to be invertible we
assume that the nonlinear mapping f is monotone.

The separating system g(·, θ), is called nonlinear separation transform (NST),
is used to recover the original signals from the nonlinear mixture x(t) without
the knowledge of the source signals s(t) and the mixing nonlinear function f(·).
Obviously, this problem is untractable, in particular for nonlinear mixing sys-
tem, unless conditions are imposed on the nonlinear function f(·). At first, the
existence of the solution for the NST can be guaranteed. According to related
nonlinear ICA theories, the nonlinear ICA problem always has at least one solu-
tion. That is, given a random vector x, there is always a function g so that the
components of y = [y1, · · · , yn]T given by y = g(x) are independent[6, 4].

Unfortunately, this kind of mapping is not at all unique. It is shown in [4]
that a unique solution subjected to a rotation can be obtained under the assump-
tions that the problem is a two-dimensional one, mixing function is a conformal
mapping, and the densities of the independent components are known and have
bounded support. In addition, we add some constraints on the output; i.e., the
moment matching between the outputs of the separating system and sources.
Accordingly, the output of the nonlinear separating system can be written as

y(t) = g(x(t),θ) = g(f(s(t)),θ) = s(t) (1)

where g(·,θ) = f−1(·) denotes a parametric fitting function class, θ is a param-
eter vector to be determined.
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3 Nonlinear separation based on an RBF network

3.1 the RBF neural network

An n-input and n-ouput RBF network model consists of three layers; i.e., input
layer, hidden layer and output layer. The neurons in hidden layer are of local
response to its input and called RBF neurons while the neurons of the output
layer only sum their inputs and are called linear neurons. The RBF network is
often used to approximate an unknown continuous function φ : Rn → Rn which
can be described by the affine mapping

u(x) = BK(x,p) (2)

K(x,p) = [1, exp(−(x−µ1)
T (x−µ1)/σ2

1), · · · , exp(−(x−µM )T (x−µM )/σ2
M )]T .

(3)

where B = [αij ] is a n×M weight matrix of the output layer, K(x,p) is Gaussian
kernel function vector of the RBF network, which consists of the locally receptive
functions. p = (µ1, σ1, · · · ,µM , σM )T is the parameter set of the kernel function.
Here we let the first component of K(x,p) be 1 for taking the bias into account.

3.2 Nonlinear separation system based on RBF network

Since the local response power of RBF networks offers great classification and
approximation capabilities, the Gaussian RBF network is used as a good func-
tion approximator in many modelling applications. If we let S be a compact
subset in Rn and p(x) be a continuous target vector on S, then for any ε > 0
there exist M centroids µi = [µi1, · · · , µin]T and an n ×M constant matrix B
such that r(x,θ) = B ·K(x,p) satisfies |r(x,θ) − p(x)| < ε for all x ∈ S. This
approximation ability of RBF networks directly stems from the classic Stone-
Weierstrass theorem and is closely related to Parzen’s approximation theory.
Therefore, the inverse of the nonlinear mixing model can be modeled by us-
ing an RBF network. Such architecture is preferred over multilayer perceptrons
(MLP) as an RBF network has better capability for functional representation.
Since its response is linearly related to its weights, learning in an RBF network
is expected to train faster while its local response power offers a good approxi-
mation capability. As a result, we can reach

y = B̂K[f(s), p̂] ∝ s (4)

where g(·, θ̂) = B̂K[., p̂], B̂ and p̂ are the final estimates of parameters B and p
of the RBF network such that the inverse of f is well approximated by the RBF
network.
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3.3 Cost function

In order to deal with the nonlinear separation problem effectively, we define a
cost function, or contrast function, which is the objective function for signal
separation, as

C(θ) = I(y) +
∑

i1···in

ci1···in [Mi1···in(y,θ)−Mi1···in(s)]2 (5)

where I(y) is mutual information of the outputs of the separation system,
Mi1···in

(y,θ) and Mi1···in
(s) are the i1 · · · in-th moments of y and s, respec-

tively, ci1···in are constants which are used to balance the mutual information
and the matching of moments.

According to information theory and related the Kullback-Leibler divergence,
mutual information I(y) in Eq. (5) is expressed as

I(y) =
n∑

i=1

H(yi)−H(y) (6)

where H(y) = −E[log(py(y)] is the joint entropy of random vector y, H(yi) =
−E[log(pyi

(yi)] is the entropy of random variable yi, the ith component of y,
and E(·) denotes the expectation operator.

The i1 · · · inth moment of y is defined as

Mi1···in(y) = E(yi1
1 · · · yin

n )− E(yi1
1 ) · · ·E(yin

n ). (7)

It can be seen from Eqs. (5)- (7) that the constrast function defined in Eq. (5)
is always non-negative, and reaches zero if and only if both mutual information is
null and a perfect matching of moments between the outputs of the separation
system and original sources is achieved. Therefore, independent outputs with
the same moments as that of original sources can be found by minimizing the
contrast function by adjusting the parameters of the RBFN separating system,
i.e.,

θ̂ = arg min
θ
{I(y) +

∑

i1···in

ci1···in
[Mi1···in

(y,θ)−Mi1···in
(s)]2}. (8)

3.4 Learning algorithm of the separating RBF network

In order to derive the unsupervised learning algorithm of all the parameters of
the separating RBF network, we employ the gradient descent method. First of
all, we compute the gradient of the contrast function of Eq. (5) with respect to
the parameter θ and obtain

∂C(θ)
∂θ

=
∂I(y)
∂θ

+
∑

i1···in

2ci1···in
[Mi1···in

(y,θ)−Mi1···in
(s)]

∂Mi1···in
(y,θ)

∂y
∂y
∂θ

(9)
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where mutual information can be further rewritten as

I(y) =
n∑

i=1

H(yi)− E{log |∂g(x,θ)
∂x

|} −H(x) (10)

where |∂g(x,θ)/∂x| is the determinant of the Jacobian matrix of g(x,θ) with
respect to vector x.

Regarding different concrete parameters B, µ and σ of the parameter set θ
of the RBF network, we have the following gradient equations of the separated
signal y

∂y
∂B

= K(x, t), (11)

∂y
∂µ

= B · diag[v1 ◦K(x, t)], (12)

∂y
∂σ

= B · diag[v2 ◦K(x, t)]. (13)

where v1 = [2(x−µ1)/σ2
1 , · · · , 2(x−µM )/σ2

M ]T , v2 = [2‖x−µ1‖2/σ3
1 , · · · , 2‖x−

µM‖2/σ3
M ]T , function diag[·] denotes diagonal matrix, symbol ◦ denotes Hadamard

product which is the multiplication of corresponding pairs of elements between
two vectors.

Finally, from Eqs. (9), (11)- (13), we can easily calculate the gradients of the
constrast function with respect to each parameter of parameter set θ.

3.5 Performance Index and Algorithm Description

From Eq. (10), by omitting the unknown H(x), an index to measure the inde-
pendence of the outputs of the separation system is defined as

Ji =
n∑

i=1

H(yi)− E{log |∂g(x,θ)
∂x

|} (14)

Even though the index Ji may be negative, the lower the value of Ji is, the
more independent the outputs of the separating system is. The smallest negative
value of Ji is just equal to the reciprocal of H(x). In a similar manner, according
to Eq. (10), a performance index measuring moment match up to the k-th order
between the outputs of the separation system and original sources can also be
directly defined as

Jk
m =

∑

i1···in≤k

[Mi1···in(y,θ)−Mi1···in(s)]2 (15)

The maximum value of k is chosen such that the inverse of the mixing non-
linear transform can be uniquely approximated by an RBF network through the
minimization of the cost function. In actual implementation, usually only up
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to forth-order moment is enough for this purpose by experiments. We expect
both Ji and Jk

m are at their minimia simultaneously, so the two indices can be
combined into one overall index as follows

J = Ji + αJk
m (16)

where α is a proportionality constant weighting the two quantities.

4 Simulation Results

Consider a two-channel nonlinear mixture with a cubic nonlinearity:
(

x1

x2

)
= A2

[
(·)3
(·)3

]
A1

(
s1

s2

)
(17)

where mixing matrices A1 and A2 are nonsingular.
The source vector s(t) consists of a sinusoidal signal and an amplitude-

modulated signal; i.e., s(t) = [0.5 ∗ [1 + sin(6πt)] cos(100πt), sin(20πt)]T .
In this experiment we use an RBF network with six hidden neurons with

Gaussian kernel.
An example of the evolution curves for the learning algorithm is shown in

Fig. 1. The learning curve is smooth and it converges after 500 iterations.
The value of the performance index after convergence of the learning algo-

rithm is very small so that the separated signals obtained by our model are seen
to be mutually independent.
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Fig. 1. Learning curve of the proposed algorithm

Fig. 2 shows the two source signals s(t) and the input signals x(t) of the
separating system , i.e., the mixture of the sources. Figs. 3 show the signals
separated by the proposed approach.

5 Concluding Remarks

A neural-based separating approach is established to separate nonlinearly mixed
sources in terms of a novel cost function which consists of mutual information
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Fig. 2. Two source signals (above) and their nonlinear mixtures (below)
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Fig. 3. Separated signals of our proposed method

and cumulants’ matching. Because of the local response of RBF networks, the
proposed method is of fast learning convergence rate of weights, natural unsu-
pervised learning characteristics, modular network structure as well as suitable
hardware implementation. All of these properties make it be an effective can-
didate for real-time multi-channel separation of nonlinear mixtures of sources.
Extensive simulation results verified the validation of our methods.
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