
A Virus Detection System Based on Artificial Immune System

Rui Chao and Ying Tan, Member, IEEE

Abstract— A virus detection system (VDS) based on artificial
immune system (AIS) is proposed in this paper. VDS at first
generates the detector set from virus files in the dataset, negative
selection and clonal selection are applied to the detector set to
eliminate autoimmunity detectors and increase the diversity of
the detector set in the non-self space respectively. Two novel
hybrid distances called hamming-max and shift r bit-continuous
distance are proposed to calculate the affinity vectors of each file
using the detector set. The affinity vectors of the training set and
the testing set are used to train and test classifiers respectively.
VDS compares the detection rates using three classifiers, k-
nearest neighbor (KNN), RBF networks and SVM when the
length of detectors is 32 − 𝑏𝑖𝑡 and 64 − 𝑏𝑖𝑡. The experimental
results show that the proposed VDS has a strong detection
ability and good generalization performance.

I. INTRODUCTION

The analysis of behavior and binary data of programs are
the two main methods employed by an anomaly detection
system to recognize malicious programs.

Behavior-based methods utilize the operating system’s
application programming interface (API) sequences, system
calls or other kinds of behavior characteristics to identify the
purpose of a program [1]. These methods at first construct
profiles during the legitimate operations of the monitored
programs. During the detection process, any system call
sequence or argument that do not comply with the previously
generated ’normal’ profiles is regarded as a sign that the
system is compromised. The corresponding program will be
stopped and then classified as a malicious. The malicious
are identified when the computer are already damaged, so
many methods use a virtual environment (called sandbox)
to simulate real system environment where the unclassified
programs are running. The drawbacks of these methods
cost much time and effort to build a less-error sandbox,
but the sandbox can not simulate the same environment
as real operating system. Although these approaches have
produced promising results, they can produce high rates of
false positive errors, an issue which has yet to be resolved
[2].

Data-based methods can detect virus before they are
executed, they utilize the binary data extracted from the
program files. The traditional methods extract signatures
from virus samples [3], scanners compare these signatures
with unclassified files to determine whether they are virus.
These methods are effective in the past. As novel advanced
technologies are widely used in manufacturing new virus,

Authors are with Key Laboratory of Machine Perception, Ministry of
Eduction, Peking University, and with Department of Machine Intelligence,
School of Electronics Engineering and Computer Science, Peking Univer-
sity, Beijing, 100871, P.R. China. Prof. Y. Tan is the corresponding author.
ytan@pku.edu.cn

polymorphic virus can change their signatures while spread-
ing. So it is getting harder both for experts to extract
signatures and to detect them.

This leads to some heuristic data-based methods. Among
those methods, AIS as a dynamic, adaptive, distributed
learning system are applied to many fields of science and
engineering, such as pattern recognition, fault diagnosis,
network intrusion detection and virus detection. There are
three basic models based on AIS principles: negative selec-
tion algorithm, clonal selection algorithm and the immune
network model. It has a great similarity to computer security
system. The concepts, self, non-self and so on, can be applied
to the computer security system as well. Therefore, virus
detection using AIS has paved a new way for anti-virus
research.

II. RELATED WORK

Some statistical or heuristic algorithms utilize binary data
to mine the characteristics of unclassified programs. Among
these algorithms, the self and non-self hypothesis [4] in AIS
are proposed for years. The theoretical foundations of the
distribution change detection methods [5] are verified based
on that hypothesis. A number of work have been done to
design an effective virus detection system. The algorithm
in [6] at first generates the detectors from short executable
binary sequences, then uses a NN-based classifier to dis-
criminate malicious and benign executables. This algorithm
uses five detector sets with different length of detectors and
BP network to train the classifier, so its large computational
cost and long time training time of BP network leads to weak
performance when the size of the file increases dramatically.

Aiming at building a light-weighted, limited computer
resource and early virus warning system (VDS), a novel virus
detection system on the basis of AIS was proposed in this
paper. As binary data of files are directly utilized by VDS to
generate a detector set, no sandbox or signature extraction
processed are needed.

The difficult part in building VDS is that there doesn’t
exist standard virus database available for testing and com-
paring of algorithms. So many algorithms were proposed just
based on a few specific virus, and some of them have a very
poor generalization ability. As a result, we collect as much
virus samples as possible for testing VDS using different
percentages of files in a dataset to enhance the generalization
ability for a high accuracy for new viruses.

TABLE I
THE NUMBER OF FILES IN EACH DATASET IN OUR EXPERIMENT

Training Set Testing Set
Data sets Benign Files Virus Files Benign Files Virus Files
Dataset1 71 885 213 2662
Dataset2 142 1773 142 1774
Dataset3 213 2662 71 885

III. THE PROPOSED VDS

A. Dataset

There are 284 benign files with 78𝑀𝐵 in total, and 3547
virus files with 7.8𝑀𝐵 in the data set (DS). Another data
set contains 208 benign files is used for negative selection,
totally 189𝑀𝐵. All the benign files are system files or well-
known programs with extensions .exe.

The DS is randomly divided into different percentages of
training set and testing set as shown in table I, there is no
overlap in the two sets.

B. Sliding window

Bit slices in a fixed length 𝐿 − 𝑏𝑖𝑡 (binary data frag-
ments) 𝑥𝑓

𝑗 are extracted from each file using a sliding
window. The set of 𝑥𝑓

𝑗 of file 𝑙 is represented by 𝐷𝐹𝑙 =

{𝑥𝑓
0 , 𝑥

𝑓
1 , ..., 𝑥

𝑓
𝑛−1}, ∣𝐷𝐹𝑙∣ = 𝑛𝑓 , ∣𝑥𝑓

𝑗 ∣ = 𝐿. Two neighboring
fragments have an overlap of [𝐿/2] bits. If the size of the file
𝑙 is 𝑁 , ∣𝐷𝐹𝑙∣ = 2𝑁/𝐿. 𝐷𝐹𝑙 is the all information utilized
by VDS. The process of extracting data fragments from a
binary file is shown in Fig. 1.

0x 752A BD89 39AC 88FEBinary fi le:

d(j)=752ABD89

d(j+1)=BD8939AC

Fig. 1. The process of extracting data fragments, ∣𝑥𝑓
𝑗 ∣ = 𝐿 = 32 bits.

In the hypothesis of immune system, antibody T-cells
detect antigens using the information of protein portions on
the surface of antigen [7] [8]. In VDS, 𝑥𝑓

𝑗 is corresponding
to the protein portions of an antigen, an entire program file
is regarded as an antigen.

C. Negative selection

In AIS, as the T-cells mature in the thymus, they undergo
a censoring process called negative selection, in which those
T-cells that bind self cells are destroyed [9] [10]. After
censoring, T-lymphocytes that do not bind self are released
to the rest of the body and provide a basis for our immune
protection against foreign antigens. This mechanism in the
immune system is very robust because of its distribution
nature and high efficiency.
𝐷𝑇𝐼 is the data fragment set extracted from virus files

in the training set, it contains immature detectors which will
undergo negative selection and clonal selection before they

are used to detect virus. Since most viruses insert or append
themselves to benign files, 𝐷𝑇𝐼 contains both benign and
virus data fragments which will lead to false positive during
detection. The purpose of the negative selection is to remove
𝑥𝑓
𝑗 appears both in 𝐷𝑇𝐼 and benign files, only virus-special

data fragments are left in 𝐷𝑇𝐼 . The process of negative
selection is shown in Fig. 2.

Benign files

in training

set

Virus files in

training set
Extract self set

Extract original

detector set

Apply clonal

selection to

detector set

Match?
Form the detector

set
No

Delete that detector

Yes

Fig. 2. Negative selection process

D. Clonal selection

The clonal selection algorithm is used by AIS to define
the basic features of an immune response to an antigenic
stimulus [11] [12]. It establishes the idea that only those cells
that recognize the antigens are selected to proliferate. The
selected cells are subject to an affinity maturation process,
which improves their affinity to the selective antigens.

Clonal selection is used to increase the diversity of 𝐷𝑇𝐼
in the non-self space, new detectors are generated from data
fragments in 𝐷𝑇𝐼 . The newly generated detectors would
not only cover as much non-self space as possible but
also enhance the ability of detecting unknown viruses. The
number of clones generated is given by:

∣𝐶(𝑥𝑡
𝑖)∣ =

𝛼

𝐹𝑥𝑡
𝑖

, (1)

where 𝛼 is the coefficient of clone selection, usually 𝛼 = 10.
𝑥𝑡
𝑖 represents a single detector in 𝐷𝑇𝐼 and 𝐹𝑥𝑡

𝑖
is the

occurrence frequency of 𝑥𝑡
𝑖, 𝐶(𝑥𝑡

𝑖) is number of clones
generated by 𝑥𝑡

𝑖.
Traditional AIS mutation methods are used in clonal

selection, at most 5 bits of 𝑥𝑡
𝑖 are randomly changed to

generate new detectors. The lower 𝐹𝑥𝑡
𝑖

is, the higher mutation
rate will be taken.

E. Distances

After negative selection and clonal selection are applied
to 𝐷𝑇𝐼 , the detectors in 𝐷𝑇𝐼 are matured, so it can be
used as the detector set 𝐷𝑇 to detect virus. In VDS, the
affinity value reflects the similarity between a data fragment
from an unknown file and the virus. To calculate the affinity
values between 𝑥𝑓

𝑗 in 𝐷𝐹𝑙 of file 𝑙 and 𝑥𝑡
𝑖 in 𝐷𝑇 , two

novel distances and shift operator introduced to efficiently

detect short non-continuous but virus-special assemble code
instructions.

1) Hamming-max distance: Hamming distance [13] plus
cyclic shift operator(called hamming-max distance) is used
to find the best matching position between 𝑥𝑓

𝑗 𝜖𝐷𝐹𝑙 and
𝑥𝑡
𝑖𝜖𝐷𝑇𝐼 during the matching process. Hamming-max dis-

tance can be evaluated by the following equation:

𝐻𝑀(𝑥𝑡
𝑖, 𝑥

𝑓
𝑗) = 𝑚𝑎𝑥{𝐻𝐷(𝑥𝑡

𝑖′ , 𝑥
𝑓
𝑗)}, (2)

where 𝐻𝑀(𝑥𝑡
𝑖, 𝑥

𝑓
𝑗) and 𝐻𝐷(𝑥𝑡

𝑖, 𝑥
𝑓
𝑗) are the hamming-max

and hamming distance between 𝑥𝑡
𝑖 and 𝑥𝑓

𝑗 respectively.
𝑥𝑡
𝑖′𝜖{𝑆(𝑥𝑡

𝑖, 0, 𝑙𝑒𝑓𝑡), 𝑆(𝑥𝑡
𝑖, 1, 𝑙𝑒𝑓𝑡), ..., 𝑆(𝑥𝑡

𝑖, 𝐿 − 1, 𝑙𝑒𝑓𝑡)},
∣𝑥𝑡

𝑖′ ∣ = 𝐿, 𝑆(𝑥𝑡
𝑖, 𝑘, 𝑙𝑒𝑓𝑡) means left cyclic shift 𝑥𝑡

𝑖 𝑘 bits.
Hamming-max distance can avoid the influence of bits

mismatching to enhance the ability of matching exactly the
virus-special instructions.

2) Shift r-continuous bit distance: R-continuous bit dis-
tance [14] [15] is widely used in binary string matching.
If two strings contain the same substring with the length
of 𝑟, they are matched. Shift r-continuous bit distance is
aimed to detect shorter serial assemble instructions which
appear rarely in benign programs. It is a supplement to the
hamming-max distance. The shift r-continuous bit distance
𝑆𝑅(𝑥𝑡

𝑖, 𝑥
𝑓
𝑗 , 𝑟) between 𝑥𝑡

𝑖 and 𝑥𝑓
𝑗 can be evaluated by the

following equation:

𝑆𝑅(𝑥𝑡
𝑖, 𝑥

𝑓
𝑗 , 𝑟) = 𝑚𝑎𝑥{𝑅(𝑥𝑡

𝑖′ , 𝑥
𝑓
𝑗 , 𝑟)}, (3)

where 𝑅(𝑥𝑡
𝑖′ , 𝑥

𝑓
𝑗 , 𝑟) is the r-continuous bit

distance with the length of matching 𝑟 bits. 𝑥𝑡
𝑖′𝜖

{𝑆(𝑥𝑡
𝑖, 0, 𝑙𝑒𝑓𝑡), 𝑆(𝑥

𝑡
𝑖, 8, 𝑙𝑒𝑓𝑡), ..., 𝑆(𝑥

𝑡
𝑖, 𝐿 − 8, 𝑙𝑒𝑓𝑡)}.

The lengths of assemble instructions vary from 8 to 64
bits and shorter instructions appears more frequently than
longer ones in most cases, so the VDS select 𝑟 = 12-𝑏𝑖𝑡
and 𝑟 = 24-𝑏𝑖𝑡 repectively. The length of shift used by
shift operator is 8-𝑏𝑖𝑡 long, it is the minimum length of an
assemble instruction.

F. Affinity vector

Based on the “immune ball” theory, an antibody has its
limited detection space, antigens in that space has closer
distance to it than to other antibodies. In VDS, detectors
having the identical last ∣𝐾∣ bits (𝐾 is called the index bits)
to data fragment 𝑥𝑓

𝑗 are assumed to be neighbors in the
detection space of 𝑥𝑓

𝑗 . 𝐷𝑇𝑆𝑥𝑓
𝑗

represents the sub detector

set of 𝐷𝑇 , the danger level of 𝑥𝑓
𝑗 can be calculated by the

following equation:

𝐷𝐿(𝑥𝑓
𝑗) =

∑𝑛𝑓

𝑖=0⟨𝐻𝑀(𝑥𝑡
𝑖, 𝑥

𝑓
𝑗), 𝑆𝑅(𝑥𝑡

𝑖, 𝑥
𝑓
𝑗 , 12), 𝑆𝑅(𝑥𝑡

𝑖, 𝑥
𝑓
𝑗 , 24)⟩

𝑛𝑓
,

(4)
where 𝑥𝑡

𝑖𝜖𝐷𝑇𝑆𝑥𝑓
𝑗

, detectors in 𝐷𝑇𝑆𝑥𝑓
𝑗

have identical ∣𝐾∣
bits with 𝑥𝑓

𝑗 . 𝐷𝐿(𝑥𝑓
𝑗) is the danger level of 𝑥𝑓

𝑗 in 𝐷𝐹𝑙 of
file 𝑙, ∣𝐷𝐹𝑙∣ = 𝑛𝑓 .

The average affinity value of 𝑥𝑓
𝑗 in 𝐷𝐹𝑙 is the dangerous

level of file 𝑙. It can be obtained by the following equation:

𝑣𝑙 =

∑𝑛𝑓

𝑗=0 𝐷𝐿(𝑥𝑓
𝑗)

𝑛𝑓
, ∣𝐷𝐹𝑙∣ = 𝑛𝑓 , (5)

where 𝑣𝑙 is the affinity vector of file 𝑙, it reflects the
dangerous level of file 𝑙 from three different distances. The
higher 𝑣𝑙 is, the more likely file 𝑙 is a virus.

The calculation process of the dangerous level of 𝑓𝑖𝑙𝑒𝑙 is
illustrated as follows.

1. Extract the data fragment set 𝐷𝐹𝑙 from file 𝑙, it is a
multi-set because some data fragments may have the same
value. 𝑥𝑓

𝑗 𝜖𝐷𝐹𝑙, ∣𝑥𝑓
𝑗 ∣ = 𝐿 bits;

2. Calculate 𝑣𝑙 using distances described in III-E. The
pseudo code is shown in Algorithm 1.

Algorithm 1 Calculation of 𝑣𝑙
𝑣𝑙 = 0;
for every 𝑥𝑓

𝑗 in 𝐷𝐹𝑙 do
𝑣𝑙

′ = 0;
if 𝐷𝑇𝑆

𝑥
𝑓
𝑗

is empty then
Continue;

end if
for every 𝑥𝑡

𝑖 in 𝐷𝑇𝑆
𝑥
𝑓
𝑗

do
𝑣𝑙

′ + =
⟨𝐻𝑀(𝑥𝑡

𝑖, 𝑥
𝑓
𝑗), 𝑆𝑅(𝑥𝑡

𝑖, 𝑥
𝑓
𝑗 , 12), 𝑆𝑅(𝑥𝑡

𝑖, 𝑥
𝑓
𝑗 , 24)⟩;

end for
𝑣𝑙 + = 𝑣𝑙

′
∣𝐷𝑇𝑆

𝑥
𝑓
𝑗

∣;

end for
𝑣𝑙 ∖ = ∣𝐷𝐹𝑙∣;

If 𝐷𝑇𝑆𝑥𝑓
𝑗

is empty, 0 is signed to 𝑥𝑓
𝑗 . The last part of

Algorithm 1 is a normalization process.

G. Training classifiers with affinity vectors

Three classifiers, RBF network, SVM [16] [17] with a
radial basis kernel function(rbf-SVM) and KNN, are used to
detect the viruses in the testing set for comparison. They are
trained with affinity vectors of files in training set evaluated
in III-F. The entire process of the VDS is shown in Fig. 3.

IV. EXPERIMENTS

A. Length of data fragment

The length of data fragments 𝐿 is critical to VDS. If 𝐿
is too short, the 𝑑𝑓𝑗 can not contain enough virus-special
information for detecting, the space 2𝐿 is too small to
discriminate self and non-self; if 𝐿 is too long, the space
2𝐿 is too large that every 𝑥𝑓

𝑗 is rare in the space and 𝑥𝑓
𝑗

contains too much information that makes virus-special data
hidden in 𝐷𝐹𝑙. In each condition above, the generalization
ability of the VDS will be limited.

As the length of a single assemble code instruction varies
from 1 byte to 7 bytes, 𝐿 is not necessary bigger than 64-bit
to contain at least one entire instruction. So the experiments
choose 𝐿 = 64-bit and 𝐿 = 32-bit. The overlap of 𝑥𝑓

𝑗 is
always 𝐿

2 .

Fig. 3. The process of VDS. (a) Extract data fragments 𝐷𝐹𝑙 from virus
files in the dataset, apply negative selection and clonal selection to 𝐷𝑇𝐼 to
form the detector set 𝐷𝑇 . (b) Use 𝐷𝑇 to calculate the dangerous level of
all files 𝑣𝑙 in the dataset. (c) Train classifiers using 𝑣𝑙 in the training set.
(d) Classify 𝑣𝑙 in the testing set.

TABLE II
THE AVERAGE DETECTION RATE OF SVM WHEN 𝐿 = 32 AND 𝐿 = 64,

THE FILES ARE RANDOMLY SELECTED FROM THE DATASET

Detection Rates 𝐿 = 32 𝐿 = 64
Database Virus Benign Files Virus Benign Files

Data Training Set 99.55% 97.18% 100% 97.18%
Set1 Testing Set 91.28% 99.06% 84.44% 99.53%
Data Training Set 99.38% 98.59% 100% 97.18%
Set2 Testing Set 92.45% 98.59% 89.06% 97.89%
Data Training Set 99.21% 99.06% 100% 99.53%
Set3 Testing Set 93.46% 95.77% 89.06% 97.18%

B. Results

The detection rates using SVM classifier with different
length of 𝐿 are shown in table II. It shows similar per-
formance on all the data sets. 32-bit detectors have better
accuracy and generalization ability in detecting virus in the
testing sets. So 32 − 𝑏𝑖𝑡 data fragments contain enough
virus characteristics information for detection, and 64 − 𝑏𝑖𝑡
data fragments contain too much benign codes, reducing the
thickness of virus information.

The comparison experimental results are shown in Fig. 4
and Fig. 5.

Figure 4 and 5 shows that RBF network has better
performance than SVM and KNN except on virus files in
testing set. But it has weaker generalization ability especially
when the training data is small, even though it has the highest
detection rate on all other data sets. KNN and SVM have
nearly the same detection rates when 𝐿 = 32 bits and SVM
has better performance than KNN when 𝐿 = 64, as the
training data become larger, the performance of KNN drops
down significantly, but the detection rate of SVM is stable.

The VDS achieves high accuracy in detecting known and
unknown virus especially in data set1 that the percentage
of training set is 25%. But as Figure 4 and 5 shows, their

0.25 0.5 0.75

0.92

0.94

0.96

0.98

Benign files in train set

Percent of train set

32
 d

et
ec

tio
n

ra
te

SVM
RBF Network
KNN

0.25 0.5 0.75

0.992

0.993

0.994

0.995

0.996

0.997

0.998

Virus files in train set

Percent of train set

32
 d

et
ec

tio
n

ra
te

SVM
RBF Network
KNN

0.25 0.5 0.75

0.96

0.965

0.97

0.975

0.98

0.985

0.99

Benign files in test set

Percent of train set

32
 d

et
ec

tio
n

ra
te

SVM
RBF Network
KNN

0.25 0.5 0.75
0.88

0.89

0.9

0.91

0.92

0.93

Virus files in test set

Percent of train set

32
 d

et
ec

tio
n

ra
te

SVM
RBF Network
KNN

Fig. 4. The average detection rate of SVM, KNN and rbf network when
𝐿 = 32, the files are randomly selected from the dataset

detection rates of benign files in testing set decrease as the
number of virus files in training set increases, because some
virus files contain amount of benign codes which reduce
the thickness of virus information in detector set 𝐷𝑇 . So
additional benign files are used in negative selection to
remove benign information in 𝐷𝑇 . The results also show
that the detection rate of virus files in testing set increase
as the number of virus files increase in training set. In the
dataset, the size of benign files is much larger than that of
virus files, it is a general situation in the computer software
environment. As the size of files in the dataset grows larger,
the decreasing part and increasing part neutralize each other,

the detection rate stays at a stable point. One of our future
work is focusing on how to raise this stable point.

0.25 0.5 0.75

0.96

0.97

0.98

0.99

1

Benign files in train set

Percent of train set

64
 d

et
ec

tio
n

ra
te

SVM
RBF Network
KNN

0.25 0.5 0.75

0.997

0.998

0.999

1

1.001
Virus files in train set

Percent of train set

64
 d

et
ec

tio
n

ra
te

SVM
RBF Network
KNN

0.25 0.5 0.75

0.96

0.97

0.98

0.99

1

Benign files in test set

Percent of train set

64
 d

et
ec

tio
n

ra
te

SVM
RBF Network
KNN

0.25 0.5 0.75

0.7

0.75

0.8

0.85

0.9

Virus files in test set

Percent of train set

64
 d

et
ec

tio
n

ra
te

SVM
RBF Network
KNN

Fig. 5. The average detection rate of SVM, KNN and rbf network when
𝐿 = 64, the files are randomly selected from the dataset

V. CONCLUSIONS

Inspired by the negative selection and clonal selection
algorithms in AIS, the VDS is proposed for virus detection
in this paper. Experimental results showed that the VDS
with the rbf-SVM classifier has a strong generalization
ability in detecting unknown virus with low false positive
rate. 64-bit detectors have better performance than 32-bit
detectors to the virus files in training set, but 32-bit detectors
have better performance on virus file in the test set. The

discrimination error often happens when the size of a file
is too small, because of little information utilized by VDS.
As the correlation information between data fragments in
these files does not completely used, our future work will
focus on introducing a proper correlation value between data
fragments into VDS to reduce the false positive rate further.

VI. ACKNOWLEDGMENT
This work is supported by the National Natural Sci-

ence Foundation of China under grant No.60673020 and
60875080, and partially supported by the National High
Technology Research and Development Program of China
(863 Program), with grant No.2007AA01Z453.

REFERENCES

[1] Kerchen, P., Lo, R., Crossley, J., Elkinbard, G., and Olsson, R.
Static Analysis Virus Detection Tools for Unix Systems, pp.4–9. 13th
National Computer Security Conference, 1990.

[2] Hofmeyr, S.Forrest, S.and Somayaji, A. (1998) “Intusion Detection
Using Sequences of System Calls”, Journal of Computer Security, vol.
6, pp.151–180.

[3] Kephart, J.O. and Arnold, W.C.Automatic Extraction of Computer
Virus Signatures. 4th Virus Bulletin International Conference, pp. 178–
184, 1994

[4] Aickelin, U., Greensmith, J., and Twycross, J.(2004) “Immune System
Approaches to Intrusion Detection—a Review”. In the Proceeding
of the Third International Conference on Artificial Immune Systems
(ICARIS–04), pp.316–329.

[5] S.Forrest, A.S.Perelson, L.Allen and R.Cherukuri, “Self-nonself dis-
crimination in a computer”, in Proceedings of the 1994 IEEE Sympo-
sium on Research in Security and Privacy, pp.16–17, Los Alamitos,
CA: IEEE Computer Society Press, 1994.

[6] Zhenhe Guo, Zhengkai Liu, Ying Tan, Ling Zhang(2006) “An NN-
based Malicious Executables Detection Algorithm Based on Immune
Principles”, pp.5–6.

[7] Patrik D’haeseleer, S.Forrest, and P.Helman, “An immunological ap-
proach to change detection: algorithms, analysis and implications,”
IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp.
110–119, 1996.

[8] Paul D.Williams, Kevin P.Anchor, John L.Bebo, Gregg H.Gunsch, and
Gary D.Lamont, “CDIS: Towards a Computer Immune System for
Detecting Network Intrusions”,Proceedings 4th International Sympo-
sium: Recent Advances in Intrusion Detection (RAID), Davis, CA,
USA, pp.117–133, 2001.

[9] J.W.Kappler, N.Roehm, P.Marrack, “T cell tolerance by clonal elimi-
nation in the thymus.” in Cell, 49:273–280, 1987.

[10] W.E.Paul, Ed., Fundamental Immunology, Raven Press Ltd. New York,
pp.88–90, 1989.

[11] Jungwon Kim and Peter J.Bentley,“Negative Selection and Niching by
an Artificial Immune System for Network Intrusion Detection”, pp.19–
25. A late-breaking paper, Genetic and Evolutionary Computation
Conference (GECCO ’99), Orlando, Florida, USA, 1999.

[12] Jungwon Kim and Peter J.Bentley,“An Evaluation of Negative Se-
lection in an Artificial Immune System for Network Intrusion De-
tection,”Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO–2001), pp.1330–1337, 2001.

[13] J.O.Kephart,“A biologically inspired immune system for computers”,
in Proceedings of Artificial Life IV, pp.6–9, MIT Press, Cambridge,
MA, 1994

[14] P.D’haeseleer, “A change-detection algorithm inspired by the immune
system: Theory, algorithms and techniques”, Technical Report CS95–
6. The university of New Mexico, Albuquerque, NM, 1995

[15] P.Helman and S.Forrest,“An efficient algorithm for generating random
antibody strings”, Technical Report CS–94–07, The University of New
Mexico, Albuquerque, NM, 1994

[16] V.Vapnik, Estimation of Dependencies Based on Empirical Data. New
York: Springer–Verlag, 1992.

[17] H.Drucker, C.J.C.Burges, L.Kauffman, A.Smola, and
V.Vapnik,“Support vector regression machines,” in Neural Inform.
Processing Syst. 9, M.C.Mozer, J.I.Joradn, and T. Petsche, Eds.
Cambridge,MA: MIT Press, 1997, pp.155–161.

